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Abstract

Lindborg et al. (2010) claim that the spectrum power law E (k) ~ k=3 on scales > 600 km
obtained with the help of commercial jetliner trajectory deviations (GASP and Mozaic
databases) could not be brought into question (Lovejoy et al., 2009a), because this
spectrum corresponds to “a well known theory of quasi-geostrophic turbulence devel-
oped by Charney (1971)”. Lindborg et al. (2010) also claim that “limitations [of this
theory] have been relaxed in many of the modern models of atmospheric turbulence”.
We show that both claims are irrelevant and that generalized scale invariance (GSl) is
indispensable to go beyond the quasi-geostrophic limitations, to go in fact from scale
analysis to scaling analysis. This enables us to derive vorticity equations in a space of
(fractional) dimension D =2+ H, (0 < H, < 1), which seem to be an interesting dynami-
cal alternative to the quasi-geostrophic approximation and turbulence.

1 Introduction

The scale analysis methodology developed by Charney (1948) in his seminal deriva-
tion of the quasi-geostrophic (QG) approximation has become standard in meteorol-
ogy and oceanography (Pedlosky, 1979). Unfortunately, its common and distinguish-
ing features with respect to a scaling analysis have not yet been fully recognized. It
is ironical that the source of the present debate on medium and large scale atmo-
spheric dynamics presumably corresponds to the importation into meteorology of two
successive techniques from hydrodynamics at two different periods. In order to fo-
cus the present paper on this question and therefore on the limitations of the theory
of quasi-geostrophic turbulence (QGT, Charney, 1971) and show how to overcome
them, let us first reject the second claim of Lindborg et al. (2010), LTNCG hereafter,
that models may overcome limitations of a theory because in a very general manner
models are obtained by introducing further constraints into a given theoretical frame-
work, e.g. boundary conditions, discretization of partial differential equations, subgrid
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modeling and other parametrizations. Furthermore, these constraints in the unique
quasi-geostrophic model simulation (Tung and Orlando, 2003) cited by LTNCG were
such a problem that, as discussed below, they seem to have introduced spurious nu-
merical estimates of the scaling ranges, instead of relaxing limitations of the theory.

Before addressing QGT, we will first discuss a few fundamental features of the deriva-
tion of the QG approximation itself, as well as its motivation. We will gradually show
that to better understand the fundamentals of atmospheric dynamics a scaling analysis
is required instead of a scale analysis, which was the basic technique used by Char-
ney in his derivation. This enables us to obtain straightforwardly a vorticity equation
for a turbulence that looks two-dimensional at large scales, three-dimensional at small
scales, but is in fact of (fractional) dimension D=2+ H, (0 <H, < 1) at all scales. We
believe that this equation may satisfy those who asked for a dynamical alternative to
QGT.

2 QG vorticity equation and scale analysis

Before discussing the derivation of the QG approximation, let us highlight why this ap-
proximation has remained so much attractive and therefore popular. Historically, it was
the first mathematically self-consistent derivation of a closed dynamical system from
the diagnostic geostrophic and hydrostatic approximations. Furthermore, it respects
the conservation laws of potential temperature and absolute potential vorticity, at least
their corresponding first order expressions within the QG approximation. However, one
cannot forget that the derivation by Charney (1948) of this approximation was based on
a scale analysis, borrowed from aerodynamic boundary layer theory (Charney refers to
Goldstein, 1938) to intentionally filter out the “meteorologically insignificant wave com-
ponents” from the “meteorologically significant motions”. The latter were considered
to be distinguishable from all other types of atmospheric motion only by a great differ-
ence in scales. This question of filtering was essential for the sake of the pioneering
development of numerical weather forecasting (Charney et al., 1950) and a part of the
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paper by Charney (1948) was indeed devoted to checking that this filtering was effec-
tive for acoustic waves. Nevertheless, the more general question of which structures
were filtered out was not addressed. Another important requirement put forward by
Charney was also related to numerical forecasts: the approximation should be (eas-
ily) computable. It is worthwhile noting that neither issue is related to the question of
obtaining a rather complete description of the atmospheric dynamics.

The scale analysis performed by Charney was based on the common meteorological
practice idea that large scale dynamics were quasi-two-dimensional, quasi-geostrophic
and quasi-hydrostatic, due to the fact that the rotation Q and the gravitational field g of
the Earth introduce preferential directions in the Navier-Stokes equations:

Du/Dt+2Qxu=-Vp/p+g+vAu (1)

where u is the velocity, p the pressure, p the density, v the viscosity, D/Dt denotes
the material derivative, i.e. the time derivative following the motion (8/0t +u-V), V
denotes the 3-D gradient operator, A = Vv the 3-D Laplace operator. The velocity field
is assumed to be solenoidal (d/v(u) = 0), the mass conservation equation therefore
reads:

Dp/Dt=0 (2)

Although there is no fundamental difficulty in dealing with these equations in spher-
ical coordinates, or more generally in local manifold coordinates, it is usual, and in
agreement with other approximations done to derive the QG approximation, to approx-
imate Eq. (1) on the tangent space to the Earth a given point of longitude ¢, and
latitude 6,, with a vertical unit vector n:

Du/Dt+fnxu=-Vp/p+g+vAu (3)

where only the vertical component 7n of the Earth’s angular velocity is taken into ac-
count, f being the Coriolis parameter at the latitude 8,. Furthermore, the variation of
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f with respect to the south-north coordinate y = a(@ — 8,) (a being the Earth radius), is
usually linearized:

f(y)="fo+By; (fo.5) =2€(sinby,cosby) (4)

The scales of interest being much larger than those of the dissipation range, the
corresponding term will be omitted in the following (without excluding an effective
dissipation at small scales), i.e. the viscosity is considered as infinitely small or the
Reynolds number Re = UL /v =ZL?/v and the Ekman number £ = gL /Q as infinitely
large, where Z denotes the (relative) vorticity scale of the atmosphere, L the outer
scale of the horizontal fluctuations, U the corresponding scale of the (horizontal) ve-
locity. For infinitely small Rossby numbers Ro =2/Q , it has been argued that the
Navier-Stokes equations reduce to the (diagnostic) geostrophic balance equation with
the corresponding 2-D geostrophic solution:

2Qxu,=-Vp/p+g=>uy,=x(g-Vp/p)/(2Q%) (5)

The latter can furthermore be approximated with the help of Eq. (3) and of the stream
function y as:

ug=nxVy=Vxny;y=(p/0g-92)/1 (6)

the sub-index 0 of the (barotropic) hydrostatic density p,, as for other variables, refers
to a reference or background vertical profile, which can be understood as a time aver-
age of instantaneous profiles. The vertical variation of the stream function corresponds
to:

Oy /02 =0(p-po)/Pofedz =-0p/pofo02 (7)

The QG approximation corresponds to introducing a linear three-dimensional
ageostrophic perturbation (u,q,w) of order Ro to the zero-order two-dimensional
geostrophic solution (u,,0) and similarly for the relative vorticity ¢

u=(Uupw)=(Ugy,0)+(Uygw); ¢ =(0,{g)+{ag (8)
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The material derivative is systematically approximated by its geostrophic approximation
(V4 denotes the horizontal gradient):

D,/Dt=0/0t+u,-V, (9)

which, as emphasized by Charney, is much more manageable than the horizontal ma-
terial derivative (D,,/Dt = 8 /0t +u,-V}). In particular, D, /Dt is easily defined with the
help of the stream function y (J denotes the 2-D horizontal Jacobian):

Dy/Dt=08/0t+J(w, ) (10)

To derive the QG approximation, it is convenient to start from the vorticity equation
(the curl of Eq. (1), ® =2 + ¢ denotes the total vorticity):

D®/Dt=s+b; s=@-Vu; b=VpxV(p)/p? (11)

Whereas the baroclinic vector b is of second order in a quasi-baratropic flow, the
stretching vector s is of first order and non-zero contrary to strictly 2-D fluid motions
(including geostrophic motions), where the (vertical) vorticity and the (horizontal) ve-
locity gradient are orthogonal. For QG, the leading term is obtained as the product of
the (small) vertical gradient of the velocity by the (large vertical) vorticity component:

(C+fn)-Vu~fow/0z~1,0w/0z (12)

The series of approximations involved in Eq. (12) preserves a non-zero term, as in
3-D turbulence and contrary to 2-D turbulence. Nevertheless, this term is no longer
a source of nonlinear growth of vorticity. More precisely, the QG vorticity equation
corresponds to :

Dy(¢y+By)/Dt =1f,0w/0z (13)

There is a new and important step: the stretching term corresponds in the QG frame-
work to the advection of the quantity g called the pseudo potential vorticity (or QG
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potential vorticity) in reference to Ertel’s theorem. Indeed, it corresponds to its conser-
vation law:

D,q/Dt=0;q = ¢ +By - gfyd(p/Np,)/ 0z (14)

As recalled in the next section, this conservation law is fundamental for the QG dynam-
ics. This law is obtained by eliminating the vertical velocity w from the vorticity equation
(Eqg. 13) with the help of the the mass conservation approximated by:

D,p/Dt -wN?p,y/g =0; N? = gdLog(6,)/dz (15)

where N is the (mean) Brunt-Vaissala frequency defined with the help of the vertical
profile of the background potential temperature 6, which is assumed to be smooth see
(Pedlosky, 1979) for further discussion).

One reason for the enormous success of the QG approximation is that the pseudo
potential vorticity (Eq. 14) can be rewritten with only the help of the stream function y
(due to Eq.7):

q =AMy +By+0(f20w/N°02)/6z (16)
which together with Egs. (10), (14) yields a compact dynamical equation for the stream

function:

(8/0t+J(w, ) Ay + By +8(f;0w /N?02)/52) (17)

3 Scaling analysis of the QG approximation and QG turbulence

The fact that the domain of validity of the QG approximation is a priori restricted to large
scales does not prevent the possibility of studying the scaling behaviour of its solutions
on a wider scale range. However, it should not be forgotten that the results obtained
could be quite different from a direct scaling analysis of the original equation. This
question, which is particularly relevant for a quasi-linear approximation of a nonlinear
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system like QG, seems to be largely underestimated by LTNCG. Furthermore, this
type of approximation may hold over a given range of large scales only if the smaller
scale activity does not destroy the conditions of applicability of this approximation. This
requires in general a separation of scales that we will discuss below.

The fact that the QG vorticity equation (Eq. 13) can be transformed into a conser-
vation law of the pseudo potential vorticity (Eq. 14), similarly to the vorticity of 2-D tur-
bulence, enabled Charney (1971) to argue that QG turbulence (QGT) should display,
like 2-D turbulence, both downward enstrophy and upward energy inertial cascades
(Fjortoft, 1953; Kraichnan, 1967). More precisely, Charney claimed that there exists
a mathematical isomorphism between the 2-D relative vorticity and the 3-D quasi-
potential vorticity, although this is not straightforward as soon as the Brunt-Vaisala
frequency is variable along the vertical (Herring, 1980) because whereas QG involves
a 2-D advection operator, the advected quasi-potential vorticity is 3-D. Nevertheless,
this theoretical possibility has been rather confirmed with the help of analytical closures
(Herring, 2001, 1980; Salmon and Hendershott, 1978; Salmon, 1978) and numerical
simulations (McWilliams et al., 1994; Hua and Haidvogel, 1986; Vallis, 1985; Fu and
Flierl, 1978). However, Herring (2001) concluded that many questions remained open.
In particular, he mentioned the empirical finding by Lindborg (1999) that the the spec-

trum E (k) ~ k5/3 thought to be an inverse 2-D energy cascade by Gage (1979) and
by Lilly and Paterson (1983) was rather a direct cascade.

Contrary to the simulations by Hua and Haidvogel (1986) that involved a large num-
ber of layers, those of Tung and Orlando (2003), TO in the following, were performed
with only the help of a two-layer QG model (Welch and Tung, 1998). This model cor-
responds in fact to two 2-D-QG models weakly interacting through the vertical vector
potential gradient: the fundamental variables are the set of values of the velocity poten-
tial on the two layers. In any case, with only two layers, not much can be done about
either the boundary layer, therefore the boundary conditions, nor the horizontal /ver-
tical anisotropy. Therefore, LTNCG’s reference to this study is already questionable.
Furthermore, and as emphasized by TO, their goal was quite different: to generate a
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composite horizontal spectrum of the type Ak~%® + BKk® with the help of a model as
simple as possible, but with all the necessary elements. This model indeed gave some
numerical evidence in the direction of such a composite spectrum. However, this nu-
merical evidence was thoroughly criticized by Smith (2003) who convincingly pointed
out that the estimated “meso-scale” spectrum slope ~ 5/3 may well be spurious due to
an artificial build up of enstrophy (and therefore of energy) at the smallest explicit model
scales. This is due to the fact that the hyperviscous dissipation scale is not meridion-
ally resolved (TO used indeed a 10th power of the Laplace operator for small scale
dissipation). In any case, TO did not explain which model mechanism could generate a
forward energy cascade over the meso-scale, whereas there are two fundamental ob-
stacles to overcome. The first is that the QG approximation is fundamentally irrelevant
for the mesoscale range: all the necessary approximations are no longer justified (e.g.
the Rossby number becomes much larger than unity). Therefore, it remains unreason-
able to hope that some 3-D-like behaviour would occur over the mesoscale range in
the model, whereas it might occur in nature. Secondly, the directions of cascades can
be theoretically inferred from inviscid statistical equilibria of the systems (Kraichnan,
1971), which yield upward energy and downward enstrophy cascades for both 2-D and
QG turbulence. Therefore, we can safely conclude — contrary to LTNCG — that there is
neither theoretical argument nor model evidence in favour of two downward cascades.
Let us mention that the fact that pressure coordinates are commonly used in meteorol-
ogy — as advocated by LTNCG — does not prevent them from theoretically introducing
biases in statistical analyses because their possible dynamical significance strongly
depends on the validity of a number of approximations that we put above into question.

Furthermore, a QG model cannot give insights on the question of the separation of
scales that would ensure its own physical relevance. This separation of scales between
a 2-D regime and a 3-D regime, if it existed, could be easily destabilized by the vortex
stretching mechanism, and we have already discussed the fact that the QG approxi-
mation greatly modifies this term in the vorticity equation. More generally, small scale
3-D turbulence cannot be understood as only dissipating large scale structures by eddy
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viscosity, because it also generates larger scale structures by backscattering (Lesieur
and Schertzer, 1978) or renormalized forcing (Fournier and Frisch, 1983). The crucial
importance of the separation of scales for numerical weather forecasts was explicitly
stated and discussed by Monin (1972) and it explains why the concept of “mesoscale
gap”’(Van der Hoven, 1957) was so cherished during the early history of weather fore-
casting.

It is remarkable that Charney (1971) — as emphasized by Schertzer and Lovejoy
(1985a) — readily admitted the limitations of the QG approximation and expressed the
question of separation of scales in terms of temperature gradients that must remain
quite moderate. The limitation of scale separation must not be reduced to a problem
of boundary layer modeling as suggested by LTNCG, because this problem must be
solved over all horizontal levels.

4 Direct scaling analysis and Generalized Scale Invariance

To avoid the limitations induced by the QG approximation, we must proceed to a direct
scaling analysis of the Navier-Stokes equations. We first recall how it can be done,
when there is no rotation and/or gravitational field, in a formal manner which is both
more straightforward and more general than a spectral analysis. This corresponds
to analyzing how the equations could be invariant under a space contraction/dilation,
i.e. how the different fields (velocity, pressure, etc.) can balance at all scales. This
is therefore quite distinct from a scale analysis, where only a few relevant fields at a
given scale are preserved. This is obtained by analyzing the effect of a space con-
traction/dilation on each field, something that is classically done for isotropic space
contraction/dilation, whereas stratified and rotating flows require a generalization to
strongly anisotropic space contraction/dilations. This can be achieved in the frame-
work of Generalized Scale Invariance (GSI, Schertzer and Lovejoy, 1985b) with space
contraction/dilations that scale differently according to space directions. In the present
case, we want to reconcile the facts that vorticity at large scales is dominated by Earth’s
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rotation and that the nonlinearity of the vorticity equation generates scaling by trans-
ferring this large scale input over a wide range of scales. We are therefore led to a
generalization of the classical notion of spontaneous symmetry breaking. Let us recall
that the latter corresponds to the fact that solutions of a system having a given symme-
try, rotational symmetry for the vorticity equations, do not in general respect individually
this symmetry, whereas they usually do it statistically. A classical example is the buck-
ling of a cylindrical pillar under an increasing axial load: the pillar finally bends towards
some definite direction rather than to being cylindrically deformed. With the help of
such anisotropic space transforms, we generate a statistical break up of the statistical
rotational symmetry of the vorticity equations to obtain a new set of equations whose
symmetry corresponds to anisotropic scaling. As discussed below, to systematically
study the effect of space contraction/dilations, it is convenient to use the general notion
of a “pullback” transform of a field by these contraction/dilations.

When there is neither rotation nor gravitational field, the Navier-Stokes equations
(Eqg. 1) and the mass conservation equation (Eq. 2) are rotational invariant, as well as
formally invariant under isotropic contraction/dilation T, of the space for any arbitrary
scale ratio 1 (1> 1 for a contraction, 1 < 1 for a dilation):

x—Tx=x/ (18)

It suffices indeed to suitably renormalize/rescale the other variables by various powers
of this scale ratio 1:

tst /A us u /1 s £/ e oA™Y 0 /pAY (19)

defined by the singularities y,y’ of respectively u, p, see (Schertzer and Lovejoy, 2004)
for further discussion in particular on the question of the dissipation and forcing terms.
For a unique singularity y, the corresponding power spectrum is a power-law E (k) ~
k=" with the spectra slope (G =2y + 1, because it scales like u?/. One thus obtains the
celebrated Kolmogorov’s scaling of the velocity field for the (Kolmogorov’s) singularity
Y« = 1/3, which is defined by considering that the energy flux density e, which scales

3311

Jadedq uoissnosiq | Jadeq uoissnosiq |  Jadeq uoissnosig | Jaded uoissnosig

ACPD
11, 3301-3320, 2011

Quasi-geostrophic
turbulence and
generalized scale
invariance

D. Schertzer et al.

: “““ “““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/3301/2011/acpd-11-3301-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/3301/2011/acpd-11-3301-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

like u3//, is homogeneous and strictly scale invariant in the inertial range (Kolmogorov,
1941).

We are now looking for a generalization of this scaling analysis for anisotropic equa-
tions with the help of generalized contraction/dilation operators T,, which still form a
one-parameter multiplicative groupe (7, oT, =Tj.;), like in the isotropic case, and have
therefore a generator G. In the framework of linear GSI, which is also known under the
name of “operator scaling”, G and T, are matrices:

T, = exp(-GLogl) = A~¢ (20)

Obviously, G =/d (/d being the identity matrix) corresponds to the classical, scalar
scaling (Eq. 18). It is now very convenient to use the notion of a “pullback” transform
(or “composition operator” (Shapiro, 1993)) of a field u by a given space transform, here
a contraction/dilation 7. It is so general that it is often passed over without mention and
it can be just seen as a convenient and compact notation for the scaling of a given field.
As illustrated by Fig. 5, the pullback 7; corresponds to a straightforward generalization
to (infinite dimensional) functional spaces of the (contravariant) change of coordinates
on finite vector spaces:

VX T (u)(x) = u(Tyx) (21)

the composed function u(T,) pulls back the field v from the coordinates y to x, with the
“change of coordinates” y =T,(x) (for further discussion see (Schertzer et al., 2010)
although with an emphasis on the dual “pushforward” transform). This transform can
be extended for differential operators D:

VT (D)T;(f)=T,(Df) (22)
For instance, the pullback of the gradient operator V is:
. -1
nv)=71,'V (23)
3312
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due to the fact that the transform T is linear and is therefore its own Jacobian matrix.
To study the (possibly) anisotropy of atmospheric dynamics, it is sufficient to consider
a diagonal generator under the following form:

G=diag(9,);91=92=19s=H,=1-h (24)

with an exponent 0 < H, < 1 that defines the anisotropy of T,. For instance, H, = 0 cor-
responds to a (scaling) 2-D flow, H, = 1 to a 3-D (isotropic scaling) flow, and more gen-
erally intermediate values to a (2 + H,) — dimensional (anisotropic) scaling flow. Now, a
generalized scaling of the field u(x,t) is defined by the fact that its pullback transform
T; corresponds to a (possible random) generalized contraction with a generator I':

Tru=1"u (25)

The simplest case corresponds to the fact that both generators G and I' commute, i.e.
are diagonal on the same vector base. We consider the following particular case:

[=diag(y,);V1=Y2=V:¥s=Vv+h (26)

where y is a given (scalar) singularity. To give a concrete example of interest, let us
consider the scaling model of stratified atmosphere based on the conservation (i.e.
strict scale invariance) of the energy flux along the horizontal and of the buoyancy
force variance flux along the vertical (Schertzer and Lovejoy, 1984, 1985b). These
conservation laws single out respectively the Kolmogorovs singularity y, = 1/3 and the
Bolgiano-Obukhov singularity ygo = 3/5. The latter is obtained similarly to the former,
but for a flux that scales like ug’//5 (Bolgiano, 1959; Obukhov, 1962). Note that these
scaling exponents were both obtained assuming homogeneous and isotropic fluxes,
whereas Schertzer and Lovejoy considered heterogeneous and anisotropic fluxes. In
this anisotropic framework the theoretical value H, = 5/9 of the exponent of anisotropy
merely results from the correspondence between the singularities of Kolmogorov and
Bolgiano-Obukhov: y, =1/3=H,-ygo.
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The choice of having the same h in Egs. (24), (26) makes, independently of its value,
not only scale invariant the incompressibility condition, but the advection term and the
material derivative have furthermore the same scalar scaling:

Ti(u-V)=A"*'u.V;T;(D/Dt)=1"*'D /Dt (27)

The pullback is more involved for the vorticity (V = (84,0,,03), u = W', u? u®):
Ao, - 17" 0,07
T =" A"05u' -2"0,u° (28)
04 uP - (92u1
which in turn yields the pullback of the stretching vector:
A0,u20,u" - 0,u20,u") + 17" (0,uP05u" - B5U°0,u")
T:(s) = 2200 | 27(0,u°0,u% - 8,uP0,u%) + 27" (05U 0,7 - B,u" 05U7) (29)
04 u263u3 - 63u261 U+ 03u1 02u3 - 62u1 83u3
Due tot the fact that the vorticity equations should be satisfied for any A, which inter-

venes with three distinct exponents, we obtain the following set of dynamical equations
(not yet taking into account the baroclinic vector) :

Do,u3 /Dt = 8,u%0,u" - 0,uPd,u’
~Dd3u? /Dt = 0,uPB5u" — 8,u%0, U
—D0,u3/Dt = 0,uP0,u? - 0,uP,U>
DOyu' /Dt = 84u' 0,1 - 01" 052
D(81u? = 8,u") /Dt = 8,uP04u° - 05120, u" + 05u" B,u° — B,u' B5U° (30)
which corresponds to a partial decoupling of the 3-D vorticity equations that read:
D(8,u® — 85u?) /Dt = 0,u%0,u" - 0,uP0,u" + 0,uPB5u" — 8,20, U
D(85u" = 8,u3) /Dt = 03u" 0,1 — 01" 032 + 0,uP 01 UP — B1UPB,UP
D(81u? = 8,u") /Dt = 8,uP04u° - 05u20,u" + 05u" B,u° — B,u' B5U° (31)
3314
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i.e. the anistropic scaling splits the dynamical equation of each horizontal vorticity com-
ponent into two dynamical equations of a velocity gradient. This corresponds to the
introduction of new constraints, i.e. solutions of Eq. (30) are, as they should be, a sub-
set of solutions of Eq. (31) that are invariant under the pullback transforms defined by
Egs. (24), (26). Overall, solutions of Eq. (30) are the solutions of Eq. (31) that statisti-
cally respect the anisotropic scaling prescribed by Eq. (24), (26) and statistically break
the isotropic scaling of Eq. (31). These solutions corresponds to an alternative to QGT:
they share the common boundary condition that vorticity is dominated by Earth’s rota-
tion at large scales, but contrary to QG the transfer of the vorticity to smaller scales is
obtained with the help of a nonlinear stretching term, contrary to the QG approximation
(Eq. 12).

With respect to Eq. (30), there are obviously many questions to be explored, e.g.: do
their solutions exist for any value of the exponent H,, does the theoretical value H, =
5/9 play a special role? However, these questions are beyond the scope of our reply
to LTNCG’s arguments. Presently, let us mention that the baroclinicity can be taken
into account at all scales in Eq. (30). Indeed, the baroclinic vector has the following
pullback:

T:(b) =221 by, 17" by, bg) (32)
which has an opposite behaviour to that of the potential vector y :
T w) =2 (A"yy, 2"y, ) (33)

which corresponds to the expected phenomenology: to be aligned along the vertical
for large scales, whereas it is no longer the case for smaller scales.

5 Conclusions

We believe that the critical analyses of the scale analysis leading to the QG approx-
imation (Sect. 2) and of the scaling analysis of the resulting QGT (Sect. 3) rule out
3315
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LTNCG’s claim that the scaling laws of atmospheric dynamics could not be put into
question because they should correspond to QGT predictions. Beyond this preliminary
clarification, we furthermore put forward an alternative to the QG approximation that
reconciles the facts that Earth’s rotation dominates vorticity at large scales and that
the vorticity stretching nonlinearly transfers this large scale input over a wide range of
scales in a scaling manner. Indeed, by introducing a statistical anisotropic break of the
statistical isotropic scaling of the vorticity equation, we obtain a new set of equations
whose solutions correspond to this alternative. Whereas much remains to be done
about these equations, the already known statistical behaviour of their solutions would
correspond to an atmospheric turbulence of dimension D =2 + H, over a wide range of
scales, which seems to result from the application of 'Occam’s Razor’ applied to today
large quantity of unbiased atmospheric data. In this direction, we need to emphasize
that - contrary to LTNCG to subsume potential with kinetic energy does not solve the
problem of addressing the vertical statistics. Indeed, the naive scaling exponents, i.e.
without including intermittency effects or logarithmic corrections (Kraichnan, 1967) are
obtained by arguments a la Kolmogorov (1941) that are ultimately based on dimen-
sional analysis of the relevant fluxes. Therefore in order to get different horizontal and
vertical scaling exponents (scaling anisotropy) one needs to consider a vertical turbu-
lent flux with physical dimensions different from energy. The theoretical choice of the
buoyancy force variance flux (Schertzer and Lovejoy, 1984, 1985b) still seems rea-
sonable, although it was a bit bold when first proposed. Indeed, since the pioneering
studies of Adelfang (1971) and Endlich et al. (1969) and especially since the 1980s,
there has been a growing body of evidence that the scaling is indeed anisotropic with
at least roughly the predicted exponents, see the numerous references cited in our
previous comment (Lovejoy et al., 2009b).
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Fig. 1. Scheme of the “pullback” T; that pulls back the field u from the coordinates y to x with
the help of the (anisotropic) space contraction/dilation T,.
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