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AURAMS Description 
 

AURAMS (version 1.4.0) is an off-line chemical transport model (CTM) that is 

driven by the Canadian operational weather forecast model, GEM (Global Environmental 

Multiscale model). GEM (version 3.2.2) was used to produce meteorological fields with a 

15-km horizontal grid spacing. GEM was run for 12-hr periods from reanalysis files with 

a 6-hr spin-up and 6-hr of simulation stored for the CTM. AURAMS was run with a 15-

km horizontal grid spacing for a domain covering the northeastern U.S. and eastern 

Canada and using climatological chemical boundary conditions. 

Gridded hourly anthropogenic point, area and on-road mobile emissions files were 

prepared for the CTM with the 2005 Canadian and 2005 U.S. national criteria-air-

contaminant emissions inventories and version 2.2 of the SMOKE emissions processing 

system. Total gasoline exhaust organic vapour was treated as an additional gas-phase 

species in the on-road mobile emissions stream of the emissions processing system. This 

species was emitted, transported, lost by gas-phase chemistry and allowed to reach an 

equilibrium partitioning with sulphate aerosol based on the effective uptake coefficient fit 
 

∗ Corresponding author; shao-meng.li@ec.gc.ca; 1-416-739-5731 

mailto:shao-meng.li@ec.gc.ca


of Equation (6) (S=0.012+0.000137*THC2.53) where uptake has units of kg organic 

particle per kg sulfate and GTHC has units of μg m-3).  A Newton iteration method was 

used to calculate the equilibrium solution with a 1% convergence criteria for the GTHC 

vapour. Gas-phase loss by oxidation with OH, NO3 and O3 was calculated with rate 

coefficients of 1.2E-11, 1.2E-14 and 6.7E-18 cm3 molec-1 sec-1, respectively. These rate 

coefficients are reactivity-weighted averages from the individual species rate coefficients 

in the VOC emissions profile for gasoline exhaust. Gasoline exhaust primary organic 

aerosol emissions were also modelled in AURAMS as a separate tracer aerosol species.     
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Biogenic emissions were calculated on-line by AURAMS using BEIS version 

3.09, the Biogenic Emissions Landcover Database (BELD3) vegeation data set (30 tree 

species, 20 crop species), and meteorological fields (temperature and irradiance) from 

GEM. Biogenic VOC emissions are speciated into four groups: isoprene; monoterpenes; 

sesquiterpenes; and “other VOCs”.  Sesquiterpene emissions were calculated by scaling 

monoterpene emissions, as described in Helmig et al., (2007) (e.g., sesquiterpene 

emissions were a factor of 0.16 lower than monoterpenes at 30C). 

The gas-phase mechanism in AURAMS is an updated version of the ADOM-II 

mechanism (Lurmann et al., 1986; Stockwell et al., 1989; Kuhn et al., 1998) that is solved 

using a vectorized version of the rodas3 solver (Sandu and Sander, 2006).  A detailed 

description of the ADOM-II VOC lumping scheme can be found in Stroud et al. (2008). 

In this study, a lumped monoterpene species was separated from the original ADOM-II 

anthropogenic long-chain alkene species and assigned the OH/O3/NO3 kinetics of α-

pinene. A lumped sesquiterpene species was added to the mechanism and modelled with 

β-caryophyllene OH/ O3/NO3 kinetics.  Benzene was separated from the original ADOM-

II lumped species, propane (sum of propane, acetylene and benzene), and reacted in the 

modified mechanism with OH kinetics.  The overall organic aerosol yield approach was 

applied to the following VOC precursor species: isoprene (ISOP), monoterpenes (PINE), 

sesquiterpenes (SESQ), benzene (BENZ), mono-substituted aromatics (TOLU), multi-

substituted aromatics (AROM), long chain anthropogenic alkenes (ALKE), long chain 

anthropogenic alkanes (ALKA). Aerosol yields were calculated for low and high NOx 

limits as a function of existing organic aerosol loadings (sum of primary and secondary) 



and temperature. Updated αi and Ki values were based on recent literature studies (ISOP, 

Kroll et al. (2006) and Lane et al. (2008); PINE, Pathak et al. (2007), Griffin et al., (1999) 

and Zhang et al. (2006); SESQ, Lane et al. (2008); BENZ, Ng et al. (2006); TOLU, 

Hildebrandt et al. (2009); AROM, Ng et al. (2007); ALKE, Lane et al. (2008); and 

ALKA, Lane et al. (2008)). An incremental increase in SOA mass was calculated from 

decreases in precursor VOC concentrations for a given time step under both low and high 

NOx conditions. A linear interpolation between the low NOx and high NOx incremental 

SOA mass was performed based on the fraction of the RO2 radicals that react with HOx 

vs NOx (Presto and Donahue, 2006; Henze et al., 2008).  An organic particle density of 

1.5 g cm-3 was assumed for conversion of normalized aerosol yield data.  The particle 

size distribution is represented in the CTM by 12 size bins ranging from 0.01 to 40.96 μm 

in Stokes diameter, with the 8 lower bins corresponding to sizes below 2.5 μm. Particle 

composition is represented by nine chemical species (sulfate, nitrate, ammonium, black 

carbon, POA, SOA, crustal material, sea salt, and particulate water), which are assumed 

to be internally mixed within each size bin (14). Condensation of the SOA to the particle 

size distribution is described by a modified Fuchs-Sutugin equation as described by 

equation A14 in Gong et al. (2003). 
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Figure S1. Windsor time series for measured and modelled sulphate aerosol (top panel) 
and organic aerosol (bottom panel).  
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Figure S2. Windsor time series for total gasoline organic vapour (top panel), gasoline 
exhaust primary organic aerosol (bottom panel) and gasoline vapour uptake to sulphate 
aerosol (bottom panel).  
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