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Abstract

We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize
carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of
emission estimates from individual sources using the chemistry transport model TM5.
The system is designed to assimilate large (satellite) datasets, but in the current study5

only a limited amount of surface network observations from the National Oceanic and
Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global
Monitoring Division (GMD) is used to test the 4D-VAR system. By design, the system is
capable to adjust the emissions in such a way that the posterior simulation reproduces
background CO mixing ratios and large-scale pollution events at background stations.10

Uncertainty reduction up to 60% in yearly emissions is observed over well-constrained
regions and the inferred emissions compare well with recent studies. However, with
the limited amount of data from the surface network, the system becomes data sparse.
This results in a large solution space and the 4D-VAR system has difficulties in sep-
arating anthropogenic and biogenic sources in particular. In addition we show that15

uncertainties in the model such as biomass burning injection height and the OH distri-
bution largely influence the inversion results. The inferred emissions are validated with
NOAA aircraft data over North America and the agreement is significantly improved
from prior to posterior simulation. Validation with the Measurements Of Pollution In
The Troposphere (MOPITT) instrument version 4 (V4) shows only a slight improved20

agreement over the well-constrained Northern Hemisphere. However, the model with
optimized emissions underestimates MOPITT CO total columns on the remote South-
ern Hemisphere (SH) by about 40%. This is caused by a reduction in SH CO sources
mainly due to surface stations on the high southern latitudes.
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1 Introduction

Understanding the budget of carbon monoxide (CO) is important, because by reaction
with the radical OH, CO influences the oxidizing capacity of the atmosphere signifi-
cantly (Logan et al., 1981). Enhanced CO concentrations reduce OH concentrations
and this has a feedback on the concentration of methane, the second most important5

anthropogenic greenhouse gas. CO is also a precursor of tropospheric ozone un-
der high NOx (NO+NO2) conditions (Seinfeld and Pandis, 2006). CO is emitted into
the atmosphere by incomplete combustion of fossil fuels, biofuels and during biomass
burning events. In addition, CO is produced throughout the atmosphere by oxidation
of methane and non-methane volatile organic compounds (NMVOCs). The main sink10

of CO is the reaction with the OH radical, the so-called cleansing agent of the atmo-
sphere (Logan et al., 1981). Deposition of CO on the Earth’s surface is a minor sink,
accounting for 5–10% of the total sink strength (Sanhueza et al., 1998; Pétron et al.,
2002).

The magnitude of CO emissions from different source categories is not well quan-15

tified. In particular, emissions from biomass burning (most importantly forest and sa-
vanna fires) carry large uncertainties partly due to the variability of fires in both space
and time. In addition, bottom-up inventories like the widely used Global Fire Emission
Database (GFED) (van der Werf et al., 2004, 2006, 2010) come with substantial un-
certainties due to insufficient knowledge about burned area, fuel load, and emission20

factors (van der Werf et al., 2006). Uncertainties in biomass burning emission esti-
mates are largest in deforestation regions (e.g., South America and Indonesia) and
regions where organic soils burn (e.g., Indonesia and the Boreal region).

One way to better constrain emissions of CO is inverse modeling (Enting, 2002).
In short, atmospheric measurements, a chemistry transport model (CTM) and a priori25

information about the emissions are used to optimize the emission in such a way that
the mismatch between simulated and observed CO concentrations is minimized. The
a priori emission estimates are taken from bottom-up inventories. Throughout the lit-

344

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/341/2011/acpd-11-341-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/341/2011/acpd-11-341-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 341–386, 2011

Optimizing CO
emissions in

a 4D-VAR framework

P. B. Hooghiemstra et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

erature there are basically two inversion methods used for CO inversions: Synthesis
Bayesian inversions (e.g., Bergamaschi et al., 2000; Kasibhatla et al., 2002; Pétron
et al., 2002; Palmer et al., 2003, 2006; Arellano et al., 2004, 2006; Heald et al., 2004;
Jones et al., 2009) and adjoint inversions (e.g., Müller and Stavrakou, 2005; Yumimoto
and Uno, 2006; Stavrakou and Müller, 2006; Chevallier et al., 2009; Kopacz et al., 2009,5

2010; Fortems-Cheiney et al., 2009; Tangborn et al., 2009). The synthesis inversion
optimizes CO emissions over large geographical regions with a preset CO emission
distribution in each region, whereas the adjoint inversion technique is capable to derive
optimized CO emissions on the grid-scale of the underlying CTM, thereby reducing
the risk of aggregation errors (Kaminski et al., 2001). An iterative approach is used to10

minimize the mismatch between model and observations. Adjoint inversions are in par-
ticular suited for assimilation of large observational (satellite) datasets (Bergamaschi
et al., 2009; Meirink et al., 2008b).

In the current study we apply a 4D-VAR system for CO based on the earlier work for
methane (Meirink et al., 2008a,b; Bergamaschi et al., 2009). Although this system is15

designed to assimilate large amounts of observational data, it will be tested in this first
study by only assimilating surface observations from a limited number of NOAA stations
to optimize monthly mean CO emissions for a period of two years. This approach is
followed to obtain a benchmark characterization of the system for future assimilation
of satellite data. Firstly, we focus on the capability of the system to estimate annual20

continental emissions by inspecting the reduction of the prior errors that are set on
the sources. The optimized emissions will be validated by comparing model results
to independent aircraft data from NOAA and satellite data from the Measurements Of
Pollution in The Troposphere (MOPITT) instrument (Deeter et al., 2003, 2007, 2010).
Secondly, we will investigate the influence of prior settings and model errors on the25

inversion results by performing sensitivity studies.
This paper is organized as follows: The 4D-VAR system is described in Sect. 2. Sec-

tion 3 presents the optimized (posterior) emissions and their uncertainty reduction for
2003 and 2004 as well as a validation with independent aircraft and satellite data. The
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results are discussed in Sect. 4 and the performance of the 4D-VAR system is further
investigated by performing sensitivity studies (Sect. 5). Finally we give conclusions in
Sect. 6.

2 Description of the four dimensional variational data assimilation system

The 4D-VAR modeling system for CO is based on the TM5-4DVAR system originally5

developed for methane (Meirink et al., 2008b; Bergamaschi et al., 2009). Given a set
of atmospheric observations y and a chemistry transport model H it is possible to
optimize a set of fluxes x (the state vector) using the Bayesian technique (Rodgers,
2000). The a posteriori vector x is found by minimizing the mismatch between the
model forward simulation H(x) and the observations (y) weighted by an observation10

error covariance matrix R while staying close to a set of a priori fluxes xb, weighted
with the a priori error covariance matrix B. Mathematically this problem can be written
as the following minimization problem:

x̂=Argmin J (1)

J (x)=
1
2

(x−xb)TB−1 (x−xb)+
1
2

n∑
i=1

(Hi (x)−yi )
TR−1

i (Hi (x)−yi ) , (2)15

where the index i refers to the time step and T is the transpose operator. Observations
yi are assimilated in the 4D-VAR system at time i . The classic Bayesian approach
determines the a posteriori solution x̂ (Rodgers, 2000):

x̂=xb+K(Hx−y), (3)

with K=BHT(HBHT+R
)−1

and H is the Jacobian matrix corresponding to the CTM H20

(Arellano et al., 2004). The a posteriori error covariance matrix A can be written as

A=
(
HTR−1H+B−1)−1 . (4)
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When the number of state vector variables is large, it is not possible to compute the
inverse matrices in the above equations directly. Hence an iterative minimization al-
gorithm is required. The conjugate gradient method (Fisher, 1998) can be used to
minimize the cost function (2) if the CTM is linear. In general, the CTM H is nonlinear
with respect to the state vector x since the CO emissions perturb OH concentrations5

and hence the CO sink term. However, for tropospheric CO, Pétron et al. (2002) have
shown that to a reasonable approximation, the system can be linearized by using fixed
OH fields. In this case the cost function J is quadratic and can be minimized using
the conjugate gradient method (Fisher, 1998). This method is a generalization of the
steepest descend method that also yields the leading eigenvalues λi and eigenvectors10

νi of the Hessian of the cost function. The a posteriori error covariance matrix (Eq. 4)
describing the uncertainty in the optimized state vector x̂, equals the inverse Hessian
of the cost function. Hence, the a posteriori error covariance matrix is approximated
by a finite combination of the leading eigenvalues and eigenvectors of the Hessian of
the cost function added by the a priori error covariance matrix B (Fisher and Courtier,15

1995):

A≈B+
N∑
i=1

(
1
λi

−1
)

(Lνi )(Lνi )
T , (5)

where L is the preconditioner explained below.
The rate of convergence of the minimization is in general quite slow, but a precondi-

tioner can be used to speed up the convergence rate. Fisher and Courtier (1995) have20

shown that the matrix L such that LLT=B is a suitable preconditioner when used in this
4D-VAR approach. However, due to the large number of state vector elements, it is not
possible to store this preconditioner in this form in memory. We will follow the approach
of Meirink et al. (2008b) to store the preconditioner L. In our study, we consider the
method converged when the norm of the gradient of the cost function is reduced by25

99%.
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The chemical transport model H, the prior state xb with uncertainty B and the ob-
servations y with their uncertainty R will be described in more detail in the following
sections.

2.1 The chemical transport model TM5

The CTM (also called the forward model) used in this study to relate CO emissions5

to atmospheric CO mixing ratios is the two-way nested chemical transport model TM5
(Krol et al., 2005). TM5 is an offline model driven by 3-hourly meteorological fields
(6-hourly for 3-D input fields) from the European Centre for Medium-Range Weather
Forecasts (ECMWF). Here we do not use the full-chemistry TM5 model, but the so-
called TM5 CO-only model (svn-version 3197). This model, running on a coarse 6◦×4◦

10

horizontal grid with 25 vertical layers in this study, deviates from the full chemistry
version by employing simplified CO-OH chemistry. In order to keep the model linear,
a monthly OH climatology is used (Spivakovsky et al., 2000), which is scaled by a factor
0.92 based on methyl chloroform simulations performed for 2000–2006 (Huijnen et al.,
2010).15

2.2 Specification of a priori state

The state vector (x in Eq. 2) consists of the variables to be optimized by the inver-
sion. Here we distinguish between monthly surface CO emissions, monthly varying
parameters that scale the chemical production of CO from oxidation of methane and
NMVOCs, and the initial 3-D CO mixing ratio field. The emissions are divided in three20

categories: anthropogenic (combustion of fossil fuels and biofuels), natural sources
(direct CO emissions from vegetation and the oceans) and biomass burning (open
vegetation fires, both natural and human induced).

The a priori anthropogenic emissions are taken from the Emission Database for
Global Atmospheric Research (EDGARv3.2) inventory (Olivier et al., 2000, 2003).25

The distribution of natural CO emissions (Houweling et al., 1998) is scaled to emit
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115 Tg CO yr−1 which is well within the range of the estimate by Schade and Crutzen
(1999) (50–170 Tg CO yr−1). Biomass burning emissions are taken from GFED2
(van der Werf et al., 2006). Biomass burning CO is distributed over the vertical
model grid as follows: 20% is released in the layers 0–100 m, 100–500 m and 500–
1000 m. The remaining 40% is released between 1000–2000 m in accordance to5

Labonne et al. (2007). The sensitivity of the optimized emissions with respect to the
chosen injection height is discussed further in Sect. 5.

The chemical production of CO from oxidation of methane and NMVOCs requires
monthly 3-D CO production fields. Constant methane mixing ratios of 1800 parts per
billion (ppb) are used throughout the atmosphere. Methane is oxidized by the OH cli-10

matology using a temperature dependent reaction rate constant (Seinfeld and Pandis,
2006)

k =2.45 ·10−12exp(−1775/T ). (6)

The CH4 to CO conversion yield is taken as unity. We acknowledge the possibility
of introducing a bias due to a significant N-S gradient in tropospheric CH4 and a ver-15

tical gradient in stratospheric CH4. The observed 10% N-S gradient in tropospheric
methane would result in a 10% gradient in CO produced from methane oxidation. Since
in our approach, about 875 Tg CO is produced annually from CH4 oxidation, this leads
to an overestimate of 45 Tg CO yr−1 on the SH and a similar underestimate on the NH.
Although such a bias is small compared to the global CO emissions and chemical pro-20

duction, we will improve the CH4 oxidation scheme in the next version of the 4D-VAR
system.

A full-chemistry model run using TM4 (Myriokefalitakis et al., 2008) yields monthly
3-D CO fields produced by oxidation of biogenic and anthropogenic hydrocarbons.
We construct the monthly NMVOC-CO source by subtracting the monthly CH4-CO25

described above from the total fields. The total prior CO source from methane and
NMVOCs is scaled to 1600 Tg CO yr−1 within the range of values used in the literature
(1279–1644 Tg CO yr−1) (e.g., Kopacz et al., 2010; Duncan et al., 2007; Bergamaschi
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et al., 2000; Müller and Stavrakou, 2005). The CH4-CO and NMVOC-CO fields them-
selves will not be optimized: instead a monthly scaling factor with unit a priori value is
optimized. Hence, for these sources we apply a traditional synthesis inversion in the
sense that the prior spatial emission patterns are constant and only the global total
magnitude of CH4-CO and NMVOC-CO is optimized.5

A forward model simulation with these a priori emissions has been performed for the
years 2002–2005 and daily mean CO mixing ratios have been archived. The a priori
initial CO mixing ratio field is taken from this archive and further optimized by including
the initial 3-D field in the state vector (Meirink et al., 2008b).

2.3 Specification of a priori uncertainties10

2.3.1 Emissions

The prior emission errors on grid-scale are set in such a way that in combination with
prior correlations (see below), the prior emission errors aggregated to continental re-
gions are in a realistic range. The prior anthropogenic emission inventory used in this
study (EDGAR v3.2) is compiled for the year 1995. Inverting for the years 2003/2004,15

we expect large emission increments due to rapid economic development, particularly
in Asia. Hence we assign large errors to this region. In contrast, for the Western de-
veloped world (North America, Europe and Australia) we expect that the 2003/2004
anthropogenic emissions are close or somewhat smaller compared to 1995. There-
fore, we apply grid-scale errors of 250% of the corresponding grid-scale emission for20

the developing world (Asia, Africa and South America) and 50% for the Western devel-
oped world. With these settings, realistic continental-scale errors are computed for the
developing world (58–72%) and the Western developed world (20–48%).

The grid-scale prior emission errors for biomass burning and the natural source are
set to 250% of the corresponding grid-scale emission, since both inventories bear large25

uncertainties. For both sources this leads to prior continental emission errors in the
range of 40–100%.
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Emission uncertainties are correlated in time and space resulting in a reduction of
the effective number of variables to be optimized. For the three emission categories we
use a Gaussian spatial correlation length of 1000 km. An e-folding temporal correlation
length of 9.5 months (0.9 month to month correlation) is chosen for anthropogenic
emissions because we do not expect pronounced seasonal cycles for this emission5

category. Due to the variable nature of fires in time, the temporal correlation length for
biomass burning emissions is set to 0.62 months (0.2 month to month correlation). For
natural emissions the temporal correlation length is set to 9.5 months.

2.3.2 Initial concentration field and additional parameters

The grid-scale prior initial concentration error is 5% of the corresponding prior initial10

concentration. The initial concentration field is correlated in space by a Gaussian cor-
relation length of 1000 km as in Meirink et al. (2008b). The a priori errors on the monthly
scaling factors for CO production from methane and NMVOCs are set to 2% and 8%,
respectively. The scaling factors are correlated in time with a correlation length of 3
months (0.7 month to month correlation). This tight error setting is chosen because the15

posterior emission estimates are quite sensitive to the combination of anthropogenic
and NMVOC prior emission uncertainties as discussed further in Sect. 5.

2.4 Atmospheric observations

In this first TM5 CO inversion study, only surface observations from NOAA/ESRL GMD
are assimilated in the 4D-VAR system. The NOAA surface network provides CO ob-20

servations from a globally distributed network of stations (Novelli et al., 1998, 2003).
A subset of 31 stations, mainly remote stations and stations at larger distances from
continental source regions are used in the inversions. Stations close to source regions
as well as other stations for which we expect large model errors due to the coarse
model resolution are left out. The selected stations are shown in Fig. 1. The observa-25

tion error consists of the measurement error and the model error. The measurement
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error is set to 1.5 ppb. The model error in the vertical direction is based on the mod-
eled CO mixing ratio gradient for the grid boxes adjacent to the one the station is in
(Bergamaschi et al., 2005). For the horizontal model error, subgrid-scale variability of
the emissions is accounted for as described in Bergamaschi et al. (2010). The model
error is usually much larger than the measurement error for stations on the NH. Only5

in remote areas in the SH, the measurement error is the dominant term in the obser-
vational error. No correlations between the observations are set resulting in a diagonal
observational error covariance matrix R.

2.5 Inversion specifics

In this study the simulations with TM5 are performed on a rather coarse 6◦×4◦ hori-10

zontal grid with 25 vertical layers. This means that after the application of emissions
each time step, the CO mixing ratio is smeared out over the entire grid box. Hence, we
do not expect the model to simulate all measured pollution events at non-background
stations. To account for this and to prevent possible biases due to a few single outliers,
the inversion is done in two cycles: After the first inversion we reject all data points15

that are outside a 3σ error range of the model simulation (Bergamaschi et al., 2010).
Then the second inversion cycle is performed. In the CH4 inversion of Bergamaschi
et al. (2010), typically 3% of the data were rejected, but the a posteriori emissions for
both inversion cycles did not differ very much in general. However, in the current study,
focusing on the shorter-lived CO, approximately 15–20% of the data from the first inver-20

sion are rejected. Inferred continental emissions in the second cycle are within 15% of
the emissions in the first cycle for most sources/regions and show a similar pattern of
adjustments. However, biomass burning emissions for Africa and Asia may differ up to
30%. This is due to the low month to month correlation of biomass burning emissions
and the sparsity of NOAA surface observations in these regions.25

A sensitivity study with doubled observational errors reduced the number of rejected
data points to 7%. However, larger observational errors result in a less constrained
system and inferred emission estimates remain closer to the prior compared to an
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inversion with more strict observational errors. This is illustrated by the behaviour of
the cost function. The background part of the optimized cost function (first term in
Eq. 2) amounts to 238 compared to 460 in the base inversion (presented in Sect. 3).
The observational part of the cost function (second term in Eq. 2) amounts to 839
compared to 1139 in the base inversion, again due to the larger observational errors.5

The years 2003 and 2004 are inverted separately because the inversions are
computer-time demanding. The inversions use a one month spin up, in which the
emissions are optimized already, but not analyzed, and 2 months spin down to supply
enough observations to optimize the emissions in the last months of the year. Given
a lifetime of about 2 months for CO, it has been investigated that to optimize emissions10

in a certain month m, it is sufficient to use observations for months m, m+1 and m+2
(not shown). Observations at later times will not significantly influence the emissions
in month m, because the emission signal is sufficiently diluted and chemically removed
by that time. It should be borne in mind, however, that emissions in month m are still
influenced by emission estimates in surrounding months (m−3,...,m+3) via the prior15

temporal correlation length.
The length of the state vector is 189030, according to (15 months×3 source cate-

gories+25 vertical layers of the initial concentration field)×(60×45 grid boxes)+
15 months×2 scaling factors. In contrast, the total number of observations is only about
1400 per year. By introducing a non-diagonal prior error covariance matrix, the num-20

ber of “true” unknowns is greatly reduced to approximately 25 000, but the problem
still remains underdetermined (data sparse and hence strongly dependent on a priori
knowledge of the emissions). Nevertheless, a grid-scale inversion is performed here
to reduce the risk of aggregation errors, which often occur in a big region approach
(Meirink et al., 2008b; Stavrakou and Müller, 2006) and to prepare for the future inges-25

tion of large amounts of satellite data.
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3 Inversion results

3.1 Comparison of modeled and observed CO mixing ratios

In this section we will discuss the capability of the current 4D-VAR system to adjust
the state vector in such a way that background CO mixing ratios as well as observed
large scale pollution events are adequately captured. Figure 2 shows the prior and5

posterior simulation of CO mixing ratios and surface observations for a subset of four
stations used in the inversion (purple squares in Fig. 1). All panels show that the model
simulation with a priori settings (yellow) is capable to simulate the seasonal cycle and
some pollution peaks even though the simulations are performed on a coarse 6◦×4◦

grid. However, differences with the observations (red) up to 50 ppb are observed. In10

contrast, the posterior simulation (blue) fits the observations at all four stations rather
well. This better fit is obviously caused by combined changes in the surface emissions
and in the global source of CO from methane and NMVOCs. A quantitative analysis
for all assimilated stations is shown in Table 1 for 2004. Here we present the bias per
station for the prior and posterior simulation of the two inversion cycles. A value for15

the goodness of fit parameter χ2/n is also given in this table. A χ2/n value close to 1
indicates that the system is behaving well.

For station Cold Bay, Alaska (Fig. 2a), representing the high latitude NH, the prior
simulation underestimates observed CO mixing ratios up to 50 ppb, in the period
September 2003 to February 2004 and from September 2004 to January 2005. For20

the year 2003, the inversion decreases biomass burning emissions from Russia in
spring, but emissions are increased in summer. The posterior annual biomass burn-
ing emission estimate for Russia in 2003 is 97±28 Tg CO (compared to the prior es-
timate of 75±77 Tg CO), well within the range reported by Kasischke et al. (2005)
(55–139 Tg CO yr−1). This shows that Russian fires account for 60% of the total CO25

emissions from biomass burning in Asia in 2003 (158 Tg CO, Table 2). In contrast, in
2004 the inversion increases the Alaskan and Canadian biomass burning emissions
in summer, from a prior emission estimate of 16±19 Tg CO from June to August to
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36±9 Tg CO as posterior emission estimate. This increase in Alaskan and Canadian
biomass burning emissions was also reported by Pfister et al. (2005) and Turquety
et al. (2007), and in closer correspondence to 30 Tg CO as estimated in the recently
released updated GFED (version 3.1, van der Werf et al., 2010). Pfister et al. (2005)
inferred CO emissions using satellite observations and reported a posterior emission5

estimate of 30±5 Tg CO. Turquety et al. (2007) constructed a daily biomass burning
emission inventory taking into account the emissions from peat burning. They esti-
mated a total of 30 Tg CO from June to August 2004 for North America. Outside the
biomass burning season, the inversion attributes increased CO levels to enhanced an-
thropogenic emissions in East Asia. From Table 1 it is observed that for station Cold10

Bay the prior bias decreases from −9.7 ppb in the first inversion cycle to −4.3 ppb in
the second inversion cycle due to rejection of observations that are not reproduced by
the model. This rejection improves the a posteriori χ2/n diagnostic for this station from
2.7 to 1.15. The posterior bias is reduced to nearly zero.

For station Sand Island, Midway (Fig. 2b), the prior simulation underestimates obser-15

vations during the entire period. This was expected due to the use of the EDGARv3.2
inventory (compiled for the year 1995) for anthropogenic emissions for this region for
the years 2003 and 2004. Rapid economic development, particularly in China and
India over the last decade led to increased anthropogenic emissions. The posterior
simulation shows that increased anthropogenic emissions over China and India (the20

inversion roughly doubles Asian anthropogenic emissions, see Table 2) results in 15–
25 ppb higher CO mixing ratios on stations downwind of South East Asia. Individual
observations due to pollution plumes that were not reproduced in the prior simulation
are captured better by the model in the posterior simulation. This is due to the fact that
the 4D-VAR system computes emission increments on the grid-scale of the underlying25

chemistry-transport model and hence, has the ability to better exploit the spatial infor-
mation present in the measurements. It is acknowledged, however, that a higher spatial
resolution is required to reduce the artificial smearing of concentration gradients.
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The tropics are represented here by station Ascension Island (Fig. 2c), and although
the improvement from prior to posterior simulation is not clearly visible, Table 1 shows
that the posterior bias is nearly zero, and the χ2/n diagnostic is reduced from 3.03 to
1.22. For the remote SH, represented here by station South Pole (Fig. 2d), the prior
simulation overestimates the observations by 5–10 ppb all year long. The inversion5

attributes this to too high production of CO from NMVOCs since the station is far away
from major sources, but neglecting the N-S gradient in tropospheric methane in the
model, as discussed before, may also play a role. Again, the posterior bias is nearly
zero in both inversion cycles and the χ2/n diagnostic obtains a value of 1.01.

Table 1 shows that the inversion reduces prior biases for most of the stations and10

that the χ2/n diagnostic is decreased to approximately 1. However, for remote stations
in the SH, χ2/n shows values far smaller than 1 indicating that the measurement error
of 1.5 ppb might be too conservative or indicating the need to take correlations in the
observation errors into account.

3.2 Posterior emission estimates15

We present the posterior emission estimates and their uncertainties aggregated over
continental scale regions as yearly totals, because the monthly emission estimates on
grid-scale level are highly variable as a consequence of the loose prior error settings
and the small amount of observations. Also, as shown by Meirink et al. (2008b), the
posterior errors converge only rapidly for larger spatial and temporal scales (Fig. 3).20

Table 2 and Fig. 3 (blue, solid line) show that on a global scale, a substantial un-
certainty reduction of 60% for the anthropogenic emissions is achieved. Columns 2
and 3 of Table 2 show that in particular Asian anthropogenic emissions are well con-
strained by the observations (258±150 Tg CO a priori compared to 497±82 Tg CO in
2003 and 526±75 Tg CO in 2004 a posteriori, see also Fig. 3, dotted blue line). In con-25

trast, African and South American anthropogenic emissions show a negligible uncer-
tainty reduction (Fig. 3, dash-dotted and dashed line, respectively). This was expected
though, since atmospheric observations mainly constrain the total emissions and the
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error reduction in those regions is largest for the dominant biomass burning source
term.

For biomass burning emissions, uncertainty reduction is achieved in South America
(e.g., 98±105 Tg CO a priori compared to 136±39 Tg CO a posteriori in 2004, Fig. 3
red dashed line), Asia (e.g., 114±81 Tg CO a priori compared to 158±38 Tg CO in 20035

(not shown)) and North America (23±19 Tg CO a priori and 47±10 Tg CO a posteriori
in 2004 only). Large changes in biomass burning emissions from 2003 to 2004 are ob-
served for South America and Africa. For South America (with posterior emissions of
75±37 Tg CO in 2003 and 136±39 Tg CO in 2004) this increment was partly present in
the GFED2 prior. Higher emissions in 2004 were also confirmed by observations from10

the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIA-
MACHY) (Gloudemans et al., 2009) showing the large inter annual variability in South
American biomass burning emissions. In contrast, the posterior biomass burning emis-
sion estimates for Africa in 2003 and 2004 seem to compensate for the difference in
NMVOC-CO. This is confirmed by the relatively small error reduction and by the study15

of Chevallier et al. (2009), who optimized African emissions using MOPITT observa-
tions for 2000 to 2006 and did not show large inter annual variability from 2003 to 2004.
Table 2 (columns 6 and 7) shows that natural emissions are hardly constrained by the
data.

Finally, the uncertainty of the global scaling parameters for the production of CO from20

methane and NMVOC oxidation is only slightly reduced from the prior to the posterior
estimate. This indicates that the current observational dataset does not constrain these
parameters substantially. However, the value of the scaling factor for the NMVOC-
CO (CO from NMVOCs) source is adjusted significantly from a prior global total of
812±40 Tg CO to a posterior global total of 574±38 Tg CO in 2003 and 410±36 Tg CO25

in 2004. Despite the small prior error, the NMVOC-CO emissions are considerably
reduced, far outside the 2σ (95%) interval, which is mainly due to the overall very small
weight of the single monthly NMVOC-CO scaling parameters in the cost function. Small
error settings appeared to be necessary, because the a priori error settings of this
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global parameter have a strong influence on the solution of the inversion. Sensitivity
studies with respect to these error settings have been performed as discussed in more
detail in Sect. 5.

3.3 Validation with independent NOAA aircraft observations and MOPITT total
columns5

We validate our inferred emissions with independent (that is, non-assimilated) aircraft
observations from the NOAA aircraft program for 2004. The comparison with aircraft
data provides a valuable test for the vertical transport in the model. The NOAA pro-
files are taken mainly over North America. Figure 4 shows monthly mean deviations
(model-observations) for the prior and posterior simulation for aircraft samples with10

altitudes above 2000 m, thus representing the free troposphere. The prior simulation
underestimates the observations throughout the year (except for May and June) proba-
bly due to too low anthropogenic emissions in East Asia. The significant overestimation
of the prior simulation in May and June is attributed to a too large a priori source of CO
from NMVOCs. The posterior simulation matches the observations much better, since15

the inversion increased Asian anthropogenic emissions and reduced the NMVOC-CO
source (Table 2), in particular in May and June (not shown). The uncertainty, given
here as a 1σ deviation from the mean, is not reduced significantly from prior to pos-
terior simulation because these observations are not assimilated. Overall, the mean
monthly difference is reduced by 50–90% except for April when deviations were small20

anyway. The annual mean and standard deviation of the residuals is −6.4±23 ppb
a priori and −0.5±22 ppb a posteriori, showing that the inversion is capable to improve
the comparison with independent observations in the free troposphere.

We further validate our posterior emissions with CO total column retrievals from MO-
PITT V4 (level 3, gridded daily profiles, Deeter et al., 2003, 2007, 2010). The MOPITT25

instrument is mainly sensitive to free tropospheric CO (4–7 km altitude) and CO at
this altitude originates from oxidation of methane or convective transport of surface
CO. Figure 5 shows a comparison of observed and modeled CO total columns, where
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the MOPITT averaging kernels are used to compare properly. Surprisingly, the overall
agreement with MOPITT seems to deteriorate from the prior to the posterior simulation.
However, over the well-constrained NH, the agreement improves slightly for 2004 from
a prior underestimate of 12% to a posterior overestimate of 6%. Over the continents,
the agreement improves even more. For 2003, the prior simulation underestimates5

MOPITT by 8% but the posterior simulation overestimates MOPITT by 13%. In the re-
mote SH (30◦ to 62◦ S), the comparison with MOPITT deteriorates from a slight model
underestimate of 6% a priori to an underestimate of 40% a posteriori in both years. The
prior simulation overestimates surface observations of CO at the remote SH stations
(see Fig. 2d). These SH surface observations thus cause a decrease in CO sources10

(mainly NMVOC-CO) which results in even less CO compared to MOPITT. The un-
derestimation of the model may have to do with the vertical transport in the model.
For instance, if vertical transport in the model is too slow, CO emissions will remain
at low altitudes where the MOPITT instrument is not very sensitive. The comparison
with NOAA aircraft profiles showed however that the vertical transport in TM5 is rea-15

sonable. Hence, a possible bias in the MOPITT V4 product as was the case for the
previous product MOPITT V3 (Emmons et al., 2009; de Laat et al., 2010) may also play
a role. The suspect land-sea differences in Fig. 5, especially in the vicinity of desert
regions indeed indicate that not all retrieval issues may have yet been resolved.

In conclusion, validating our inversion results with independent aircraft data shows an20

improved agreement with respect to the prior simulation in the free troposphere even
though only surface observations are assimilated. For satellite data, the agreement
with MOPITT total column CO shows a slight improvement over the well-constrained
NH, but deteriorates in the SH below 30◦ S.

3.4 Comparison with recent inverse modeling results25

The posterior emissions match other recent inverse modeling results quite well as
shown in Table 3. Pison et al. (2009) inverted emissions of CO, methane and H2
simultaneously, using observations from NOAA and updated the OH field within the
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optimization by assimilating methyl chloroform observations. Results are comparable
to our results, but slightly higher for Europe and lower for South America. However,
the Australian source of Pison et al. (2009) included CO emissions from Indonesia and
is thus significantly higher than the current study. Kopacz et al. (2010) used satellite
data (from MOPITT, the Atmospheric Infrared Sounder (AIRS) instrument and SCIA-5

MACHY) to optimize CO emissions for the period May 2004 to April 2005 and their
results showed slightly higher emissions over South America and Asia, but significantly
lower emissions over North America. This might be due to their very low prior value
for anthropogenic emissions over the United States (35 Tg CO) based on the US Envi-
ronmental Protection Agency National Emission Inventory for 1999 (EPA NEI99). This10

value was decreased by 60% following Hudman et al. (2008). In this study we use
105 Tg CO as prior anthropogenic emission over North America. Jones et al. (2009)
optimized emissions for November 2004 only using observations from the MOPITT and
TES instruments, but they presented their results as yearly totals. These results are
also comparable to the current study except for the Australian source. This is explained15

by their inclusion of Indonesia into this region. Chevallier et al. (2009) have performed
a detailed analysis of African CO emissions for the period 2000–2006. The total emis-
sions are 25% lower than in this study but stay well within the error bounds. The dif-
ference with our results is probably explained by the lack of surface data in the tropics.
Chevallier et al. (2009) used MOPITT data to constrain the CO emissions and anthro-20

pogenic emissions in particular were more constrained than in the current study. Fi-
nally, the large increment in Asian anthropogenic emissions shown in Table 2 also con-
firms the previous findings of e.g., Kasibhatla et al. (2002) and Arellano et al. (2004)
that anthropogenic emissions over Asia are too low in EDGARv3.2. All inversions
roughly doubled the Asian emission estimate.25
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4 Discussion

In our inversions we have used a limited amount of observations from the NOAA sur-
face network. A consequence of solving a data sparse system is a large solution
space, because not all degrees of freedom (≈25 000) are constrained by the observa-
tions (≈1400 per year). Thus, the obtained solution will depend on the prior emissions5

and their error settings. Another consequence might be that model errors are compen-
sated for by emission increments. To investigate these issues, a series of sensitivity
studies is presented in Sect. 5.

The 4D-VAR system is in general not capable to distinguish between the an-
thropogenic, biomass burning and the NMVOC-CO sources. Although globally the10

posterior source estimate for these three sources is 1744±76 Tg CO in 2003 and
1690±75 Tg CO in 2004 and the difference is well within the error bounds, in partic-
ular anthropogenic emissions and the NMVOC-CO source show large shifts from 2003
to 2004. Some of these shifts seem not driven by observations, but rather a compen-
sation for a change in another source. For example, the derived NMVOC-CO source15

shows a large drop from 2003 to 2004 (574 Tg CO in 2003 to 410 Tg CO in 2004), which
seems to be an artefact of the system rather than a real signal of reduced NMVOC-CO,
caused by the design of the system. Since the global NMVOC-CO source is scaled by
a monthly varying parameter, the large changes in these parameters have only little ef-
fect on the background part of the cost function (Eq. 2 left-hand term), but a huge effect20

on the observational part of the cost function (Eq. 2 right-hand term) in particular in the
SH. This drop is compensated (within the error bounds) by increased anthropogenic
emissions (770 Tg CO in 2003 to 871 Tg CO in 2004). We calculated the posterior cor-
relation (from the posterior covariance matrix A, Eq. 2) between the two sources to
be negative (−0.29 in 2003 and −0.23 in 2004), further indicating this compensation25

mechanism. The estimate for biomass burning seems to be more robust on a global
scale (400 Tg CO in 2003 versus 409 Tg CO in 2004), but we observe large differences
on continental scales between the two years. For example, North American biomass
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burning emissions in 2003 increase without a reduction in the error from 32±32 Tg CO
to 61±30 Tg CO (Table 2). Hence, the increase seems a further compensation for the
reduction in the NMVOC-CO source.

For specific regions where biomass burning emissions are the dominant source (e.g.,
South America), the 4D-VAR system appears to be capable to distinguish biomass5

burning emissions from the anthropogenic source. This is probably caused by the
timing of these emissions as proposed by the prior inventory and the low month to
month temporal correlation used. An example of this differentiation between anthro-
pogenic and biomass burning sources is observed for North America and South Amer-
ica in 2004. Although anthropogenic source estimates show no uncertainty reduction10

and are equal or slightly smaller than the prior estimate, biomass burning emissions
increase from the prior emission estimate and the posterior emission uncertainty is
reduced significantly. In 2003 this is also observed in South America, where anthro-
pogenic emissions are even reduced to non-significant negative values (Table 2), while
biomass burning emissions increase from 60±48 to 75±37 Tg CO yr−1.15

5 Sensitivity analysis

In this section we discuss 7 sensitivity studies with respect to prior settings and model
errors. Sensitivity studies S1–S4 focus on the effect of the prior grid-scale error for the
surface emissions and the prior NMVOC-CO error on the derived posterior emissions.
Study GFED3.1 uses the new version of the GFED product (GFEDv3.1, van der Werf20

et al., 2010). For the year 2004, this biomass burning inventory prescribes lower emis-
sions by a factor 2 to 3 from January to March compared to GFED2. Peak emissions
in September in GFED2 of 69 Tg CO/month globally are reduced to 55 Tg CO/month in
GFED3.1.

Since the distribution of OH and its north-south gradient remains uncertain, we also25

investigate the influence of the tropospheric OH distribution on the inferred emissions
by using an OH field computed from a full-chemistry simulation with TM5 (Huijnen et al.,
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2010) and scaled by a factor 1.02 to obtain comparable CO and methyl chloroform
lifetimes as for the OH field used in the base inversion. Compared to the OH field of the
base inversion, the north-south gradient (computed as an airmass-weighted average
(Lawrence et al., 2001)) in the TM5-OH field is more pronounced (NH/SH ratio of 1.15)
compared to the OH field used in the base inversion (NH/SH ratio of 1.0).5

Study FVERT focusses on model uncertainty in the vertical distribution of biomass
burning emissions. The base inversion uses an injection height for biomass burning
emissions up to 2000 m (distributed as 20% in layers 0–100 m, 100–500 m and 500–
1000 m and 40% in 1000–2000 m layer). However, some recent studies (Gonzi and
Palmer, 2010; Val Martin et al., 2009) found evidence that biomass burning emissions10

are partly injected higher up in the atmosphere. In study FVERT we apply a vertical
distribution of biomass burning emissions following the results of Gonzi and Palmer
(2010). The vertical biomass burning emission distribution is defined as

– Boreal region (>30◦ N): 82% below 2 km, 10% in 2–5 km, 2.5% in each of the
layers 5–8 km and 8–11 km. The remaining 3% is injected above 11 km.15

– Tropical region: 85% below 2 km, 10% in 2–5 km, 2.5% in both layers 5–8 km and
8–11 km.

A summary of the sensitivity studies is provided in Table 4. The inversion results for
these sensitivity tests are averaged globally for 2004 and are summarized in Table 5,
where we omit the natural emissions and CH4-CO since these sources do not change20

significantly from the prior to the posterior emission estimates in the base inversion.

5.1 Sensitivity studies S1–S4

Overall, the inferred anthropogenic and biomass burning emissions for studies S1 to S4
(Table 5) are quite robust as nearly all posterior emission estimates are within the error
bounds of each other. The differences in emission estimates for S1 to S4 are likely25

caused by the incapability of the system to separate the anthropogenic and NMVOC-
CO sources. This results in a compensation of one source for another as discussed
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before. This compensation mechanism depends on the combination of the prior er-
rors in the anthropogenic and NMVOC-CO emissions. For example, in sensitivity study
S1, the NMVOC-CO prior error dominates, resulting in less reduction in this source
compared to the base inversion. The anthropogenic source compensates for this by
reducing the emission estimate with 67 Tg CO yr−1 compared to the base inversion. In5

contrast, for sensitivity study S3, the anthropogenic emission prior error dominates,
resulting in higher anthropogenic emissions and a more pronounced reduction in the
NMVOC-CO source compared to the base inversion. Biomass burning emission es-
timates are only slightly sensitive to the prior error settings, as all sensitivity studies
estimate posterior biomass burning emissions in the range 400–477 Tg CO yr−1.10

We conclude that anthropogenic emissions and the NMVOC-CO source can not be
properly separated by assimilation of a limited number of observations. The situation
will likely improve when we start the assimilation of large amounts of satellite data in
our system. However, a separation between different source categories will remain
extremely challenging and might require additional information from other sources. For15

example, satellite observations of formaldehyde and glyoxal may further constrain the
distribution of NMVOCs (Stavrakou et al., 2009).

5.2 Sensitivity study GFED3.1

The results for sensitivity study GFED3.1 (Table 5) show an increase in biomass
burning of 30 Tg CO yr−1 with respect to the prior estimate of 334 Tg CO yr−1.20

Biomass burning emissions mainly increase in South America (+45 Tg CO yr−1) and
Africa (+9 Tg CO yr−1). However, Asian biomass burning emissions decrease by
32 Tg CO yr−1. This behavior was also observed for the base inversion. For exam-
ple, for the base inversion the increase in South America was 38 Tg CO, whereas for
Africa there was no significant increase. Asian biomass burning emissions decreased25

by 56 Tg CO. This sensitivity study does not support the decrease in global emissions
in GFED3.1 compared to GFED2, although regionally results improved (e.g., North
America and Asia). This could be partly due to the underestimation of agricultural
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waste burning and deforestation fires (van der Werf et al., 2010). To compensate for
the lower biomass burning emissions, anthropogenic emissions (932±73 Tg CO) and
the NMVOC-CO source (433 Tg CO) are increased with respect to the base inversion.

5.3 Sensitivity study OH

The OH field from the TM5 full-chemistry simulation shows lower OH over tropical land5

masses compared to the OH field from Spivakovsky et al. (2000) (Fig. 6, top), in par-
ticular over South America. This OH gap is present since large amounts of emitted
isoprene are oxidized by OH and hence reduce OH concentrations in the model. How-
ever, as shown by Lelieveld et al. (2008), this OH gap is not confirmed by field cam-
paigns that show high OH over the tropical forests. An OH recycling mechanism was10

proposed by Lelieveld et al. (2008), but was not yet incorporated in the TM5 simula-
tion (Huijnen et al., 2010). Lower OH concentrations over tropical land masses (Fig. 6,
top) result in a reduction of biomass burning emissions of 88 Tg CO yr−1 globally in
2004 compared to the base inversion (Table 5, Fig. 6 bottom). Africa (−51 Tg CO yr−1)
and South America (−30 Tg CO yr−1) contribute substantially to this decrease. The15

NMVOC-CO source is reduced to 369 Tg CO yr−1, which is 41 Tg CO yr−1 lower than in
the base inversion. This reduction is also attributed to the lower OH concentrations in
the SH. In contrast, the NH OH concentration is higher compared to the OH field from
Spivakovsky et al. (2000). Therefore, higher global anthropogenic emissions are ob-
served for this study (967 Tg CO yr−1) compared to the base inversion (871 Tg CO yr−1).20

This difference is clearly observed over India in Fig. 6. The comparison with MOPITT
is not improved with respect to the base inversion (not shown): The remote SH still
shows an underestimate of MOPITT total columns.

5.4 Sensitivity study FVERT

When biomass burning CO emissions are released higher up in the atmosphere, one25

would expect to infer higher biomass burning emissions, since the surface concen-
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trations of biomass burning CO decrease and thus, higher CO surface emissions are
required to match the observations. Indeed, it is observed that the global biomass
burning emissions increase with 75 Tg CO yr−1 with respect to the base inversion (Ta-
ble 5). Moreover, this increase is only partly compensated for by decreased an-
thropogenic emissions (−21 Tg CO yr−1) and a decrease in the NMVOC-CO source5

(−7 Tg CO yr−1), indicating that a part of the biomass burning CO emissions is not de-
tected by the surface network. Higher biomass burning CO emissions with respect to
the base inversion cause the comparison with MOPITT CO total columns to change:
Over the main biomass burning regions in Africa, South America and South East Asia,
the comparison deteriorates, because the base inversion already overestimates MO-10

PITT CO total columns over these regions (Fig. 5d). On the remote SH, the comparison
does not change significantly since the NMVOC-CO source shows only minor changes
with respect to the base inversion. We conclude that the biomass burning injection
height is a potentially important parameter to take into account in inversions. However,
the agreement with MOPITT CO on the SH total columns does not improve, mainly15

because it seems that the surface observations and MOPITT CO total columns are
not consistent in the model. This was also observed by Kopacz et al. (2010). They
inverted CO emissions using satellite data only and SH stations used as validation
showed a poorer agreement in the posterior simulation compared to the prior.

The planned assimilation of MOPITT CO total columns may result in a less pro-20

nounced reduction in the NMVOC-CO in order to fit the satellite data. In turn, more
NMVOC-CO may result in lower biomass burning emissions and hence, an improved
agreement over the main biomass burning regions in the SH. Moreover, biomass burn-
ing emissions might become more comparable with the new GFED3.1 (van der Werf
et al., 2010) product. However, when assimilating both MOPITT CO total column data25

and surface network observations in the TM5 model, the system will try to find a com-
promise between both data streams. A bias correction for MOPITT profiles seems to
be necessary to get a consistent picture of CO sources in TM5, particularly on the SH.
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6 Conclusions

We have presented a 4D-VAR data assimilation system for CO using simplified chem-
istry and a fixed OH field, meant to assimilate large satellite datasets, but tested here
using surface network observations from NOAA only. The proper functioning of the
system is shown by the fact that the posterior simulation reproduces background CO5

mixing ratios including events with enhanced CO mixing ratios. The mean bias between
modeled CO mixing ratios and observations from the NOAA surface network reduces
for nearly all stations and the χ2/n characteristic is reduced to values around 1, indicat-
ing that the chosen prior errors result in a well-balanced system. As expected, regions
that are well constrained by the observational data show large uncertainty reductions,10

whereas non-constrained regions show only minor error reductions.
Our annual continental emissions compare well with recent inverse modeling studies,

indicating that the global budget of CO is well constrained in our inversion. The poste-
rior emissions have been validated using non-assimilated aircraft data from NOAA and
vertical column data from MOPITT V4. The forward simulation with the inferred emis-15

sions showed much more resemblance with NOAA aircraft observations in the free
troposphere compared to the prior simulation, showing that the inversion is capable to
improve the free tropospheric CO distribution even though only surface observations
are assimilated. The comparison with MOPITT total column CO improves slightly over
the well-constrained NH from the prior to the posterior simulation. However, in the20

SH, the comparison with MOPITT deteriorates from approximately a 6% low a priori to
a 40% low a posteriori, due to an emission decrease forced by SH surface observa-
tions.

With the limited amount of assimilated data and the low spatiotemporal resolution
of surface network observations, it is difficult to distinguish between anthropogenic25

emissions and the NMVOC-CO source. Hence, emission increments in one source, to
compensate for emission changes in another, are observed. The prior error settings for
anthropogenic emissions and the NMVOC-CO source influence this compensation as
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was confirmed by sensitivity studies. However, regions where the timing of the biomass
burning emissions is very important (e.g., South America) show that it is possible to
distinguish between anthropogenic and biomass burning emissions.

The impact of model errors on the inversion results was investigated by employing
a different OH field and a different biomass burning emission height. An OH distri-5

bution from a full-chemistry simulation with TM5 with a more pronounced N-S ratio in
OH largely influenced the inversion results: Biomass burning emissions and NMVOC-
CO reduced whereas the anthropogenic emissions increased compared to the base
inversion. This shows that the OH distribution over the NH and SH is critical for CO
inversions. For this OH field the comparison with MOPITT total column CO in the SH10

did not improve and even less CO emissions were inferred on the SH. The sensitivity
study with a different biomass burning injection height showed that the vertical distribu-
tion of biomass burning also largely influences the inversion results. Biomass burning
emissions increased by 75 Tg CO yr−1 with respect to the base inversion. Again, the
comparison with MOPITT total columns did not improve. Increased biomass burning15

emissions over emission hotspots in South America, Central Africa and Indonesia re-
sult in an even larger discrepancy with MOPITT total columns. On the remote SH the
comparison with MOPITT was similarly poor as in the base inversion.

The use of satellite data in combination with the network of surface observations is an
obvious next step. Assimilation of MOPITT total column CO is expected to lead to more20

NMVOC-CO on the remote SH, which in turn might reduce biomass burning emissions
over the fire hotspots in the SH. Lower biomass burning emissions will be more in
line with the new GFED3.1 product. However, surface and satellite observations over
the remote SH may bring conflicting information. Therefore, like in the assimilation
of SCIAMACHY methane observations (Bergamaschi et al., 2009) a bias correction25

scheme for satellite data seems necessary.
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Table 1. Statistics of the fit for the stations used in the inversion. Bias is defined as the mean

difference between observed and modeled CO mixing ratio: 1
n

n∑
i=1

(
yo
i −ym

i

)
. The χ2/n defines

the goodness of fit defined as 1
n

n∑
i=1

(
yo
i −y

m
i

σi

)2
. A χ2/n value close to 1 indicates that the system

is behaving well.

Inversion cycle 1 Inversion cycle 2
lat lon alt Bias (ppb) χ2/n Bias (ppb) χ2/n

ID station name (◦) (◦) (m a.s.l.) prior posterior prior posterior prior posterior prior posterior

ALT Alert, Nunavut, Canada 82.45 −62.52 210.0 0.94 −1.97 6.94 3.01 2.78 0.40 7.29 1.16
ASC Ascension Island, UK −7.92 −14.42 54.0 3.20 0.17 5.97 3.03 3.77 −0.34 4.89 1.22
ASK Assekrem, Algeria 23.18 5.42 2728.0 −3.94 1.21 4.22 1.64 −5.26 −1.14 3.86 0.91
AZR Terceira Island, Azores, Portugal 38.77 −27.38 40.0 −8.10 −0.86 7.84 4.69 −6.67 −1.01 6.62 1.22
BMW Tudor Hill, Bermuda, UK 32.27 −64.88 30.0 1.66 −1.06 3.78 1.48 1.98 −2.03 3.11 0.99
BRW Barrow, Alaska, USA 71.32 −156.60 11.0 −0.52 16.65 6.78 3.05 −1.09 −0.24 6.77 0.91
CBA Cold Bay, Alaska, USA 55.20 −162.72 25.0 −9.65 0.06 9.04 2.70 −4.33 −0.01 6.96 1.15
CGO Cape Grim, Tasmania, Australia −40.68 144.68 94.0 9.18 1.97 1.24 0.37 9.18 2.20 1.24 0.34
CHR Christmas Island, Republic of Kiribati 1.70 −157.17 3.0 8.79 0.54 4.02 1.58 9.45 0.34 3.86 1.13
CRZ Crozet Island, France −46.45 51.85 120.0 5.84 −0.28 3.87 1.14 5.52 −0.20 3.69 0.91
EIC Easter Island, Chile −27.15 −109.45 50.0 −9.03 −9.07 5.64 5.26 0.73 −3.07 0.46 1.92
GMI Mariana Islands, Guam 13.43 144.78 6.0 −8.19 −4.07 4.30 3.23 −1.74 −0.49 2.80 1.32
HBA Halley station, Antarctica, UK −75.58 −26.50 33.0 6.93 0.04 4.33 0.65 6.93 0.09 4.33 0.57
ICE Heimay, Vestmannaeyjar, Iceland 63.25 −20.15 100.0 −0.88 0.97 5.02 1.80 −1.71 −0.22 4.84 1.08
IZO Izana, Canary Islands, Spain 28.30 −16.48 2360.0 −2.66 −1.45 4.74 2.17 −2.92 −2.66 3.84 1.28
MHD Mace Head, Ireland 53.33 −9.90 25.0 3.98 2.98 1.60 0.87 4.64 4.02 1.55 0.73
MID Sand Island, Midway, USA 28.21 −177.38 7.7 −14.07 −0.63 10.26 3.88 −13.81 −0.26 9.74 1.49
MLO Mauna Loa, Hawaii, USA 19.53 −155.58 3397.0 −3.51 −1.87 3.53 2.47 −0.45 −0.78 2.18 1.28
NWR Niwot Ridge, Colorado, USA 40.05 −105.58 3526.0 −4.05 2.13 3.13 2.50 −0.88 2.72 2.58 1.22
PAL Pallas, Finland 67.97 24.12 560.0 −1.88 −3.22 4.08 1.63 −0.19 1.51 3.80 0.81
PSA Palmer Station, Antarctica, USA −64.92 −64.00 10.0 6.62 −0.20 3.74 0.63 6.52 0.04 3.74 0.61
RPB Ragged Point, Barbados 13.17 −59.43 45.0 7.13 0.55 3.85 2.08 7.36 −0.12 3.50 1.13
SEY Mahe Island, Seychelles −4.67 55.17 7.0 3.84 0.85 3.41 1.75 5.60 0.75 3.08 0.99
SHM Shemya Island, Alaska, USA 52.72 174.10 40.0 −7.16 −0.29 9.16 3.24 −2.21 0.77 7.96 1.05
SMO Cape Matatula, Tutuila, American Samoa −14.24 −170.57 42.0 4.67 0.28 2.48 1.23 5.06 −0.02 2.36 1.04
SPO South Pole, Antarctica, USA −89.98 −24.80 2810.0 6.82 0.50 4.50 1.08 6.60 0.35 4.36 1.01
STM Ocean station M, Norway 66.00 2.00 5.0 0.36 −0.06 6.67 1.98 1.76 0.23 6.39 1.08
SYO Syowa Station, Antarctica, Japan −69.00 39.58 14.0 6.52 0.25 3.81 0.57 6.52 0.17 3.81 0.51
TDF Tierra del Fuego, La Redonda Isla, Argentina −54.87 −68.48 20.0 5.89 −0.75 3.73 0.66 5.89 −0.53 3.73 0.60
WLG Mt. Waliguan, Peoples Republic of China 36.29 100.90 3810.0 −33.31 0.18 19.22 4.27 −21.26 −0.32 13.77 1.03
ZEP Ny-Alesund, Svalbard, Spitsbergen 78.90 11.88 475.0 1.57 1.76 9.94 3.31 −3.10 0.29 7.69 1.11

ALL −0.58 0.46 5.54 2.17 1.53 0.21 4.55 1.00
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Table 2. Emissions for 2003 and 2004 per continent for three surface source categories (An-
thropogenic, Biomass burning and Natural) and two global chemical production terms (methane
and NMVOCs). Per source category, the left column is the a priori annual emission for the cor-
responding continent, the right column specifies the a posteriori emission. The emissions are
given in Tg CO yr−1. Note that the sources of CO production from methane and NMVOC oxida-
tion are given as global totals only, since only a global scaling factor is adjusted.

Region Anthropogenic Biomass Burning Natural CH4-CO NMVOC-CO

2003 prior posterior prior posterior prior posterior prior posterior prior posterior

Nam 105±30 85±27 32±32 61±30 15±8 12±8 – – – –
Sam 22±16 −9±16 60±48 75±37 18±13 8±12 – – – –
Europe 62±30 67±16 3±2 6±2 4±4 6±4 – – – –
Africa 80±52 124±48 162±91 85±72 21±12 29±12 – – – –
Asia 258±150 497±82 114±81 158±38 30±12 30±12 – – – –
Oceania 5±1 5±1 24±28 13±11 8±6 5±6 – – – –

Globe 531±184 770±71 397±138 400±88 115±24 101±24 885±10 883±10 812±40 574±38

2004 prior posterior prior posterior prior posterior prior posterior prior posterior
Nam 105±30 105±26 23±19 47±10 15±8 14±8 – – – –
Sam 22±16 0±16 98±105 136±39 18±13 19±12 – – – –
Europe 62±30 85±18 2±1 3±1 4±4 5±4 – – – –
Africa 80±52 149±45 165±94 165±63 21±12 25±12 – – – –
Asia 258±150 526±75 98±65 42±41 30±12 29±11 – – – –
Oceania 5±1 4±1 18±14 16±14 8±6 6±6 – – – –

Globe 531±184 871±77 404±157 409±76 115±24 111±24 885±10 887±10 812±40 410±36
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Table 3. Comparison of prior (left columns) and posterior (right columns) continental emission
estimates for 2004 of this study with four recent studies. Numbers are the sum of anthro-
pogenic, biomass burning and natural emissions given in Tg CO yr−1.

Region This study Pison et al. (2009) Kopacz et al. (2010) Jones et al. (2009) Chevallier et al. (2009)
prior posterior prior posterior prior posterior prior posterior prior posterior

Nam 142±37 167±25 137 188 57 71 135 165 – –
Sam 138±107 156±39 146 131 119 183 113 157 – –
Europe 67±30 92±17 103 128 78 95 110 111 – –
Africa 266±108 338±74 264 317 214 343 234 359 286 255
Asia 385±212 597±98 296 539 389 660 367 483 – –
Oceania 31±15 26±15 96 88 23 41 69 165 – –

Total 1030 1374 1042 1391 880 1393 1028 1440 – –
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Table 4. Summary of the 7 sensitivity studies to investigate the influence of prior information,
error settings and model errors on the inversion results.

Study Description

S1 Prior grid-scale surface emission uncertainty doubled
S2 Prior grid-scale surface emission uncertainty halved
S3 Prior uncertainty on NMVOC-CO source 16% (8% in the base inversion)
S4 Prior uncertainty on NMVOC-CO source 4%
GFED3.1 Use GFED3.1 as biomass burning inventory

OH Use the OH field from a full-chemistry simulation with TM5
FVERT Use vertical distribution of biomass burning following Gonzi and Palmer (2010)
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Table 5. Prior and posterior global emission estimates (in Tg CO yr−1) for 2004 and their un-
certainty for the sensitivity studies.

ANT BB NMVOC-CO
APRI APOS APRI APOS APRI APOS

Base 531±183 871±77 404±157 409±76 812±41 410±36
S1 531±364 804±130 404±314 430±138 812±41 520±36
S2 531±94 879±40 404±79 455±48 812±41 362±36
S3 531±183 935±78 404±157 477±89 812±81 293±72
S4 531±183 753±72 404±157 400±74 812±20 581±20
GFED3.1 531±183 932±73 334±119 365±71 812±41 433±36

OH 531±183 967±74 404±157 321±73 812±41 369±36
FVERT 531±183 850±69 404±157 484±76 812±41 403±36
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Fig. 1. Positioning of 31 NOAA surface sites (black circles). Purple squares represent stations for which
prior and posterior simulations will be shown (Sect. 3.1).
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Fig. 1. Positioning of 31 NOAA surface sites (black circles). Purple squares represent stations
for which prior and posterior simulations will be shown (Sect. 3.1).
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Fig. 2. Comparison of modeled and observed CO mixing ratios at 4 stations of the NOAA surface
network. Red dots correspond to NOAA observations, red open markers represent rejected data from
inversion cycle 1 to cycle 2. Model simulations using prior (posterior) settings are shown in yellow
(blue).
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Fig. 2. Comparison of modeled and observed CO mixing ratios at 4 stations of the NOAA
surface network. Red dots correspond to NOAA observations, red open markers represent
rejected data from inversion cycle 1 to cycle 2. Model simulations using prior (posterior) settings
are shown in yellow (blue).
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Fig. 3. Uncertainty reduction for 2004, defined as 1− σa

σb
, where σa(σb) is the aggregated posterior

(prior) uncertainty for the anthropogenic emissions (blue) and biomass burning emissions (red) for four
large regions as a function of the iteration number in CONGRAD. A convergence criterium of 99%
gradient norm reduction is used here.

34

Fig. 3. Uncertainty reduction for 2004, defined as 1− σa
σb

, where σa (σb) is the aggregated poste-
rior (prior) uncertainty for the anthropogenic emissions (blue) and biomass burning emissions
(red) for four large regions as a function of the iteration number in CONGRAD. A convergence
criterium of 99% gradient norm reduction is used here.
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Fig. 4. Monthly mean difference between the TM5 model and NOAA aircraft observations for the prior
(yellow) and posterior (blue) simulation. The number of observations per month is also given.
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Fig. 4. Monthly mean difference between the TM5 model and NOAA aircraft observations for
the prior (yellow) and posterior (blue) simulation. The number of observations per month is also
given.
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Fig. 5. Annual difference in CO total column, TM5-MOPITT relative to TM5 (%) for the years 2003
(top) and 2004 (bottom). Modeled CO total columns are derived using the prior (left) and posterior
(right) emissions. Reddish colors indicate higher TM5 CO total columns compared with MOPITT and
blueish colors indicate a lower modeled CO total column compared to MOPITT.
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Fig. 5. Annual difference in CO total column, TM5-MOPITT relative to TM5 (%) for the years
2003 (top) and 2004 (bottom). Modeled CO total columns are derived using the prior (left) and
posterior (right) emissions. Reddish colors indicate higher TM5 CO total columns compared to
MOPITT and blueish colors indicate a lower modeled CO total column compared to MOPITT.
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Fig. 6. Top: Vertically integrated mass- and rate constant weighted OH difference field (TM5 - Spi-
vakovsky et al. (2000)). Bottom: Emission increments difference for 2004, OH - Base. Reddish colors
indicate higher OH levels in the TM5 OH field compared to the OH field from Spivakovsky et al. (2000)
(top) and increased emissions with respect to the base inversion (bottom). Blueish colors indicate lower
OH levels (top) and decreasing emissions (bottom).
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Fig. 6. Top: Vertically integrated mass- and rate constant weighted OH difference field (TM5
– Spivakovsky et al., 2000). Bottom: Emission increments difference for 2004, OH – Base.
Reddish colors indicate higher OH levels in the TM5 OH field compared to the OH field from
Spivakovsky et al. (2000) (top) and increased emissions with respect to the base inversion
(bottom). Blueish colors indicate lower OH levels (top) and decreasing emissions (bottom).
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