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Abstract

In situ measurements of aerosol optical properties were made in the summer of 2008
at the ALOMAR station facility (69◦16 N, 16◦00 E), located at a rural site in the north of
the island of Andøya (Vesterålen archipelago), approximately 300 km north of the Arctic
Circle. The extended three-month campaign was part of the POLARCAT Project (Polar5

Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate,
Chemistry, Aerosols, and Transport) of the International Polar Year (IPY-2007-2008).
Its goal was to characterize the aerosols of this sub-Arctic area, which are frequently
transported to the Arctic region. The ambient light-scattering coefficient, σs (550 nm),
at ALOMAR had a measured hourly mean value of 5.41 Mm−1 (StD=3.55 Mm−1), and10

the light-absorption coefficient, σa (550 nm), had a measured hourly mean value of
0.40 Mm−1 (StD=0.27 Mm−1). The scattering/absorption Ångström exponents, αs,a,
are used for a detailed analysis of the variations of the spectral shape of σs,a. Whereas
αs demonstrates the presence of two particle sizes corresponding to two types of
aerosols, the αa demonstrates only one type of absorbing aerosol particles. Values15

of αa above 1 were not observed. The single-scattering albedo, ω0, ranged from 0.62
to 0.99 (mean=0.91, StD=0.05), and the relationships of this property to the absorp-
tion/scattering coefficients and the Ångström exponents are presented. The concen-
tration of the particles was monitored using a scanning mobility particle sizer (SMPS),
an aerodynamic particle sizer (APS) and an ultrafine condensation particle counter20

(UCPC). The shape of the median size distribution of the particles in the submicrome-
ter fraction was bimodal, and the submicrometer, micrometer and total concentrations
presented hourly mean values of 1277 cm3 (StD=1563 cm3), 1 cm3 (StD=1 cm3) and
2463 cm3 (StD=4251 cm3), respectively. The modal correlations were investigated,
and the concentration of particles sized between 30 and 100 nm (Aitken mode) are25

presented as a function of the concentration of the particles sized between 100 and
390 nm (accumulation mode). The optical and the microphysical parameters are re-
lated to each other, and the results are presented. The origins and pathways of air
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masses were examined by computing the back-trajectories in a trajectory model (HYS-
PLIT). Six geographical sectors were defined to classify the air masses, and, based
on the sector classification, the linkage between the air mass origin and the optical
parameters was established. Aerosol size distributions were also evaluated in relation
to the air masses. The relationships between the air mass origins and other parame-5

ters, especially those related to the single scattering albedo, allow us to describe two
characteristic situations: northern and western air masses, which had predominantly
marine aerosols, presented lower optical parameter values, indicating predominantly
coarser and non-absorbent particles; and eastern and southern air masses, in which
continental aerosols were predominant, presented higher values for all optical param-10

eters, indicating the presence of smaller absorbent particles.

1 Introduction

The net effect of aerosols on global climate change is uncertain because the particles
involved can cause cooling or warming, depending on their optical properties. The
reduction in the intensity of a direct solar beam during its propagation through the15

atmosphere is determined by both absorption and scattering processes. The aerosol
single-scattering albedo, ω0, is defined as the fraction of the aerosol light scattering
over the extinction:

ω0 =
σs

σs+σa
, (1)

where σs and σa are the aerosol scattering and absorption coefficients, respectively. ω020

is one of the most relevant optical properties of aerosols, because the direct radiative
effect of aerosols is very sensitive to this parameter. The optical properties of aerosol
particles suspended in the atmosphere are determined by their chemical composition,
size, shape, concentration and state of mixing and generally exhibit great spatial and
temporal variability (Kokhanovsky, 2008).25
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Sulfate and nitrate aerosols from anthropogenic sources are considered the primary
particles responsible for net cooling. They scatter solar radiation and are effective as
cloud condensation nuclei that affect cloud longevity and the hydrological cycle and
result in a negative radiative forcing that leads to a cooling of the Earth’s surface. To
some extent, sulfate and nitrate aerosols are thought to counteract global warming5

caused by greenhouse gases such as carbon dioxide (Boucher and Haywood, 2001).
Sea-salt and non-sea-salt sulfate have been reported as dominating the light scatter-
ing effect in the Arctic (Quinn et al., 2002). Previous papers studying the Arctic have
also reported the occurrence of large concentrations of biogenic scattering aerosols
derived from the oxidation of atmospheric dimethylsulfide, which results from oceanic10

phytoplankton processes (Quinn et al., 2002). It has also been suggested that the or-
ganic species play important roles in aerosol light scattering (Quinn et al., 2002) and
are an important component in general of Arctic aerosols (Quinn et al., 2002; Ricard
et al., 2002a,b; Leck and Bigg, 2005).

On the other hand, light-absorbing particles, mainly formed by black carbon pro-15

duced by the incomplete combustion of carbonaceous fuels, are effective absorbers
of solar radiation and have the opposite effect, i.e., they warm the atmosphere. Ab-
sorption of solar radiation by aerosols causes heating of the lower troposphere, which
may lead to altered vertical stability and has implications for the hydrological cycle (Ra-
manathan et al., 2001). In addition, the deposition of light-absorbing particles onto20

snow and ice reduces the surface albedo, which, in turn, affects the snow pack and
the Earth’s total albedo (Law and Stohl, 2007; IPCC, 2007). Clarke and Noone (1985)
found that snow albedo is reduced by 1–3 % in fresh snow and by a factor of 3 as the
snow ages and the light-absorbing particles become more concentrated. The Arctic
summer provides an excellent environment for studying remote background aerosols,25

as there are few sources of natural particles and few local sources of anthropogenic
particles.

Data can only be retrieved from satellites operating in clear sky conditions and are
mainly valid over dark targets; few satellites retrieve valid data over bright land and
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snow/ice surfaces. In addition, the optical properties of aerosols are much more vari-
able at the Earth’s surface than at the top of the atmosphere, making the estimations
much more difficult (Li et al., 2007). Whereas columnar aerosol properties have been
studied (Toledano et al., 2006), no surface measurements appear to have been re-
ported on these important optical properties of aerosols in the area of our study.5

In addition, measurement of the numerical size distribution can be used to infer the
aerosol sources. For example, the presence of coarse modes can be due to mechan-
ical generation processes, and the presence of ultrafine modes can be due to the
formation of new particles. For a given location, this information is useful for under-
standing the local aerosol and its relation to the sampled air mass. Previous works10

(Birmili et al., 2001; Tunved et al., 2005) have observed that different size distribution
properties are related to the origin of the air masses.

This study was conducted within the framework of a larger intensive aerosol char-
acterization campaign conducted in Northern Norway at a remote subarctic site in the
summer of 2008. The main goal of the campaign was to comprehensively characterize15

the local aerosols, and the campaign was conducted by the Atmospheric Optics Group
of Valladolid University as part of the International Polar Year through the POLARCAT
project. Several instruments for aerosol characterization were employed simultane-
ously: the aerosol radiative properties were examined using a particle soot absorption
photometer (PSAP) and a nephelometer; a scanning mobility particle sizer (SMPS)20

and an aerodynamic particle sizer (APS) were used to obtain the numerical size distri-
bution in the fine and coarse particle fractions, respectively; an ultrafine condensation
particle counter (UCPC) was used to obtain the total concentration of the particles; and
a cascade impactor with four stages allowed for independent determination of absorp-
tion coefficients using an integrating sphere technique (Montilla et al., 2011). Finally,25

we must mention that the measurement site belongs to the AERONET network, and
hence, the columnar aerosol data are also readily available (Rodŕıguez et al., 2011)
and were used as complementary information.
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In the present study, the results from aerosol absorption and scattering measure-
ments and the numerical size distributions are presented. We analyze the absorp-
tion/scattering coefficients and their Ångström exponents, αa, αs, together with the
single-scattering albedo. The Ångström exponents are described using an exponential
fit, λα, which describes the dependence of the optical parameters on the wavelength.5

The determination of optical parameters as a function of wavelength is useful to dis-
tinguish between various aerosol types. For example, Rosen et al. (1979) measured
αa =1.0 for urban aerosol, Bond (2001) studied the spectral dependence of visible light
absorption by carbonaceous particles emitted from coal combustion and found a strong
spectral dependency, 1.0<αa <2.9, and Mogo et al. (2005) took similar measurements10

at a coastal site in Southern Spain and found that 0.2<αa < 2.0 for the visible range
of the spectrum and that 0.2<αa < 2.5 for the UV range. High spectral resolution data
are also presented for this campaign in ALOMAR by Montilla et al. (2011). αs can be
used to infer information regarding the size of the particles as it relates inversely to
particle size (Russell et al., 2010). Pereira et al. (2011) observed αs = 1.4 for aerosols15

dominated by sub-micrometer particles, and Collaud Coen et al. (2004) observed αs to
be lower than 0.5 during Saharan dust events measured at Jungfraujoch. The wave-
length dependence of ω0 is also influenced by various aerosol species. Dubovik et al.
(2002) found that for urban-industrial aerosols and biomass burning, ω0 decreases
with increasing wavelength, whereas for desert dust, ω0 increases with increasing20

wavelength (Collaud Coen et al., 2004). This wavelength dependence inversion can
be explained by the greater size of the particles of desert dust, causing the scattering
process to be dominated by geometric processes that are wavelength independent.
Furthermore, some dust particles (such as hematite) are strong absorbers, and the
increase of absorption together with the decrease of scattering can also contribute to25

the change of the slope of ω0 from positive to negative.
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2 Methods

2.1 Site description

The ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) station is
located on Andøya island close to the town of Andenes (69◦16 N, 16◦00 E, 380 m a.s.l.)
on the Atlantic coast of Norway, approximately 300 km north of the Arctic Circle, Fig. 1.5

The facility is managed by the Andøya Rocket Range, and the site is well-suited for
measurements of remote background aerosols due to the absence of large regional
pollution sources. From the end of May to the end of July, the sun is above the horizon
for 24 h each day, with a maximum elevation during the solstice of 42◦ at noon and 2◦

at midnight. The climate is strongly influenced by the Gulf Stream, which provides mild10

temperatures during the entire year; average temperatures are −2 ◦C in January and
11 ◦C in July. Rapid variations in temperature can occur the in summer months, from
4◦ to 30 ◦C. During our measurement period, the daily average temperature was 7.1 ◦C,
with a minimum of 2.5 ◦C (15 June), a maximum of 15.4 ◦C (20 July) and a standard
deviation of 2.9 ◦C. The relative humidity level was high across the study period, with15

an average of 92.8 %. The minimum humidity level was 62 %, the maximum humidity
level was 100 % and the standard deviation was 9.0 %. The surface wind pattern was
oriented mainly south-southwest (27 % of occurrences), but an east-northeast com-
ponent was also frequently registered (22 %). Other frequent wind directions were
south-southeast (16 %), west-southwest (15 %) and east-southeast (13 %). The aver-20

age wind speed was 5.6 km h−1 (with a minimum, maximum and standard deviation
of 2.1, 13.1 and 2.4 km h−1, respectively). Further details regarding the measurement
station can be found in Skatteboe (1996) and Toledano et al. (2006).

2.2 Instrumentation

Aerosol samples were obtained from a stainless steel inlet protected with a rain cap25

and a metal screen designed to exclude insects. The inlet of the sampling line was
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approximately 2 m above the roof of the measurement station building, which was ap-
proximately 7 m above the ground. The cut-off diameter of the inlet nozzle and sample
transport line was approximately 10 µm. The sample air was heated when necessary
to achieve a low relative humidity of 40 % prior to entering the instruments. Airflow
through the sampling line was divided into several separate flows and directed to indi-5

vidual instruments. The flow to each instrument was controlled once a day using an
electronic bubble flowmeter (Gilibrator system, Gilian).

The light absorption coefficients were measured at three wavelengths (470, 522 and
660 nm) using a particle soot absorption photometer (PSAP, Radiance Research) at
a flow set to 1.5 l min−1. The instrument uses a filter-based technique in which aerosols10

are continuously deposited onto a glass fiber filter at a known flow rate. The change
in the transmitted light is related to the optical absorption coefficient using Beer’s law.
The instrument is an improved version of the integrating plate method (Lin et al., 1973)
and is described in detail by Bond et al. (1999) and Virkkula et al. (2005).

The scattering and backscattering coefficients were measured at three wavelengths15

(450, 550 and 700 nm) using an integrating nephelometer (model 3563, TSI) at a flow
rate of 46 l min−1. The instrument is described in detail by Anderson et al. (1996) and
Anderson and Ogren (1998). Calibration was conducted twice per month using CO2
as the high-span gas and filtered air as the low-span gas. The averaging time was set
to 1 min. The zero signal was measured once per hour. The data was corrected for20

truncation errors according to Anderson and Ogren (1998). For the 1-min averages,
the detection limits for the scattering coefficients were 0.65, 0.25 and 0.38 Mm−1 for
450, 550 and 700 nm, respectively (Anderson et al., 1996).

The numerical size distributions of dry particles were measured separately for the
fine and coarse fractions using a scanning mobility particle sizer (SMPS) and an aero-25

dynamic particle sizer (APS, model 3321, TSI), respectively. The SMPS consists of
a differential particle size classifier (model 3080, TSI) and a condensation particle
counter (model 3022A, TSI) and was operated at a flow rate of 1.5 l min−1; the num-
ber of particles in the size range ∼ 10–390 nm (mobility diameter) were detected. The
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APS was operated at a flow rate of 5 l min−1, and it was set up to detect the number
of particles in the size range from 0.5 up to 20 µm (aerodynamic diameter). However,
our inlet system had a cut-off diameter of 10 µm. The total particle concentration in
the range 3–10 000 nm was monitored using an ultrafine condensation particle counter
(model 3776, TSI). According to the manufacturer, this instrument detects particles as5

small as 2.5 nm. It was operated in high-flow mode (1.5 l min−1) to minimize diffusion
losses.

The upper boundary of the size range for the SMPS data was selected to be 390 nm
to achieve a better resolution for the lower particle size channels to study possible
nucleation events. This option prevented us from merging the SMPS and the APS10

data because of the gap between the upper channel of the SMPS, 390 nm, and lower
channel of the APS, 500 nm.

2.3 Data processing

The response of the PSAP depends on the loading of particles on the filter, the amount
of light scattered by the particles, the flow rate and the spot size (Bond et al., 1999;15

Virkkula et al., 2005). The data were corrected for these dependencies using the pro-
cedure described by Bond et al. (1999). The averaging time used was 60 s, and the
filter was replaced whenever the amount of transmitted light reached 70 % of the initial
intensity. As the algorithms presented by Bond et al. (1999) and Virkkula et al. (2005)
agreed with the higher ω0 and the smaller σa, and as no other values of σa > 6 Mm−1

20

were observed at ALOMAR during the measurements, there was no need to apply the
correction procedure proposed by Virkkula et al. (2005).

The corrected aerosol absorption coefficients at 470, 522 and 660 nm were extrapo-
lated to the working wavelengths of the nephelometer, i.e., 450, 550 and 700 nm.

We prefer not to present the backscattering results, as the values obtained were25

below the error threshold.
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To investigate the wavelength dependence of σa,s, we calculated the absorp-
tion/scattering Ångström exponent. This parameter is commonly used when conduct-
ing a more detailed analysis of the variations of the spectral shape of σa,s and is de-
fined as the negative slope of the logarithm of the absorption coefficient as a function
of wavelength. It is given by:5

σa,s =Kλ−αa,s . (2)

In practice, we calculated αa,s(λ1,λ2,...,λn) for more than two wavelengths through the
logarithmic fit of Eq. (2), and we calculated αa,s(λ1,λ2) for a pair of wavelengths, λ1,λ2,
according to the following simplified formula:

αa,s =−
log(σa,s(λ2)/σa,s(λ1))

log(λ2/λ1)
. (3)10

The aerosol size distribution observations were made on the timescale of minutes,
and twelve measurements were conducted per hour. For the SMPS, we describe the
total concentration and the concentrations N30−50, N50 and N100 as follows:

N30−50 =
50∑
30

ni ; N50 =
390∑
50

ni ; N100 =
390∑
100

ni (4)

where ni is the measured aerosol number concentration in the size interval considered.15

The cut-off diameters of 30, 50 and 100 nm were selected according to the criteria
presented by Asmi et al. (2011). The nucleation, Aitken and accumulation modes are
also fully described. For the APS, we describe the shape of the distribution and the
total concentration. For the UCPC instrument, the total concentration is presented.

Data from 13 June to 26 August, 2008 were available. The statistical data for all20

instruments were calculated based on the hourly averages, which appeared reason-
able given the low values observed. The hourly averages were preferred to the daily
averages because they were more sensitive to local effects, whereas the daily aver-
ages were more useful in identifying external long-range effects. The hourly value was
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accepted when six or more 5-min values were available. The overall data coverage
was approximately 72 % due to the weather conditions, and this value is considered
adequate for determining the main features of optical properties and concentrations of
the aerosols.

3 Results and discussion5

3.1 Temporal variations in aerosol optical properties

The aerosols sampled at ALOMAR during the 2008 summer campaign were represen-
tative of an extremely clean area. During our observations, hourly mean σs at 450,
550 and 700 nm ranged from 0.29 to 31.24 Mm−1, 0.25 to 23.21 Mm−1 and 0.19 to
18.95 Mm−1 (average 7.31, 5.41 and 4.08 Mm−1 with standard deviations of 4.79, 3.5510

and 2.84 Mm−1), respectively. The hourly mean values of σa at 450 nm, 550 nm and
700 nm ranged from 0.14 to 2.72 Mm−1, 0.13 to 2.28 Mm−1 and 0.12 to 1.92 Mm−1

(average 0.45, 0.40 and 0.36 with standard deviations of 0.33, 0.27 and 0.23 Mm−1),
respectively. For both parameters, the median value was lower than the mean. The
range of the values of σs was ten times larger than the range of the values of σa. Sta-15

tistical data regarding the σs and σa values are presented in Table 1, and a time series
representing over 70 days of measurement is shown in Fig. 2.

1166 hourly means were available for σs, and 1046 were available for σa, which al-
lowed for the calculation of 883 hourly values of ω0. The frequency histogram of σs,
σa and ω0 at 550 nm, shown in Fig. 3, presents only one frequency mode, centered20

at 3 Mm−1, 0.3 Mm−1 and 0.95, respectively, for each parameter. Although the mag-
nitude of σs and σa depend on many factors, our results, when compared with the
literature values for other areas and Table 1, suggest that the magnitude of the aerosol
scattering/absorption coefficients at ALOMAR were comparable to those in other polar
regions, such as those presented by Delene and Ogren (2002) and Quinn et al. (2007)25

at Barrow and Aaltonen et al. (2006) at Pallas.
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Correspondingly, the hourly mean values of the ω0 parameter measured at ALOMAR
presented average values of 0.93, 0.91 and 0.89 at 450 nm, 550 nm and 700 nm, re-
spectively. Values ranged from 0.60 to 0.99, 0.62 to 0.99 and 0.50 to 0.99, respectively
(see Fig. 2 and Table 1). The lowest value registered was 0.62 (550 nm); but, in fact, ω0
was observed to vary mainly between 0.80 and 0.99, as seen in Fig. 2 and confirmed5

by the value of the median, 0.92, and the P25, 0.89 (550 nm) (see also Fig. 3). These
values lie in the range presented for polar regions by several authors as compiled by
Tomasi et al. (2007).

The measured spectral series of σs and σa were used to derive the corresponding
values of the scattering and absorption Ångström exponents following the best-fit pro-10

cedure based on Eq. (2). The Ångström exponents calculated for the 450 nm/700 nm
wavelength pairs lay in the range between 0.20 and 3.07 for scattering and in the range
between 0.01 and 0.97 for absorption. The observation of αa values below 1 are an
interesting characteristic of the local absorbent particles and has previously been pre-
sented by Montilla et al. (2011). Statistical properties of the hourly mean values of15

the calculated parameters are presented in Table 1 and show mean values of 1.37
and 0.40, respectively. In both cases, the median value is lower than the mean. The
standard deviations are 0.61 and 0.21, respectively. Figure 4a shows the hourly mean
Ångström exponent values for the 450 nm/700 nm wavelength pair covering the entire
measurement period.20

The frequency histograms of αs and αa are shown in Fig. 4b,c. The histogram for
αa presents only one frequency mode, centered at 0.35, whereas the histogram for αs
presents two modes, centered at 0.7 and 1.9. Whereas the absorption Ångström expo-
nent lies in the range presented for other polar regions (Tomasi et al., 2007; Aaltonen
et al., 2006), the scattering Ångström exponent presents a few high values that are25

more typical of sites affected by urban or continental pollution (Vrekoussis et al., 2005;
Lyamani et al., 2008). These values may be due to long-range transport episodes from
Southern Europe.
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We also analyzed the spectral dependence of the single-scattering albedo because
this parameter, αω0

, is known to be very sensitive to the composition of the particles.
For the 450 nm/700 nm wavelength pair, αω0

was found to range between −0.11 and
0.95 (with a mean value and a standard deviation of 0.09). The high standard deviation
of this parameter within its range of values indicates that a large variety of aerosol5

types is present at ALOMAR during the summer. The observed negative values are
due to desert aerosol air masses that reach the ALOMAR station. These rare events
are usually weak and of short duration because desert aerosols have to travel across
Europe to reach the ALOMAR station. One or two of these events, of 1–2 days in
duration, are observed every summer (Rodŕıguez et al., 2011). These events were10

confirmed by data from the CIMEL sun photometer (part of the AERONET network)
located at the station. Back trajectories and MODIS images were analyzed and also
confirmed the dust events.

3.2 Particle number concentrations in various size ranges

In this section, we first independently present the characteristics of each particle size15

range and then analyze the relations between these ranges.
The average hourly concentration for the submicrometer particles (10–390 nm) was

1277 cm−3, with a standard deviation of 1563 cm−3. The average value for the con-
centration of micrometer-sized aerosols (0.5–10 µm) was 1 cm−3, with a standard de-
viation of 1 cm−3. The average number concentration measured for the total range (3–20

10 000 nm) is 2463 cm−3, with a standard deviation of 4251 cm−3. The submicrometer
range is further investigated for the ranges 30–50, 50–390 and 100–390 nm. The av-
erage number concentrations and their standard deviations are 258 cm−3 (355 cm−3),
469 cm−3 (516 cm−3) and 183 cm−3 (209 cm−3), respectively. The concentration per-
centiles are tabulated with their respective mean values in Table 2. ALOMAR has25

slightly higher results for the aerosol number concentration in the size sections N30−50
and N50 but slightly smaller concentrations for N100 than those measured in the sam-
pling study of Asmi et al. (2011) conducted at the Pallas station, which is located at
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almost the same latitude as ALOMAR but at a remote continental area in Northern Fin-
land. However, our concentration N100 comprises the size range 100–390 nm, whereas
that of Asmi’s comprises the size range 100–500 nm; therefore, the slightly smaller
value for N100 registered in ALOMAR may not be a fair comparison. The numerical
size distribution level exhibits the same range of values for the section N30−50 at ALO-5

MAR as at Birkenes, which is located in Southern Norway, but the values recorded at
Birkenes for N50 and N100 are almost double those registered at ALOMAR. However,
the numerical size distributions across all sections at the Arctic station of Zeppelin,
located in the Svalbard Islands, are half of the values recorded at ALOMAR.

A plot of the particle numerical size distributions measured for the submicrometer10

particles is presented in Fig. 5 and illustrates the temporal evolution for all campaign
days. On the same figure, we also show the aerosol numerical concentrations of nu-
cleation, Aitken and accumulation mode particles (30 nm and 100 nm are used as the
cut-off values of the diameters between the modes). It is possible to identify three types
of periods that are connected to the weather conditions: (1) clean conditions with very15

low concentrations of particles, usually associated with periods after rain; (2) periods
with a small increase in the total concentration and rapid variations of the concentra-
tions; and (3) periods when nucleation events occur, typically associated with sunny
days with higher temperature and lower humidity.

The six-day period from 27 June to 2 July was selected for further analysis be-20

cause it exemplifies the first situation, “clean conditions”. In the days preceding this
period, it had rained, and after the rain stopped, the nucleation, Aitken and accumu-
lation mode concentrations presented average values of 176, 443 and 239 cm−3, re-
spectively. These measures were considered the background values for the ALOMAR
station.25

The period from 28 July to 1 August exemplifies of the second situation described.
Very rapid variations in the numerical concentrations were observed during this period,
with the three modes maintaining the high mean values of 1186, 647 and 460 cm−3,
respectively.
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The observed nucleation events caused the total particle concentration to increase
from several hundred particles cm−3 to over 1000 particles cm−3. The criteria for iden-
tifying nucleation events are based upon observations of the rapid growth of parti-
cles from 10 nm to larger sizes in a relatively short time, forming a banana-shaped
growth curve in the surface plot. An example of a typical particle formation event mea-5

sured at ALOMAR took place on 20 July. At 7:00 UTC, newly formed particles with
diameters of less than 30 nm increased in numerical concentration until the nucleation
mode reached 3912 cm−3. After that value had been achieved, the particles grew at
a rate of a few nm h−1, reaching sizes of between 30 and 100 nm by evening and sizes
larger than 100 nm by nightfall. The Aitken mode reached a maximum of 2580 cm−3 at10

17:00 UTC, and the accumulation mode reached a maximum of 928 cm−3 at 01:00 UTC
on 21 July.

The median size distribution for all campaign days is presented in Fig. 6, showing
the median, 16th and 84th percentiles of each measured size section. A bimodal
shape is observed for the submicrometer fraction. The Aitken mode, which is rather15

flat for diameters from 40 to 50 nm, has a maximum concentration of 627 cm−3. The
accumulation mode occurs for diameters from 140 to 170 nm and has a maximum
concentration of 260 cm−3. The APS data show a small mode at 3300 nm for the coarse
fraction, Fig. 6b. The ratio between the Aitken and accumulation modes, N30−100/N100,
remained mostly above 1 throughout the campaign, ranging from 0.15 to 161.52, with20

an average of 4.47 (StD=7.67). The relation between the Aitken and the accumulation
modes was investigated by examining the concentration of particles between 30 and
100 nm as a function of N100 concentrations, Fig. 7. The N values are concentrated
mainly in a grouping between 100 and 1000 cm−3. According to Asmi et al. (2011), the
shape of the scatter density contour can be interpreted as a characteristic feature of25

the station, and comparison of our findings with their work demonstrates that the data
from ALOMAR presents similar behavior to those of the other Nordic stations.

Further comparison of the aerosols at the ALOMAR station with other Nordic sta-
tions yields several other similarities. The size distribution presents a bimodal median
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distribution in the submicrometer fraction for ALOMAR and all other Arctic stations.
Although the individual behavior of the particulates at the ALOMAR station has been
presented with respect to the mean concentrations of particles in each size section,
the particulate composition at the ALOMAR station is sufficiently similar to that at other
Nordic stations (considered in Asmi et al., 2011) to include it in the group “Northern5

European Aerosol”.

3.3 Relationships between the aerosol parameters

In Fig. 8a,c, we present the correlation between scattering/absorption in the various
channels. The relation between channels describes the proportion of the measure-
ments at different wavelengths, and each pair of measurements should obey Eq. (2).10

In this way, the slope of the linear fit for each correlation is the respective Ångström
exponent. For the absorption coefficients, one line is sufficient to correlate the different
channels, but two lines with different slopes are observed for the scattering coefficients.
The slopes of these lines depend on the particle size; therefore, these two lines appear
to represent different aerosol types, and the Ångström exponent can be used to help15

identify the aerosol types. The line with smaller slope is associated with larger particles
and marine aerosols. The data that contribute to this line have a strong correlation with
the numerical concentrations of the coarse particles Nmicrometer (> 500 nm) as demon-
strated by the value R = 0.9. The line with the higher slope is associated with smaller
particles, i.e., continental or polluted aerosols, and its data present a correlation of20

R =0.6 with the concentration of particles in the accumulation mode, N100.
Additionally, in Fig. 8b,d, we present the relation between the scattering/absorption

coefficients and the respective Ångström exponents. The Ångström exponents
were calculated for the pairs of wavelengths 450 nm/550 nm (αa,s (450–550)),
550 nm/700 nm (αa,s (550–700)) and 450 nm/700 nm (αa,s (450–700)), and for the25

three wavelengths 450 nm/550 nm/700 nm (αa,s (450–550–700)). For both scattering
and absorption cases, the Ångström exponents are higher for the pair of wavelengths
450 nm/550 nm and smaller for the pair 550 nm/700 nm, thereby defining the shape of
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the scattering and absorption spectra in the following way: decreases quickly in the
450 nm/550 nm range and decreases less abruptly in the 550 nm/700 nm range. For
the Ångström exponents calculated, we determined the fit error, e, and the quality of
the fit using the R parameter. The fit error was calculated as the standard error of the
slope of the best-fit line for the observed data σ×λ; its mean value is 23 %. The R5

parameter was computed as the fraction of the total variation of the σ values of data
points that are attributable to the assumed fitting line and was only used qualitatively
to evaluate the fit. Both e and R were used to evaluate and filter the data set.

Figure 9a illustrates the relation between the scattering and the absorption coeffi-
cients. This represents another way to analyze the single-scattering albedo parameter.10

In Fig. 9b, the relation between the Ångström exponents is also presented, and two
regions can be identified as exhibiting a higher density of data. Region A, which has
higher exponents due to the presence of fine particles, may originate from continental
urban sources. Region B, which has lower exponents due to he presence of coarse
particles, which are clean and less absorbent, may be of marine origin. These two15

regions represent the two modes that were observed in the frequency histogram of the
αs parameter, Fig. 4b. Note the higher density around αs = 0.7 and αs = 1.9 and the
lower density around αs =1.3.

Figure 10 displays the value of ω0 as a function of the scattering/absorption coeffi-
cients and the Ångström exponents. For a given σa value, lower ω0 values correspond20

to smaller particles, and higher ω0 values correspond to larger particles (Clarke et al.,
2007). Additionally, the fine particles are present in the more absorbent region whereas
the coarse particles are present in the less absorbent region. The particle size can be
indicated by the scattering Ångström exponent, with higher values of αs for smaller par-
ticles and smaller values of αs for larger particles. In this way, the relationship between25

ω0, an intensive aerosol optical property, and σa, an extensive property, can be used to
differentiate between background aerosols and the inputs of primary aerosols (Cappa
et al., 2009). At the ALOMAR station, we observe predominantly high values of ω0 due
to the very low σa values. This fact, together with the αs values registered, allows us
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to describe the local air as extremely clean and only episodically influenced by small
particles resulting from long-range transport. This conclusion is also supported by
the results of other techniques such as the analysis of the origin of air masses (see
Sect. 3.4) and the use of MODIS images and columnar data from the CIMEL photome-
ter (not shown) (Rodŕıguez et al., 2011).5

In Fig. 10e, the single-scattering albedo, ω0, is plotted against its own exponent,
αω0

. The spectral shape decreases mainly with the wavelength, αω0
> 0, but in some

cases the single scattering albedo increases with the wavelength (αω0
< 0) due to the

arrival of dust (Rodŕıguez et al., 2011). These cases were characterized by higher total
particle numerical concentrations, such as 3919 cm3.10

Figure 11a,b illustrates the particle numerical concentration in different size fractions
and modes as a function of the scattering coefficient (550 nm). Based on the Mie the-
ory, only the micrometer fraction and the accumulation mode are expected to present
strong correlations with σs, whereas the scattering coefficient is expected to be unre-
sponsive to the ultrafine mode (nucleation + Aitken). In our results, no clear connection15

between the total particle numerical concentration and the scattering coefficient can be
seen. However, if we look at specific size ranges, we see that aerosol particle concen-
tration in the coarse mode is strongly correlated (R =0.9) with the scattering coefficient.
This correlation is lower for the numerical concentration of accumulation mode particles
(R = 0.5). No correlation can be seen for the Aitken and nucleation modes. These re-20

sults are consistent with those presented by Aaltonen et al. (2006) at the Pallas station,
who reported correlations of 0.71 for the coarse fraction and 0.60 for the accumulation
mode. However, care should be taken when directly comparing the accumulation mode
results, as Aaltonen et al. (2006) considered the range 95–500 nm, whereas our ac-
cumulation mode results are for the range 100–390 nm. It was also previously shown25

by Virkkula et al. (1998), using results recorded in Finnish Lapland, that the correlation
between the total particle numerical concentration and σs is low, but the correlation
between the numerical concentration in the accumulation mode and σs is high.
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The relationship between the particle size distributions and the scattering Ångström
exponent is presented in Fig. 11c,d. The size of the particles is expressed as the

count mean diameter of the size distribution, CMD=
∑

(dp)iNi

N , the surface mean diam-

eter, SMD=
∑

(dp)iSi

S (not shown) and the volume mean diameter, VMD=
∑

(dp)iVi
V . For

the submicrometer fraction, the value of αs is insensitive to the size distribution. The5

correlation coefficients are 0.19, −0.04 and −0.06 for CMD, SMD and VMD, respec-
tively. For the micrometer fraction, the value of αs is correlated most strongly with the
CMD. The fits are −0.70, −0.12 and 0.10 for CMD, SMD and VMD, respectively. In the
studies by Virkkula et al. (1998) and Garland et al. (2008), it was observed that the
correlation of CMD with αs is not as strong as the correlation of SMD and VMD with αs.10

This difference occurs because the size distribution was considered as a whole in both
works cited; however, in our work, the analysis is performed separately for the sub-
micrometer and micrometer fractions. Consideration of all sizes biases the correlation
with CMD because it gives more weight to the small particles, which are less sensitive
to scattering.15

The fraction of particles that contribute to each ω0 value is presented in Fig. 11e,
and Fig. 11f presents the size of the particles as a function of ω0. In practice, Fig. 11e
has the same meaning as Fig. 10a,b, as confirmed by the similar shape of the graphs.
Note the similar shape between the graphs of ω0×σa and Nsubmicrometer×ω0, confirm-
ing that for a given value of σa, lower values of ω0 correspond to smaller particles and20

higher values of ω0 correspond to larger particles. Likewise, the graphs of ω0 ×σa
and Nmicrometer ×ω0 also present similar shapes. In Fig. 11f, we see that for the sub-
micrometer fraction, the CMD varied from ∼ 20 to ∼ 160 nm, with an average value of
66 nm. For the micrometer fraction, the CMD varied from ∼ 500 to ∼ 1400 nm, with an
average value of 900 nm. Classifying the ω0 into 5 bins, ω0 < 0.80, 0.80–0.85, 0.85–25

0.90, 0.90–0.95 and 0.95–1.00, we observe that the average values of the CMD for the
submicrometer and the micrometer fractions occurred in the bins 0.80–0.85 and 0.85–
0.90, respectively. The smallest average CMD, 57 nm, typical of nucleation episodes,

32939

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/32921/2011/acpd-11-32921-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/32921/2011/acpd-11-32921-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 32921–32964, 2011

SSA in the ALOMAR
station

S. Mogo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

was calculated in the bin ω0 > 0.95. This value is slightly higher than that presented
by Virkkula et al. (2011) at the Hyytiälä station, located in Southwestern Central Fin-
land. The highest average CMD, 1065 nm, which was typical of long-range pollution
episodes, was also calculated in the bin ω0 >0.95.

3.4 Determination of air mass origins by back trajectory analysis5

To analyze the source and transport pathways of the air masses arriving at ALOMAR,
a back trajectories analysis was conducted covering the period of measurement using
NOAA’s HYSPLIT model (Draxler and Rolph, 2003; Rolph, 2003). The back trajec-
tories were calculated typically 120 h backwards in time at an arrival height of 500 m
above ground level at 12:00 UTC. The model runs were constructed using the GDAS10

(Global Data Assimilation System) meteorological archive, and the vertical velocity of
the model as vertical motion (3-dimensional) was selected. The altitude level of 500 m
was used for the classification because this is within the boundary layer, where most of
the particles are confined. However, higher altitude trajectories were also used in the
investigation of the long-range transport episodes.15

Figure 1 shows the demarcation of six geographical sectors of different air mass
types influencing the measurement site: 1(S), 2(SE), 3(E), 4(NNE), 5(NW) and 6(W).
The air mass sector classification is based on the longest residence time of the trajec-
tories in each geographical sector. This methodology has been described in detail in
previous studies (Rodŕıguez et al., 2011; Toledano et al., 2009).20

The most frequent air masses were those from the north, sectors 4 (31 %) and 5
(27 %), and from the west, sector 6 (22 %), arriving from the ocean (see Fig. 12). Other
air masses originated in the south and the east, sectors 1 (5 %), 2 (3 %) and 3 (12 %),
respectively, which arrived from Europe in most cases. Rodŕıguez et al. (2011) found
that sectors 1, 2 and 3 were related to high-pressure systems that had been located25

over the Scandinavian Peninsula and Siberia, resulting in sunny and dry weather over
the region. Sector 4 was characterized by cold and dry air masses from the Arctic

32940

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/32921/2011/acpd-11-32921-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/32921/2011/acpd-11-32921-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 32921–32964, 2011

SSA in the ALOMAR
station

S. Mogo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

sea. Sectors 5 and 6 were associated with low-pressure systems, and precipitation
was frequent when air masses arrived from these sectors.

Based on the sector classification of each identified transport pathway, we estab-
lished a linkage between the air mass origin and the parameters we measured. Fig-
ure 12a,b, summarizes the main characteristics of the optical properties of the aerosols5

for the six air-mass types. The mean values of σa, σs and ω0 for 550 nm and αa, αs
and αω0

for the pair of wavelengths 450–700 nm are shown for each sector. The max-
imum mean values of σa and σs were observed for sector 2 (SE) and were 0.61 and
9.53 Mm−1, respectively. The minimum mean values of σa and σs were observed for
sector 4 (NNE) and were 0.29 and 3.90 Mm−1, respectively. The mean ω0 parameter10

ranges from 0.89 (when the air masses came from sector 3 (E)) to 0.94 (when the air
masses came from sector 2). A similar behavior is presented by αa and αs, for which
the maximum mean values were observed in sector 2 (0.44 and 2.01, respectively).
The minimum mean value of αa, 0.24, was observed for sector 5 (NW), whereas the
minimum mean αs, 0.79, was observed for sector 4 (NNE). The mean value of αω0

15

ranges from 0.03 for sector 4 to 0.13 for sector 1 (S).
In Fig. 12c, we illustrate how the various air masses relate to the properties of the

observed aerosol size distribution. The nucleation mode occurred more often in sectors
1 and 6 (S and W), whereas the Aitken and accumulation modes presented the highest
concentrations in sectors 1, 2 and 3 (S, SE and E). The micrometer fraction was present20

at very low concentrations in all sectors, with the highest concentration in sector 2 (SE)
and the lowest concentration in sector 5 (NW). Particles in the total size range, from
3 to 10000 nm, were present in sectors 1 and 2 (S and SE) at higher concentrations;
sector 3 (E) presented lower concentrations.

Figure 13 shows the median aerosol size distribution measured in the air masses.25

The thicker line indicates the median size distribution collected for all campaign days
(identical to Fig. 6), and the colored lines indicate the size distribution associated with
each of the 6 sectors considered. Sector 2 (SE) presents the most distinct shape and
has the highest concentration of particles, with a peak near 100 nm. Sectors 1 and 3
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(S and E), present similar shapes, but higher concentrations are observed for sector 1.
The submicrometer fractions for these three air masses are distributed monomodally.
The submicrometer fractions for sectors 4, 5 and 6 (NNE, NW and W) present a bi-
modal shape; higher concentrations are observed for sector 6, and lower concentra-
tions are observed for sector 5. The distributions for all sectors exhibits a small peak in5

the micrometer fraction, near 2500 nm.
Sectors 1, 2 and 3 (S, SE and E) analyzed as a whole present higher coefficients

σa and σs and higher exponents αa and αs. On average, these sectors contain far
more accumulation mode particles and higher numerical concentrations. This situation,
as with continental air, corresponds to region A, which is shown in Fig. 9b. Sectors10

4, 5 and 6 (NNE, NW and W), also analyzed as a whole, present lower coefficients
and lower exponents, corresponding to region B in Fig. 9b, for marine air. The size
distribution of the submicrometer fraction for sectors 4, 5 and 6 is markedly bimodal,
and the numerical concentrations are lower than in sectors 1, 2 and 3. A more detailed
discussion, in which each sector could be further broken up into special regions and in15

which the characteristics of mixed air masses could be specified, would require data
from longer measurement periods.

4 Conclusions

Aerosol optical properties that are relevant to direct climate forcing were investigated
during the summer of 2008 summer at the ALOMAR station, located in Andøya is-20

land on the Atlantic coast of Norway, approximately 300 km north of the Arctic Cir-
cle. The primary optical measurements made were light absorption by particle soot
absorption photometry and light scattering by nephelometry. The scattering coeffi-
cients were strongly variable, ranging from 0.25 to 23.21 Mm−1 at 550 nm, whereas
the absorption coefficients, also at 550 nm, were more consistent, ranging from 0.1325

to 2.28 Mm−1. The mean absorption coefficient was very small, leading to higher
single-scattering albedos (mean ω0 = 0.91 at 550 nm). The scattering and absorption
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Ångström exponents acted similarly, with higher values from 450 to 550 nm and smaller
values from 550 to 700 nm. We calculated the single-scattering albedo and obtained
values ranging from 0.62 to 0.99 at 550 nm. The spectral dependence of the sin-
gle scattering albedo was also analyzed. The spectral shape mainly decreased with
wavelength. However, some cases were noted in which the single scattering albedo5

increased with the wavelength.
We analyzed the main characteristics of the microphysical properties of aerosols by

determining the numerical size distributions and its parameters provided by the SMPS,
APS and UCPC and by examining the aerosol evolution during the campaign that
lasted almost three months; these results were typical of those obtained in summer10

in this region. The observed mean total numerical concentration was approximately
2463 cm−3. The median numerical size distributions were obtained and compared
with those from other Northern European locations. The submicrometer fraction of
the aerosol particles exhibited a bimodal numerical-size distribution. The Aitken mode
presented a maximum concentration of 627 cm−3, and the accumulation mode pre-15

sented a maximum concentration of 260 cm−3. The ratio between the Aitken and the
accumulation modes was also analyzed and remained mostly above a value of 1.

Basic statistical values for all optical data were presented, as were intra-data relation-
ships and particle size distributions. The scattering coefficient correlated strongly with
the numerical concentration of accumulation mode particles and more strongly with20

the micrometer fraction of the particles. The wavelength dependence of the scattering
coefficient, αs, was compared with the submicrometer and micrometer size distribu-
tions in terms of count mean diameters, surface mean diameters and volume mean
diameters. αs was most strongly correlated with the micrometer CMD.

A back trajectory analysis showed significant differences in the optical parameters25

among the maritime air masses (NNE, NW and W) and continental air masses (S,
SE and E). Northern and western air masses, which contained predominantly marine
aerosols, presented lower values of σa and σs, and lower values of αa and αs, indicat-
ing that they contained predominantly coarser and non-absorbent particles. Eastern
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and southern air masses, in which continental aerosols were predominant, presented
higher values for all optical parameters. This result indicates the presence of smaller
absorbent particles and explains the smaller values recorded for ω0.

Most of the parameters measured at and calculated for this site are similar to those
of other northern areas. Interest in this data relies on the previously unavailable variety5

of information for this area, which allowed us to determine the general characteristics
of local aerosols for the first time. Finally, we would like to point out that this study,
which was conducted using a small data set representing measurements recorded
over nearly three months, allowed us to clearly distinguish between two aerosol types
characteristic of defined situations. The same work, if conducted over a larger (prefer-10

able year-long) data set, would allow for more aerosol situations, in ALOMAR and other
measurement sites, to be distinguished.
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Vrekoussis, M., Liakakou, E., Koçak, M., Kubilay, N., Oikonomou, K., Sciare, J., and Mihalopou-
los, N.: Seasonal variability of optical properties of aerosols in the Eastern Mediterranean,
Atmos. Environ., 39, 7083–7094, doi:10.1016/j.atmosenv.2005.08.011, 2005. 32932

32949

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/32921/2011/acpd-11-32921-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/32921/2011/acpd-11-32921-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 32921–32964, 2011

SSA in the ALOMAR
station

S. Mogo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Evaluation of the overall ranges and median values of the absorption/scattering coef-
ficients, the Ångström exponents and the single scattering albedo obtained from the data set
measured at ALOMAR. Px values are the x-th percentage of the considered parameter. The
median value (P50) is bolded.

Mean StD Range P25 P50 P75

450 nm 7.31 4.79 0.29–31.24 3.63 6.58 9.55
σs (Mm−1) 550 nm 5.41 3.55 0.25–23.21 2.76 4.75 7.12

700 nm 4.08 2.84 0.19–18.95 2.09 3.39 5.32

αs (450–750) 1.37 0.61 0.20–3.07 0.82 1.36 1.90

450 nm 0.45 0.33 0.14–2.72 0.24 0.35 0.53
σa (Mm−1) 550 nm 0.40 0.27 0.13–2.28 0.23 0.32 0.48

700 nm 0.36 0.23 0.12–1.92 0.21 0.30 0.43

αa (450–750) 0.40 0.21 0.01–0.97 0.25 0.39 0.55

450 nm 0.93 0.04 0.60–0.99 0.91 0.94 0.96
ω0 550 nm 0.91 0.05 0.62–0.99 0.89 0.92 0.95

700 nm 0.89 0.06 0.50–0.99 0.86 0.90 0.94

αω0
(450–750) 0.09 0.09 −0.11–0.95 0.02 0.07 0.14
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Table 2. Arithmetic mean values of the concentrations in each size section. Px values are the
x-th percentage of the considered parameter. The median value (P50) is bolded.

(#/cm3) Mean StD P16 P25 P50 P75 P84

N30−50 258 355 27 45 127 315 449
N50 469 516 81 126 266 615 892
N100(accumulation) 183 209 34 61 114 224 317
NAitken (30–100 nm) 545 647 68 111 308 711 1023
Nnucleation (10–30 nm) 549 1070 29 53 185 488 881
Nsubmicrometer (10–390 nm) 1277 1563 190 291 710 1635 2376

Nmicrometer (>500 nm) 1 1 0 1 1 2 3

Ntotal (>3 nm) 2463 4251 293 500 1175 2895 4113
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Fig. 1. Location of the ALOMAR station in Northern Norway. The classification sectors of back
trajectories air masses are also displayed.
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Fig. 2. Time-series of hourly average values of (a) single scattering albedo, (b) scattering
coefficient and (c) absorption coefficient at 550 nm.
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Fig. 3. Frequency histogram for the (a) scattering coefficient, (b) absorption coefficient and
(c) single scattering albedo.
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Fig. 4. (a) Time-series of hourly average values of the absorption/scattering Ångström expo-
nents. (b, c) Frequency histogram for the scattering and absorption Ångström exponents.
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Fig. 5. (a) Particle number size distributions measured for the submicrometer particles.
(b) Temporal variation of the concentration of nucleation, Aitken and accumulation modes.
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Fig. 6. Median distributions with the 16th and 84th percentile distributions for the: (a) submi-
crometer particles, (b) micrometer particles.
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Fig. 11. Relation between σs and (a) micrometer and submicrometer concentrations, (b) nu-
cleation, Aitken and accumulation modes. (c) Relation between the size of the particles (CMD)
and αs. (d) Relation between the size of the particles (VMD) and αs. (e) Relation between ω0
and the micrometer and submicrometer concentrations. (f) Particle size (count mean diameter)
as a function of ω0.
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Fig. 12. Classification of air masses according to its origin and (a,b) optical parameters; (c)
number concentrations observed in each situation. Percentage values refer the frequency of
each air mass origin.

32963

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/32921/2011/acpd-11-32921-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/32921/2011/acpd-11-32921-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 32921–32964, 2011

SSA in the ALOMAR
station

S. Mogo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1 0 1 0 0 1 0 0 0
0

4 0 0

8 0 0

1 2 0 0

1 6 0 0

2 0 0 0

2 4 0 0

2 8 0 0

3 2 0 0

3 6 0 0 S e c t o r s :
 1  ( S )
 2  ( S E )
 3  ( E )
 4  ( N N E )
 5  ( N W )
 6  ( W )
 A l l

dn
 / 

 d
 lo

g 10
d p [#

/c
m

3 ]

P a r t i c l e  d i a m e t e r  [ n m ]
5 0 0 1 0 0 0 1 0 0 0 0

0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0
5 . 5
6 . 0

S e c t o r s :
 1  ( S )
 2  ( S E )
 3  ( E )
 4  ( N N E )
 5  ( N W )
 6  ( W )
 A l l

dn
 / 

 d
 lo

g 10
d p [#

/c
m

3 ]

P a r t i c l e  d i a m e t e r  [ n m ]

Fig. 13. Median size distributions observed in different air masses.
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