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Abstract

We have implemented six different inverse carbon flux estimation methods in a regional
carbon dioxide (CO2) flux modeling system for The Netherlands. The system consists
of the Regional Atmospheric Mesoscale Modeling System (RAMS) coupled to a sim-
ple carbon flux scheme which is run in a coupled fashion on relatively high resolution5

(10 km). Using an Ensemble Kalman filter approach we try to estimate spatiotemporal
carbon exchange patterns from atmospheric CO2 mole fractions over The Netherlands
for a two week period in spring 2008. The focus of this work is the different strategies
that can be employed to turn first-guess fluxes into optimal ones, which is known as
a fundamental design choice that can affect the outcome of an inversion significantly.10

Different state-of-the-art approaches with respect to the estimation of net ecosystem
exchange (NEE) are compared quantitatively: (1) where NEE is scaled by one linear
multiplication factor per land-use type, (2) where the same is done for photosynthe-
sis (GPP) and respiration (R) separately with varying assumptions for the correlation
structure, (3) where we solve for those same multiplication factors but now for each grid15

box, and (4) where we optimize physical parameters of the underlying biosphere model
for each land-use type. The pattern to be retrieved in this pseudo-data experiment is
different in nearly all aspects from the first-guess fluxes, including the structure of the
underlying flux model, reflecting the difference between the modeled fluxes and the
fluxes in the real world. This makes our study a stringent test of the performance of20

these methods, which are currently widely used in carbon cycle inverse studies.
Our results show that all methods struggle to retrieve the spatiotemporal NEE dis-

tribution, and none of them succeeds in finding accurate domain averaged NEE with
correct spatial and temporal behavior. The main cause is the difference between the
structures of the first-guess and true CO2 flux models used. Most methods display25

overconfidence in their estimate as a result. A commonly used daytime-only sampling
scheme in the transport model leads to compensating biases in separate GPP and R
scaling factors that are readily visible in the nighttime mixing ratio predictions of these
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systems.
Overall, we recommend that the estimate of NEE scaling factors should not be used

in this regional setup, while estimating bias factors for GPP and R for every grid box
works relatively well. The biosphere parameter inversion is best at simultaneously pro-
ducing space and time patterns of fluxes and CO2 mixing ratios, but non-linearity may5

significantly reduce the information content in the inversion if true parameter values
are far from the prior estimate. Our results suggest that a carefully designed biosphere
model parameter inversion or a pixel inversion of the respiration and GPP multiplication
factors are the best tools to optimize spatiotemporal patterns of NEE.

1 Introduction10

Carbon cycle studies today rely on a wide range of methods with purely observation-
based studies on one side of the spectrum and pure modeling on the other side. In
between, there are many studies that use a combination of observations and modeling
techniques. A special branch of these combined methods is inverse modeling, in which
information is derived from observations using Bayesian statistical methods to minimize15

the difference between model predictions and observations. Recent inverse modeling
studies include for instance efforts to derive the net carbon exchange across the globe
from mixing ratio observations of CO2 (e.g., Bousquet et al., 2000; Gurney et al., 2003;
Rödenbeck et al., 2003; Mueller et al., 2008; Ciais et al., 2010) or attempts to constrain
biophysical parameters from eddy-covariance methods (Papale and Valentini, 2003;20

Carvalhais et al., 2008).
One recurring issue in inverse studies is the large number of choices to be made

concerning amongst others, the selection and weighting of observations, the magni-
tude and correlations of the uncertainties, the treatment of the time and space domain,
and even which unknowns to solve for in the application. As a result, no two inverse25

studies use the same assumptions and the outcome of inverse studies always needs
to be evaluated within the limits of the modeling framework chosen.
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Many authors have recently used atmospheric CO2 mole fraction observations from
around the globe to reconstruct the spatiotemporal patterns of net ecosystem ex-
change (NEE), each in a different way. Peters et al. (2007) used NEE multipliers across
large areas of similar vegetation to scale calculated NEE from a biosphere model over
each week over many years. Lokupitiya et al. (2008) estimated NEE for a similar time5

frame, but estimated separate multipliers for simulated gross photosynthetic produc-
tion (GPP) and ecosystem respiration (R), and for each model grid box. Rayner et
al. (2005) in contrast chose to modify a set of physical parameters in the underlying
biosphere model directly, thus adjusting NEE to match with observed CO2 mole frac-
tions. That study however did not estimate separate parameters for separate parts of10

the globe. The large resulting NEE differences between these three estimates shows
that methodology used is an important part of the final result. Clearly, the question
which method is most appropriate to estimate NEE not been yet been resolved (if it
ever will) and remains one of the critical issues in estimating source and sink distribu-
tions from observations.15

In this paper, we want to further investigate the impact of different methodological
choices on estimated NEE. The application we chose for this purpose is a regional
inversion of CO2 mole fractions using a high-resolution transport model, and a realis-
tic spatiotemporal distribution of NEE. We plan to use this framework for actual NEE
inversions at a later stage, after determining the optimal approach through a set of20

pseudo-data inversions where the true answer is known. The regional character of this
inversion allows us to disregard some of the issues related to carbon cycling on longer
time scales, and from long-range atmospheric transport of CO2. The four methods we
want to test are related to the studies mentioned in the previous paragraph: (1) where
we estimate NEE multipliers per vegetation type, (2) where we estimate GPP and R25

multipliers per vegetation type, (3) where we estimate GPP and R multipliers for each
grid box, and (4) where we estimate biophysical model parameters for each vegetation
type. The specific questions we want to address are: What is the best strategy to de-
termine the spatiotemporal pattern and magnitude of NEE in our domain? What are
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the strengths and weaknesses of each method?
Pseudodata studies always carry the danger of oversimplifying the real problem, or

to be designed in a way to favor one outcome over another. We have tried to design our
study to prevent this issue by using a “true” CO2 exchange distribution from a different
biosphere model (FACEM; Pieterse et al., 2007) than the one we use to retrieve the5

exchange patterns (5PM; Groenendijk et al., 2010). Differences exist between the
models in physical formulations, plant functional types, driving parameter values, and in
driving meteorological input data, minimizing the a-priori expected similarity. However,
both models are based on similar principles and equations and even though they do
not share the same land-use map for the domain, the prescribed land-use maps in10

each model are realistic and thus similar.
New in our approach is that we test all inversion approaches at a high resolution with

the same meteorology, whereas in previous comparisons (e.g., Gurney et al., 2003)
both the inversion method and the transport model could differ. This enables us to
isolate the impact of the inversion methodology. We expect our results to be applicable15

to similar setups (short time periods, large flux heterogeneity, large CO2 variations,
small transport errors) but caution against extrapolation to the larger scales.

After describing the details of each of the methods included in our tests in Sect. 2.1,
we will describe the general characteristics of all inversions in Sect. 2.2 to 2.5. We
present our results next in Sect. 3, using a set of five metrics applied to each solu-20

tion. Special attention is given to the non-linearity of the biosphere model parameter
inversion. The strengths and weaknesses revealed in the result sections are further
discussed in Sect. 4. Finally, we revisit our research questions and we present general
conclusions and recommendations in Sect. 5.
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2 Methods

2.1 Inversion methods

In this study we compare four different optimization methods that are used in current
state-of-the-art inverse systems for CO2. We will briefly describe their main charac-
teristics, which are also summarized in Table 1. For each inversion we applied the5

same methodology (Ensemble Kalman filter). This approach was necessary as the
biosphere model parameter inversion is non-linear and could not be solved with typi-
cal linear Bayesian solution methods. We refer to Peters et al. (2005) and references
therein for a description of the inversion procedure.

The first inverse method is one where pre-calculated patterns of NEE from a bio-10

sphere model are linearly scaled across larger areas, similar to the CarbonTracker
system (Peters et al., 2007, 2010). This can be denoted as:

NEEpost(x,y,t)=βNEE(e)NEEprior(x,y,t), (1)

where β is a scaling factor for each land-use type (e), with an a-priori value of 1.0.
NEEprior(x,y,t) is a high resolution NEE field from a biosphere model. This method has15

as advantage that it is straightforward to implement and needs little extra assumptions
to stabilize the solution. Disadvantage is that the β factors offer little possibility to
change sources into sinks (the sign of β then needs to change), or to scale small (near
zero) fluxes to large fluxes (β needs to change a lot).

To overcome some of these disadvantages, systems were suggested that linearly20

scale gross fluxes instead (Zupanski et al., 2007; Lokupitiya et al., 2008; Schuh et al.,
2009):

NEEpost(x,y,t)=βresp(e)Rprior(x,y,t)−βGPP(e)GPPprior(x,y,t) (2)

R and GPP, which are large and stem from mostly independent processes at short
time scales, then each carry a scaling factor β. An advantage is that this system does25

more justice to the actual processes in the carbon cycle, but a disadvantage is that the
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separation of the large and opposing fluxes using atmospheric CO2 is very difficult, and
might need extra regularization of the solution in the form of prescribed covariances. In
addition to the uncorrelated version of this inversion, we therefore also test this option
with correlations of 0.5 and 1.0 between βRESP and βGPP for each land-use type.

A final variant of the approach above is to make the βRESP and βGPP spatially explicit:5

NEEpost(x,y,t)=βresp(x,y)Rprior(x,y,t)−βGPP(x,y)GPPprior(x,y,t) (3)

This offers the advantage that the βR and βGPP spatial patterns are allowed to vary
within each ecoregion. However, additional regularization is necessary because the
number of unknown bias parameters is too large to estimate from the limited atmo-
spheric observations. In this study, we apply a spatial covariation between all grid10

points in the same land-use type that decreases exponentially with distance (length
scale L =100 km), similar to methods used in Rodenbeck et al. (2003), Peylin et
al. (2005), Peters et al. (2005), Schuh et al. (2009).

Another class of inverse methods uses atmospheric CO2 not to constrain the surface
exchange patterns, but to directly optimize the parameters of the underlying biosphere15

model (Rayner et al., 2005; Scholze et al., 2007). The optimized parameters then
control the new surface CO2 exchange. An advantage of this approach is the seam-
less extrapolation of information across the space and time domain and the physical
relevance of the optimized result (new biosphere model constants instead of scaling
factors). Disadvantages come in the form of several pitfalls: limitations in the model20

structure are difficult to overcome, the model parameters are rarely directly constrained
by atmospheric CO2 and aliasing of information into the wrong parameter is possible.
In addition, the biosphere model and often contains non-linearities that conflict with
the inversion assumptions, as we will discuss elaborately in Sect. 3.1. The biosphere
model optimization can be written as:25

NEEpost(x,y,t)= f
(
βE0

(e)E0,prior,βRref
(e)Rref,prior,βVm(e)Vm,prior,βaJ V

(e)aJ V,prior

)
(4)

where we have selected to optimize 4 parameters for each land-use class: βE0
is

a scaling factor for the respiration activation energy E0 , βRref
is a scaling factor for the
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respiration rate at reference temperature, βVm scales the carboxylation capacity, and
βaj scales the quantum yield for light limited assimilation. The first two parameters are
used to adjust respiration while the latter two control photosynthesis (see next section).

The resulting six inverse methods described above will be referred to as the βNEE
inversion, the βRG0.0 inversion (no GPP and R correlations), the βRG0.5 inversion5

(correlations of 0.5), the βRG1.0 inversion (fully correlated GPP and R), the βRGpixel
inversion (estimates for each pixel), and the parameter inversion. Note that the βRG1.0
inversion is not the same as the βNEE inversion because the flux covariance is dis-
tributed differently in space and time.

For each inversion method the degrees of freedom are estimated with the simple10

formula from Patil et al. (2001) that considers the number of significant eigenvalues in
the correlation matrix (normalized covariance matrix). For each of these inversions, the
d.o.f. is relatively small compared to the number of observations (336). The estimated
number of degrees of freedom is given in Table 1.

2.2 Modeling system, simulation period and domain15

All inversions are based on simulation with the same model setup in which the non-
hydrostatic mesoscale model RAMS (Pielke et al., 1992) is used to simulate the atmo-
spheric transport. The version used in this study is B-RAMS-3.2, including adaptations
to ensure mass conservation (Meesters et al., 2008). The prior NEE flux estimates are
calculated with the simple biosphere model 5PM (Groenendijk et al., 2010) in which20

photosynthesis is calculated following Farquhar et al. (1980) and respiration is calcu-
lated with the relationship by Lloyd and Taylor (1994). The input for the biosphere
model is summarized in Table 2. Further details on the transport and biosphere mod-
eling system can be found in Tolk et al. (2009).

The simulations are performed for an area of 400×400 km at a relative high resolution25

of 10 km, centered in The Netherlands at 52◦25′ N and 5◦2′ E (Fig. 1). The Corine 2000
land use maps are used (http://dataservice.eea.europa.eu). Most of the area consists
of cultivated land, in which the most abundant land use type is “agricultural areas with
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complex cultivation patterns”, which is further referred to as “crops 1”. Second most
abundant is grassland, referred to as “grass”, and the third is “agricultural land with
significant areas of natural vegetation”, referred to as “crops2”. The simulation period
19 May 2008–2 June 2008 was selected to contain various weather types and thus
flux regimes, including cloudy, rainy, and sunny days at the beginning of the growing5

season.

2.3 Control inversions

The simulations are performed in a pseudo-data environment, so that the “true” fluxes
are known and the results of the different inversion methods can be evaluated against
them. As a check on the inversion system, and as a reference for the performance10

of the inversions with a perfect or near perfect structure of the NEE flux pattern, we
performed two control simulations. In the first, pseudo data were created as a multi-
plication of the prior NEE fluxes. This pattern is within the solution capacity of each
inversion option and it could be retrieved by all inversions, confirming that the inversion
system worked correctly.15

In addition, we created a flux field based on a simulation with 5PM with parameters
that were a realization of the a-priori covariance of the parameters. The flux field
is therefore fully within the statistical properties of each inversion method (see also
Sect. 2.5), and the spatial structure is represented perfectly in all methods. This is the
control inversion referred to in the rest of the text and serves in our setup as a reference20

for the performance of the inversions in absence of spatial biosphere model structure
differences.

2.4 True fluxes and pseudo observations

Usually, in pseudo-data studies true fluxes are chosen as some realization of the un-
derlying biosphere model (Zupanski et al., 2007; Schuh et al., 2009), as done in our25

control inversions. This choice is not very realistic when the structure of the underlying
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biosphere model itself is part of the inverse problem, and different structures will work
better with different optimization strategies. For example, a parameter inversion when
the truth was created with perturbed parameters will perform better than an βNEE in-
version against the same truth. To prevent this in our study, and also to make the
pseudo-data study more realistic, we have used as “true” fluxes those from a different5

biosphere model.
Hourly biogenic respiration and photosynthesis flux fields from the FACEM model

(Pieterse et al., 2007) were used. These were calculated at 6′ resolution and have
a different underlying land-use description, different soil type and LAI map, and different
meteorological driver data as summarized in Table 2. As a result, all six test inversions10

have to overcome a difference in model structure that causes the simulated pseudo-
CO2 time series to never perfectly match with the true NEE distribution (Fig. 2a,b). This
situation mimics reality in which a biosphere model never grasps the full complexity nor
heterogeneity of the true NEE distribution, which can be an important source of error
(Kaminsky et al., 2001; Gerbig et al., 2006; Carvalhais et al., 2008).15

To create pseudo CO2 mixing ratio data, the true CO2 fluxes are coupled to the at-
mospheric model RAMS. The simulated 3-D atmospheric CO2 field is sampled at the
locations where also in reality CO2 mixing ratios observations are available (Fig. 1),
where the highest observation level at the towers is used (Cabauw, 200 m; Lutjewad,
60 m; Loobos, 24 m; Veenkampen, 18 m). Real observations will be used in a com-20

panion paper to obtain a real flux estimate. The inversions use hourly CO2 mixing
ratios sampled from the well mixed PBL between 11:00 and 16:00 UTC. In the con-
trol inversion we applied a model-data-mismatch of 0.2 ppm and with the FACEM truth
we assumed a standard deviation of 1.2 ppm. The observation selection and uncer-
tainty are the same in all different inversion methods. The total number of observations25

assimilated is 4 towers times 14 days times 6 h, equaling 336.
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2.5 Prior flux covariance

A correct comparison between the different inversion options requires that the prior
covariance of all options is equal. We require that the NEE, integrated over ecoregion
and time, has the same ensemble-variance for all inversion options, and that the ra-
tios between variance of ecoregion-time integrated respiration and GPP are also the5

same for the inversions. The standard is the parameter inversion, for which mean and
variances are prescribed based on our previous work (Tolk et al., 2009; their Table 2),
which was in turn based on an eddy covariance study (Groenendijk et al., 2010). For
the other inversions, the prior covariance is scaled such that the above-mentioned sim-
ilarity between the inversions is satisfied (see Appendix A for details).10

This approach is an important choice in our experiment design. It is interesting to
note that equal variance of the time/ecoregion integrated NEE does not ensure the
same uncertainty in the inversions at each point in space and time. Our choice of co-
variance treatment has ensured that (a) the inversions have equal covariance in the
quantity that matters most to our CO2 observations (NEE), (b) the spatial gradients15

in NEE variance between land-use types is conserved, and (c) the time integral co-
variance over the inversion are conserved suggesting that all inversions had an equal
chance to find the mean NEE of the truth.

The innovation χ2 statistics indicate that flux and observation uncertainties were well
balanced. The χ2 values range from 0.34 to 0.78 (Table 1) indicating that the model skill20

was high relative to the assumed uncertainty. The inversions were thus conservative
in their flux adjustments and not over-constrained.

3 Results

In this section we present our results according to the performance of all the different
inversion methods against a set of different metrics that each highlight a particular25

aspect of the inverse results (Sects. 3.2–3.6). Before the overview of the performance
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of all methods is presented, the special behavior of one of the methods which is partly
non-linear (the parameter inversion) is highlighted in Sect. 3.1. An overall assessment
of each individual method is given in the discussion section.

3.1 Optimizations and non-linearity

Five out of six inversion systems used in this study are linear, in the sense that a Gaus-5

sian set of parameters will translate to a set of similar Gaussian set of CO2 flux fields.
The exception is the parameter inversion. Out of the four parameters chosen for opti-
mization only the reference rate for respiration (Rref) is linear, while the other ones are
nonlinear. In addition, the model follows the Farquhar et al. (1980) photosynthesis lim-
itation principle, in which either light or carboxyl becomes limiting for photosynthesis.10

The transition from one regime to another presents an important nonlinear step in the
simulation of NEE.

Figure 3 shows the distribution of fluxes resulting from a chosen distribution of pa-
rameter values. It shows that the activation energy parameter (E0) in particular affects
the fluxes in a nonlinear fashion when the chosen value approaches zero. The carboxy-15

lation capacity (Vm) and quantum yield (αjv ) parameters are weakly nonlinear across
the chosen range, and the reference respiration rate (Rref) is fully linear.

The nonlinearity in the parameter inversion should in principle be dealt with in the
ensemble system as it implicitly linearizes over the full model (H). However, we could
clearly see the effect of imperfect linearization in our results. When we fed the posterior20

parameter set back into our flux model, and consequently propagated the solution
through the RAMS transport model (H(xa)) we did not obtain the distribution of CO2
mixing ratios that the linearized inverse solution (Hxa) had predicted. Generally, the
propagated mean was further away from the observations than the linearized mean,
and the propagated standard deviation of the ensemble was larger than the linearized25

one.
We explored this further with an offline inverse system that had only three param-

eters. A simple equation in which we varied the degree of non-linearity related the
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parameters to observations. The parameters were optimized against a truth obtained
with one realization of the parameters, and some additional noise. We observed in
our simple non-linear system that the propagated posterior parameter spread always
correctly included the true parameter value. Additionally, the simplified model showed
that introducing a non-linear parameter does not affect the ability of the inversion to re-5

turn the correct values for the other, linear parameters in the model. Nonetheless, this
simplified model showed the same behaviour with a poorer match to observations, and
a larger spread in the concentration when using the propagated posterior parameters
instead of the linearized model. This degraded performance of the linearized model is
caused by the tails of the a-priori parameter probability density function (PDF), which10

do not follow the linearized propagation of the mean, or values close to that mean. This
results in the observed larger spread in the non-linearly propagated CO2, and also in
the overconfidence of the posterior parameters (the linearized ensemble lacks spread).
We found that this effect could be reduced in several ways: (1) by reducing the degree
of non-linearity in the model, (2) by starting with a good a-priori parameter value around15

which the model is linearized, and (3) by limiting the uncertainty of the non-linear pa-
rameter to a space where the effect is mostly linear. These three strategies may be
generally applicable in future studies attempting non-linear inversions.

3.2 Metric 1: domain integrated fluxes

One of the important metrics in evaluating the performance of the inversions is the20

ability to retrieve the NEE summed over time and space. This is a final goal of the
inversions, but not the only one as more detail may be desired, and the summed values
may hide opposing errors. These issues are addressed in the other metrics in the next
sections. All except one of the inversions have managed to find an improved posterior
time average flux for the whole domain (Fig. 4). The two results closest to the truth25

are from the βRG inversions without correlations (βRG0.0), or with partial correlations
(βRG0.5; not shown), followed by the βRGpixel inversion and the parameter inversion.
The βNEE inversion was the only inversion that had a worse posterior time mean flux
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than prior time mean flux for the whole domain.
If we consider the RMSD of the true and estimated domain average flux over time,

a similar picture emerges: all inversions show an improvement (Table 3, first column).
This agreement was expected under the current design of the study, in which many
observations were available to constrain the hourly NEE. Again, the βRGpixel and5

βRG0.0/βRG0.5 perform best, but also the parameter inversion has captured the tem-
poral structure of the domain total flux better than the prior. The βNEE inversion strug-
gles not only to find an improved time mean flux, but also provides a poor match to the
hourly domain averaged time series.

The degree of RMSD improvement is rather small, especially considering the large10

number of observations available. Further investigation showed that the main limitation
to improving the flux estimate is the different structure of the a-priori model (5PM) and
the truth (FACEM). In the control inversion, where this model structure difference was
not present, all methods (including the βNEE inversion) gave much better time mean
fluxes, and RMSD of the time series (not shown). This suggests that synthetic studies15

using the same land surface model to generate and retrieve fluxes may overemphasize
the ability of the model.

3.3 Metric 2: fluxes per land-use type

We can further separate the results above into each individual land-use class consid-
ered. Figure 4 shows these results. The most striking feature is the lack of improvement20

in mean NEE for most land-use classes in most inversions. This suggests that overall,
the inversions have failed to find a correct distribution of time mean NEE within the do-
main (see also Fig. 2). The discrepancy is relatively weak for the parameter inversion
and the βRG1.0 inversion, which show improved posterior mean βNEE in 3 out of 6
land-use classes. The two inversions that did best on the total domain average NEE25

(βRG0.0 and βRG0.5) now reveal a lack of improvement within the dominant land-use
classes, suggesting that they might have gotten domain total fluxes right for the wrong
reason.
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Assessing the RMSD of true and estimated flux time series per land-use type is con-
sistent with the domain total picture of the previous paragraph: the parameter inversion
and βRGpixel inversion generally show relatively low posterior RMSD and improve in
4 out of 6 land-use classes (Table 3). The other inversions improve substantially in
RMSD in only 2 classes. An example of posterior flux performance for the largest land-5

use class (Crops1) is shown in Fig. 5. It shows that poor RMSD is caused mostly by
an inability to capture the difference in the daytime signal at the different days, and that
nighttime NEE is poorly simulated in most of the inversions.

Considering that the instantaneous fluxes per land-use class are most closely con-
nected to the CO2 mole fraction observations, the performance of the inversions is10

disappointing, and also alarming. Also in this metric the performance of the same
inversion methods against the control fluxes is much better, and agrees with the ex-
pectation that domain total and land-use fluxes improve in time (both flux average and
RMSD; not shown).

3.4 Metric 3: uncertainty estimate15

The contrasting performance of most inversions for individual land-use classes (bad)
versus the domain integral (reasonable) suggests significant spatial correlations be-
tween classes, with canceling flux errors. Here we investigate the posterior uncertain-
ties.

The inversions based on multiplication factors per land-use class (βNEE and βRG)20

all produce posterior uncertainties that are too small. This means they do at most loca-
tions not encompass the true flux within one or two standard deviations (Fig. 6). This
might have been expected since the degrees of freedom in the inversion are much
smaller (∼6–62) than the number of observations assimilated (∼336). However, the
χ2 of innovations suggests a fair balance between CO2 residuals (y−H(xb)) and pre-25

scribed uncertainty (HPbHT+R) and the posterior uncertainty does not scale directly
with the degrees of freedom in each inversion. Thus, the relatively large number of
observations does not seem the main cause of too low posterior uncertainty.
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In fact, when we reduced the number of assimilated observations to 1 per day we
saw only minor effects on the posterior variances. Only if we reduced the number
of observations and additionally increased the model-data mismatch did we see an
increase in posterior variances for the individual land-use classes. But even then the
domain total variance remained much too small to accommodate the large difference in5

flux mean. The small posterior uncertainty is thus not simply an artifact of the inverse
method setup.

If we consider the control inversion, the posterior flux estimates are much better for all
inversions, and 4 out of 6 inversions report ±1 sigma uncertainties that include the truth
(not shown). This again points at an important role of model structure in determining10

the outcome of an inversion, in this case leading to overconfidence that the true value
is retrieved.

The parameter and the βRGpixel inversions generally produce error estimates that
are conservative and more realistic compared to the other inversions, in the sense that
the posterior estimate (Fig. 6) is in large parts of the domain within 2 sigma of the truth15

and they encompass the truth within ±2.5 sigma in 5 out of 6 land use classes. Note
that in the 6th land use class (rest) also the prior uncertainty is too low, and a realistic
posterior uncertainty could therefore not be expected for this land use class.

Posterior covariances are large in all inversions. In the βRG inversions the covari-
ances occur between β parameters for R and G. The covariances reveal an inability20

to separate the effect of photosynthesis and respiration based on CO2 alone. This
was demonstrated in earlier work too (Ahmadov et al., 2009; Schuh et al., 2009). This
type of covariances is more pronounced than those between β’s for different land-use
classes.

3.5 Metric 4: match to CO2 mole fractions25

All six inverse methods reduce the mismatch between pseudo-observations and simu-
lated CO2 mole fractions for those observations that were assimilated. This is expected
from an inverse calculation. Not all methods obtain equal root-mean-square-difference
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(RMSD) though, as each inversion adjusts fluxes differently. Table 4 shows that the
posterior RMSD in CO2 mole fractions is largest for the βNEE optimization and small-
est for the βRGpixel optimization.

The χ2 of innovations (Table 1), which indicates the balance between a-priori mis-
match and assumed uncertainties, is smaller for the βNEE and βRG1.0 inversion than5

for all other optimizations per ecoregion. This is because these two inversions had
a much larger uncertainty in hourly NEE than the other inversions (necessary to main-
tain the same uncertainty over the full period, see Sect. 2.5), translating to more simu-
lated uncertainty in CO2 mole fractions.

More interesting is the comparison to CO2 mole fractions that were not assimilated10

as they show the performance against independent data. The second column of Ta-
ble 4 shows that only three inversions perform better when assessed against the full
CO2 time series, while for three others it deteriorates. This is an important result that
suggests that the estimated NEE field reflects only a limited part of the CO2 mole frac-
tion time series, as a result of the daytime-only subsampling we used.15

Moreover, the βNEE and βRG1.0 inversion – that improve RMSD of non-assimilated
CO2 – show the opposite result in the control inversion, suggesting that the improve-
ment in the real inversion was fortuitous. This leaves only the parameter inversion
to improve the RMSD of assimilated and independent CO2 observations, both in the
control inversion and the real inversion.20

For the RG inversions the good performance on the temporal structure of NEE con-
trasts with the poor RMSD of the non-assimilated CO2 observations (Tables 3 and 4).
The reason is that the posterior nighttime flux is simulated poorly which does not affect
the RMSD of fluxes much (the prior was also rather poor at night, and the nighttime
NEE is relatively small compared to the daytime NEE), but is strongly amplified in CO225

concentration space due to the shallow nighttime boundary layer. Now, the poste-
rior variances in βR and βGPP mentioned in the previous paragraph really come to
expression: they give an acceptable aggregated flux (NEE) but at the expense of in-
correct nighttime CO2 mixing ratios. The propagation of this incorrect nighttime CO2
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signal through the domain will likely result in compensating signals further downwind,
or later in time. These effects are not visible yet in our short experiment though.

The results above suggest: (1) that nighttime CO2 observations are needed to sep-
arate respiration from photosynthesis fluxes, and (2) that interpretation of these obser-
vations depends critically on the adequate simulation of the nocturnal boundary layer.5

3.6 Metric 5: prognostic value of the estimate

To assess whether the retrieved bias or model parameters hold any information beyond
the window of the inversion, we propagated the posterior parameter estimates to the
next two-week window, yielding a new set of surface CO2 fluxes. This set was then
compared to the true fluxes and compared with FACEM results for the new period.10

The performance of all fluxes in the new two week window is very similar. Each
inversion complies better with true fluxes if we apply previously optimized parameter
values than when we use the original model formulations. The improvement is of equal
magnitude (considering RMSD flux difference) for each inversion which means that the
ranking from best estimate to worst estimate does not change from that in other flux15

metrics. Part of this result reflects the large similarity between the fluxes in both two
week periods, and hence an inability to discriminate between good prognostic abilities
from bad ones. Our initial expectation, that the parameter inversion would do best,
followed by the inversions with smaller degrees of freedom, was not borne out by the
current results.20

4 Discussion

With the steady expansion of (continuous) CO2 observation sites comes a tendency
to estimate carbon exchange patterns at increasingly higher resolutions. Inversion
methods are thereto equipped with state-of-the-art meso-scale transport models and
detailed ecosystem models. The methodology to optimize carbon exchange at regional25
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scales is often transferred from existing global systems, thereby inheriting their known
strengths and weaknesses. At these regional scales however, other considerations
come into play that potentially turn weaknesses into strengths and vice versa. An ex-
ample from this work is the scaling of the diurnal cycle amplitude in the NEE inversion.
This was a rather robust way to maintain a balance between respiration and photo-5

synthesis over long time periods in global inversions (Peters et al., 2010), but seems
to fail on the smaller scales. We suspect that this is caused by the dominance of the
CO2 diurnal cycle as a source of information for the inversion, while in continental scale
inversions the daily average CO2 mixing ratios were more controlling.

In contrast, we see that at the regional scale the shortcomings of biosphere model10

structure is expressed more strongly than at continental scales. The potential to alias
CO2 signals onto the wrong parameter because they are simply not reproducible with
the prescribed structure was demonstrated and discussed convincingly in Carvalhais
et al. (2008). Our study corroborates their conclusions, and shows that spatial mis-
matches in model structure can lead to incorrect mean flux estimates, with error bars15

that are overconfident. Since there is currently no metric, nor a place in the inversion
for this type of error to be included, we suggest that model structure is assessed crit-
ically when optimizing biosphere model parameters or precalculated flux patterns on
regional scales. Comparison of resulting fluxes and uncertainties against independent
data (i.e., not used on the inversion) is one way to detect model structure errors for20

inversions using non-synthetic data (e.g., Lavaux et al., 2009).
In our assessment of the inversions based on biosphere model parameter optimiza-

tions we have seen an important role of non-linearity in the model equations, similar to
previous studies (Trudinger et al., 2007; Scholze et al., 2007; Rüdiger et al., 2010). In
this regional optimization based on CO2 mixing ratio observations, we noticed that the25

non-linear model parameters in particular were difficult to constrain. To use them cor-
rectly, they required a good first-guess, a small uncertainty, and a full non-linear model
propagation of the solution (rather than a linearized one). These parameters were often
also the ones least constrained by daytime atmospheric CO2, and thus likely suffered
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from the specific setup of our experiment. Since the estimation of non-linear param-
eters did not affect the retrieval of the linear ones, we suspect that a different setup
(other observation types, more temporal constraints) might perform better.

In contrast, estimates of bias scaling factors on photosynthesis and respiration re-
mains linear, depend less on model structure, and have more freedom to use the diur-5

nal cycle information on regional scales. In our studies it also proves a good alternative
to the NEE scaling and the biosphere model parameter optimization. Also here, the
daytime CO2 sampling scheme used makes it difficult to confidently separate the two
processes. Simply including night time CO2 mixing ratio observations is however not an
option, because of the limited skill of transport models to simulate the stable boundary10

layer (Tolk et al., 2009; Gerbig et al., 2008; Law et al., 2008; Steeneveld et al., 2009).
Also, there is a large potential for erroneous photosynthesis and respiration bias scal-
ing factors to propagate in time, and destabilize the inversion after a few weeks. The
short time window used in this study does not incorporate this complication.

Overall, we see the biosphere model parameter as the most promising way forward.15

Despite its mentioned risks, it also has one large advantage over other methods. This
is the ability to ingest other types of observations than atmospheric CO2, and to di-
rectly relate these to specific processes in the model. This includes for instance eddy-
covariance observations to constrain night time respiration, satellite observations to
constrain LAI and fPAR, or forest inventory data to estimate carbon stocks. If non-20

linearity and model structure limitations can be handled adequately, the model param-
eter optimization will likely proof most versatile and flexible in its application.

Perhaps the most important result from our pseudo-data tests is that despite the
relatively large number of observations, the high resolution of the (perfect) transport
model, and the increased freedom to fit spatiotemporal flux patterns, we still have not25

achieved a correct estimate of carbon exchange at the local scale. Similar to previous
studies (Carouge et al., 2010; Schuh et al., 2009; Gerbig et al., 2006; Ahmadov et
al., 2009), we find that significant aggregation of results is needed to come to robust
numbers. The aggregation scale is on the order of 100×100 km as in previous work.
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This suggests that the simple translation of methods from the large scale to the small
scale will not be sufficient. A re-evaluation of inversion methods might be needed, with
an eye for nonlinear behavior, model structure, and multiple constraints. In that respect,
recent work where model mean structure is relaxed in favor of extensive covariance
structure based on multiple auxiliary datasets (Michalak et al., 2004; Gourdji et al.,5

2010; Yadav et al., 2010) is of great interest.

5 Conclusions

We started this paper asking which of six inversion approaches is the most suited for
a regional inversion, and what the pitfalls are of each method. From our analysis we
have learned that:10

– Model structure is an important consideration for inverse estimates that can lead
to incorrect spatiotemporal patterns of fluxes, and overconfidence in posterior
results. An assessment of model structure error, and its inclusion in the quoted
uncertainty would make any regional inversion more plausible.

– Inversions that scale NEE from prescribed spatiotemporal patterns are most sus-15

ceptible to these errors (which include aggregation errors), and perform worst in
the realistic tests presented. We do not recommend using this method for regional
NEE estimates.

– Inversions that separately estimate photosynthesis and respiration perform better
on NEE, at least on these short time scales, even though they cannot obtain20

realistic gross flux estimates, which might lead to problems later. We recommend
to use them only if the realism of the gross fluxes can be assessed after the
inversion, or maintained by other means such as through nighttime observations
of fluxes or CO2 mixing ratios.
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– The best results were obtained when the land-use class concept was applied least
strictly by allowing spatial variations in bias corrections on gross fluxes (RGpixel),
or when the bias parameter approach was abandoned altogether such as in the
parameter inversion. A land-use class based separation of inverse parameters is
discouraged in regional frameworks.5

– The parameter optimization approach has some appealing features and performs
best when assessed against the full set of metrics. However, it can only be used
if the non-linear behavior of the system is dealt with.

– When optimizing non-linear parameters we recommend to (a) start from a good
a-priori mean estimate, (b) keep the uncertainty on the parameter small, and (c)10

check posterior results carefully using the full non-linear model.

Appendix A

Ensemble Kalman Filter method

All the inversions are performed with the Ensemble Kalman filter (EnKF). In this15

Bayesian approach the optimum value between the prior knowledge and the informa-
tion in the observations is established by minimizing the cost function:

J = (y−H(x))T R−1 (y−H(x))+
(
x−xprior

)T P−1(x−xprior
)

(A1)

In which x denotes the state vector (the biospheric parameters or the β’s in the inver-
sions), y the observation vector (CO2 mixing ratios), P the error covariance matrix of20

xprior, R the error covariance matrix of the observations. H is the observation operator,
that contains the influence of the variables in the state vector (x) on the CO2 mixing
ratio at the observation locations. The optimum posterior state vector that minimizes
the cost function, and its error covariance matrix are:

xpost =xprior+K(y−H(xprior)) (A2)25
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Ppost = (I−KH)Pprior (A3)

Where K is the Kalman gain matrix:

K= (PpriorH
T )(HPpriorH

T +R)−1 (A4)

In the Ensemble Kalman Filter method the information in the error covariance matrix
P, and its projection in observational space HP and HPH are not calculated based5

on independently determined H and P matrixes. Instead of the full calculation, an
ensemble of state vectors that represent the statistical properties of xprior and Pprior is
used. Normally this is done to reduce the size of the matrixes, which may become very
large if the amount of unknowns is large. Here, the Ensemble Kalman Filter is applied
because of another advantage: this method of directly calculating HP and HPH from10

x and H(x) allows the use of a non-linear relation between the parameters (x) and the
CO2 mixing ratios (H(x)) as is the case in the parameter inversion.

The ensemble of state vectors, with N ensemble members, was created such that
the normalized ensemble of deviations define the columns of matrix X (Peters et al.,
2005):15

X=
1

√
N−1

(x1− x̄,x2− x̄,...,xN − x̄)T (A5)

which is the square root of the covariance matrix:

P=XXT (A6)

In the ensemble members x contains the parameter values of the biosphere model in
case of the parameter inversion, or the multiplication factors βRESP and βGPP in the20

βRG inversions, or the multiplication factor βNEE in the βNEE inversion. All inversions
are performed with ensembles containing 100 ensemble members. For each ensem-
ble member the corresponding CO2 mixing ratios at the observation locations were
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calculated. This is done in the coupled biosphere-atmosphere model (5PM+ coupled
to B-RAMS3.2). Thus an ensemble of CO2 mixing ratios was created:

H(X)= [H(x1− x̄),H(x2− x̄),...,H(xN − x̄)] (A7)

From the ensemble of state vectors (X) and the ensemble of corresponding CO2 mixing
ratios (H(X)) the Kalman gain matrix, and the posterior optimized values including their5

uncertainty was calculated with Eqs. (A2–A4) combined with (Peters et al., 2005):

HPHT =
1

N−1
H(X)(H(X))T (A8)

and

PHT =
1

N−1
X(H(X))T (A9)

Due to the use of an ensemble instead of the full KF, small extra covariances may be10

created. The impact of these small artificial covariances on the inversion result can be
diminished by localization. In this study we used the localization method and values
established in Zupanski et al. (2007), a threshold value for the ratio between the prior
uncertainty and the posterior uncertainty of 1.05 was applied.

In the control inversions in this study the observation vector (y) was created based15

on one realization of the parameter state vector by selecting one of the columns of
ensemble X. In the other inversions the observation vector (y) was based on the hourly
NEE flux fields created by the biosphere model FACEM (Pieterse et al., 2007). In
both cases the corresponding CO2 mixing ratios were calculated with the atmospheric
model RAMS in which the sea, the fossil fuel, and the boundary fluxes of CO2 were20

kept constant.
The size of the state vector differed in the different inversion methods, in the param-

eter inversion it had a dimension of 24 (4 parameters times 6 land use classes), in
the βRG inversions its dimension was 12 (twice the number of land use classes), in
the βNEE inversion its size was 6 (once the number of land use classes) and in the25
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βRGpixel inversion its size was 2218 (twice the number of land pixels). The dimension
of the observation vector was the same in all inversions with 336.

For the parameter inversion, βRG0.0 and βNEE inversions all off-diagonals in Pprior
were zero. Additional inversions were performed with a correlation between βR and
βG of 0.5 and 1.0. In this case all off-diagonals were zero except the ones denoting5

the correlations between βR and βG of the same land use type. Also in the pixel inver-
sions only correlations within one land use type are applied with correlations calculated
based on distance (D) with a length scale (L) of 100 km:

Pi ,j =σiσj exp
(
−D
L

)
(A10)

The means and variances for the parameter inversion are prescribed based on Tolk et10

al. (2009). The other inversions use an ensemble of β’s with mean one and variances
which are scaled to achieve the required similarity between the inversions (Sect. 2.5).
First the uncertainty related to the respiration fluxes on the one hand and to the GPP
fluxes on the other hand were separated. This was done by running the biosphere
model with two different ensembles: (1) containing only variations in the parameters15

determining respiration and (2) containing only variations in the parameters determin-
ing GPP. To convert this to the variance related with the β factors, each ensemble
member is scaled with the flux per ecoregion, separately for respiration and GPP in
the βRG inversions and for NEE as a whole for the βNEE inversion. This ensures that
the ratio between the uncertainty in respiration and GPP per ecoregion is the same in20

all inversion options. In the inversion where applicable correlations were added to P.
The new variances were subsequently scaled with a multiplication factor per ecoregion,
with the same multiplication factor for βResp and βGPP. These multiplication factors were
chosen such that the uncertainty in NEE integrated over ecoregion and time became
the same in all inversion options, taking into account the correlations between respira-25

tion and GPP in the βRG0.5 and βRG1.0 options and the reduced correlation within one
ecoregion in the pixel inversion.
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Appendix B

Biosphere model 5PM

The biosphere model used in this study to calculate the prior NEE fluxes is 5PM (Groe-
nendijk et al., 2010) extended with the use of LAI to upscale the fluxes from leaf to the5

canopy scale. In this model the photosynthesis is calculated based on the Farquhar
model (Farquhar et al., 1980) and heterotrophic respiration is based on the relationship
by Lloyd and Taylor (1994).

In the Farquhar approach assimilation of CO2 by the vegetation is either limited by
the amount of radiation or by the availability of the enzyme Rubisco, which is involved10

in the conversion of CO2 into glucose and oxygen. Photosynthesis is formulated as the
minimum of the light limited (wj ) or enzyme limited assimilation rate (wc), corrected for
the maintenance respiration of the vegetation (Rd ):

A=min(wc,wj )−Rd (B1)

The assimilation rate depends on the CO2 concentration inside the leaf available for15

photosynthesis (Ci ), the internal oxygen concentration (O), the compensation point for
CO2(Γ∗) and the Michaelis-Menten parameters for CO2 (Kc) and O2 (Ko). The latter
are temperature dependent. The first option, Rubisco-limited assimilation is calculated
as:

wc = Vcm
Ci −Γ∗

Ci +Kc

(
1+ O

Ko

) (B2)20

where Vcm is the maximum carboxylation capacity (µmol m−2 s−1). The second option,
light limited assimilation is calculated as:

wj = J
Ci −Γ∗

4(Ci +2Γ∗)
(B3)
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where J is the electron yield, specified by:

J =
αIPARJm

αIPAR+2.1Jm
(B4)

in which IPAR is the photosynthetic active radiation (µmol photons m−2 s−1), Jm the
maximum potential electron transport rate (µmol m−2 s−1) and α the quantum yield
(mol mol−1). Assumed is that the plants aim for an optimum between the energy al-5

located to the potential electron transport rate and to the carboxylation capacity, and
Jm is linked to Vm by (Collatz et al., 1991):

Jm =2.5Vcm (B5)

Leaf internal CO2 is estimated with the method described in Arneth et al. (2002) in
which the value for lambda was kept constant at 700 mol mol−1. The atmospheric CO210

mixing ratio is assumed to be 380 ppm during photosynthesis. Integration of the photo-
synthetic flux to the full canopy is based on MODIS leaf area index (LAI) observations
(Sellers et al., 1996):

Ac =ΠAn0, with Π=
1−e−k̄LAI

k̄
(B6)

where A is the assimilation, subscript n0 refers to leafs at the top of the canopy, sub-15

script c refers to total canopy and k is the PAR extinction coefficient.
Respiration is calculated with the temperature dependent relationship by Lloyd and

Taylor (1994):

R =R10 e
E0
R

(
1

283.15−T0
− 1

T−T0

)
(B7)

where R10 is the respiration rate at a reference temperature of 10 ◦C, is the activation20

energy divided by the universal gas constant, T0 is a constant of 227.13 K and T is soil
temperature.
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In a previous study (Tolk et al., 2009; Groenendijk et al., 2010) the main parameters
of this model (Vm, α, R10 and E0) were optimized for the full canopy based on a large
number of Fluxnet observations (Baldocchi et al., 2001). To determine our prior fluxes,
we applied parameter values optimized for the temperate zone, for the period of May–
July for all years (Table B1).5

The relationship between the parameters in the biosphere model and the NEE fluxes
is for most parameters non-linear. The strength of this non-linearity was estimated
for each parameter, by running the biosphere model with ensemble of Gaussian dis-
tributed parameter values and showing the accompanying distribution of the NEE fluxes
(Fig. 3). For all parameters except Rref it was shown that the resulting NEE distribution10

was non-Gaussian, affecting the inversions if the prior had a large deviation from the
true values.
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Table 1. Summary of the six inverse methods tested, indicating which variables are optimized
in the inversions including their correlation and for which spatial unit they are optimized, the
degrees of freedom (d.o.f.) as calculated from the a-priori covariance matrix of each system
and the χ2 of innovations.

Inversion Variables in Correlation Optimization D.o.f. χ2 of
name state vector units innovations

βNEE βNEE NA ecoregions 6 0.4
βRG0.0 βRESP, βGPP 0.0 ecoregions 11 0.7
βRG0.5 βRESP, βGPP 0.5 ecoregions 9 0.6
βRG1.0 βRESP, βGPP 1.0 ecoregions 6 0.3
βRGpixel βRESP, βGPP 0.0 pixels 62 0.3
Parameter βE0

, βRref
, βVm

, βaj 0.0 ecoregions 22 0.6
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Table 2. Summary of the differences between the FACEM biosphere model (“true”) and the
5PM biosphere model (a-priori). In our pseudo-data study these differences mimic the expected
structural differences between real CO2 fluxes and those simulated with a biosphere model, and
limit the performance of the inversions substantially.

A priori fluxes “True” fluxes

Resolution 10 km 6′

Landuse map Corine2000 SYNMAP
LAI MODIS-2006 MODIS-2008
Soil map UN-FAO* IGBP-DIS
Meteorology RAMS ECMWF
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Table 3. The performance of the six inverse methods expressed as the RMSD of the optimized
NEE time series compared to the truth, for the total domain and for each separated land use
class [µmol/m2/s].

Temporal RMSD of the NEE flux
Prior/ Inversion Domain Grass Crops1 Crops2 ENF DBF Rest
Posterior name total

Prior 2.7 2.9 2.9 3.1 3.7 4.0 3.4

Posterior βNEE 2.6 2.8 2.6 3.6 4.7 4.0 3.2
βRG0.0 2.0 4.5 2.0 3.5 2.9 4.0 2.5
βRG0.5 2.0 4.5 2.0 3.1 5.0 4.0 2.6
βRG1.0 2.4 5.6 2.3 3.9 4.0 4.0 3.2
βRGpixel 1.8 2.7 2.5 2.5 3.8 9.9 2.8
Parameter 2.1 3.2 1.9 2.0 3.5 5.8 2.9
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Table 4. The performance of the six inverse methods expressed as the RMSD of the time
series of the atmospheric CO2 mixing ratio related to the optimized NEE flux fields compared
to the pseudo observations (ppm). For the times the observations are used in the inversions
(daytime only) and for the total time series (all hours).

CO2 mixing ratio RMSE
Prior/ Inversion Daytime All hours
Posterior name only

Prior 2.6 4.3

Posterior βNEE 2.5 3.6
βRG0.0 1.1 6.0
βRG0.5 1.1 6.5
βRG1.0 1.9 4.2
βRGpixel 0.8 5.6
Parameter 1.6 2.8
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Table B1. Prior values of the parameters in the biosphere model for the different land use
classes.

Assimilation
V cmax α

µmol m−2 s−1 mol mol−1

Grass 70 0.4
Crops 100 0.4
Needle leaf forest 80 0.5
Broadleaf forest 100 0.5
Urban vegetation 80 0.4

Respiration
E0/R R10

K µmol m−2 s−1

All land use classes 200±110 4.0±1.2
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Fig. 1. The domain of the study showing the distribution of six different land-use categories
according to the Corinne database, as well as 4 locations where continuous, calibrated mea-
surements of CO2 are available (Cabauw, west; Lutjewad, north; Loobos, middle; Veenkampen;
east). The area displayed, shown as lat long on the x and y-axis is used in the RAMS meso-
scale transport model, and is resolved on 10×10 km spatial resolution.
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Fig. 2. The spatial distribution of the two-week average fluxes: top left: prior (from 5PM model);
top right: “true” flux (from FACEM model); the other pictures show the averaged posterior
estimates of the different inversion methods. Both sets of fluxes are used with hourly temporal
resolution.
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Fig. 3. The distribution of calculated NEE from 5PM given a Gaussian distribution of values for
four different parameters in the model. The figure shows the linear translation of for instance
Vm and Rref to a Gaussian shaped NEE distribution, and the non-linear response of α and E0.
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Fig. 4. True, prior and posterior NEE fluxes and its uncertainties for the different inversion
methods integrated for the whole domain or per land use class [10−7 mol/s].
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Fig. 5. Time series of aggregated true, prior, and posterior fluxes for the dominant land use type
in the domain, Crops1. The figure illustrates the different temporal behavior of each solution on
hourly time scales, leading to differences in two-week aggregated RMSD.
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Fig. 6. Spatial maps of the posterior flux residuals (true-minus-optimized fluxes) scaled by the
posterior standard deviation of the flux estimate. Green colors indicate that the true flux is within
±1 standard deviation of the estimated flux, yellow/light blue in dicate within 2 or −2 standard
deviation, respectively and orange/blue colors are outside this range. The figure shows the
general tendency of the inversions to be overconfident, because structural differences between
5PM and FACEM are not taken into account in the treatment of uncertainty.
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