
ACPD
11, 31769–31817, 2011

Case study of
convective

parameterization
scheme

B. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Atmos. Chem. Phys. Discuss., 11, 31769–31817, 2011
www.atmos-chem-phys-discuss.net/11/31769/2011/
doi:10.5194/acpd-11-31769-2011
© Author(s) 2011. CC Attribution 3.0 License.

Atmospheric
Chemistry

and Physics
Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Some issues in uncertainty quantification
and parameter tuning: a case study of
convective parameterization scheme in
the WRF regional climate model

B. Yang1,2, Y. Qian1, G. Lin1, R. Leung1, and Y. Zhang2

1Pacific Northwest National Laboratory, Richland, Washington, USA
2School of Atmospheric Sciences, Nanjing University, Nanjing, China

Received: 10 November 2011 – Accepted: 14 November 2011 – Published: 2 December 2011

Correspondence to: Y. Qian (yun.qian@pnnl.gov)

Published by Copernicus Publications on behalf of the European Geosciences Union.

31769

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/31769/2011/acpd-11-31769-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/31769/2011/acpd-11-31769-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 31769–31817, 2011

Case study of
convective

parameterization
scheme

B. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

The current tuning process of parameters in global climate models is often performed
subjectively or treated as an optimization procedure to minimize model biases based
on observations. While the latter approach may provide more plausible values for a
set of tunable parameters to approximate the observed climate, the system could be5

forced to an unrealistic physical state or improper balance of budgets through compen-
sating errors over different regions of the globe. In this study, the Weather Research
and Forecasting (WRF) model was used to provide a more flexible framework to inves-
tigate a number of issues related uncertainty quantification (UQ) and parameter tuning.
The WRF model was constrained by reanalysis of data over the Southern Great Plains10

(SGP), where abundant observational data from various sources was available for cal-
ibration of the input parameters and validation of the model results. Focusing on five
key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme
used in WRF as an example, the purpose of this study was to explore the utility of high-
resolution observations for improving simulations of regional patterns and evaluate the15

transferability of UQ and parameter tuning across physical processes, spatial scales,
and climatic regimes, which have important implications to UQ and parameter tuning in
global and regional models. A stochastic important-sampling algorithm, Multiple Very
Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input pa-
rameters in the KF scheme based on a skill score so that the algorithm progressively20

moved toward regions of the parameter space that minimize model errors.
The results based on the WRF simulations with 25-km grid spacing over the SGP

showed that the precipitation bias in the model could be significantly reduced when
five optimal parameters identified by the MVFSA algorithm were used. The model per-
formance was found to be sensitive to downdraft- and entrainment-related parameters25

and consumption time of Convective Available Potential Energy (CAPE). Simulated
convective precipitation decreased as the ratio of downdraft to updraft flux increased.
Larger CAPE consumption time resulted in less convective but more stratiform precip-
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itation. The simulation using optimal parameters obtained by constraining only precip-
itation generated positive impact on the other output variables, such as temperature
and wind. By using the optimal parameters obtained at 25-km simulation, both the
magnitude and spatial pattern of simulated precipitation were improved at 12-km spa-
tial resolution. The optimal parameters identified from the SGP region also improved5

the simulation of precipitation when the model domain was moved to another region
with a different climate regime (i.e., the North America monsoon region). These results
suggest that benefits of optimal parameters determined through vigorous mathemati-
cal procedures such as the MVFSA process are transferable across processes, spatial
scales, and climatic regimes to some extent. This motivates future studies to further10

assess the strategies for UQ and parameter optimization at both global and regional
scales.

1 Introduction

Sound strategies and decisions making in climate change mitigation and adaptation
require not only robust projections of the mean or most likely scenario but also the15

occurrence of low probability but high-impact events (IPCC, 2007). Uncertainty quan-
tification (UQ) is the science of quantitative characterization and reduction of uncer-
tainties in applications. It determines how likely certain outcomes are if some aspects
of the system are not exactly known. UQ of predicted future climate is usually based
on the ability of models to produce the current climate (Allen et al., 2000; Tebaldi et al.,20

2005). The full probability density functions (PDFs) of occurrence for both present cli-
mate and future prediction are needed to predict the probability of extreme weather or
climate events.

Different approaches have been applied to generate ensemble simulations and con-
struct PDFs for variables of climate model output. These approaches include perturb-25

ing the initial conditions, perturbing the input parameters of the model, ensemble simu-
lations with multiple parameterization schemes, or ensemble simulations with multiple
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models, and so on (Allen et al., 2000; Giorgi and Mearns, 2002; Stainforth et al., 2005;
Lopez et al., 2006). Covey et al. (2011) found that the variability of globally averaged
upwelling longwave radiation and surface temperature induced by perturbation of initial
condition is much smaller than that induced by perturbation of model input parameters.
Hawkins and Sutton (2009) estimated the contributions to the total climate change pre-5

diction uncertainty from internal variability, model uncertainty, and scenario uncertainty
and found that their relative contributions depend on the prediction lead times. Fur-
thermore, for the decadal time scales and regional spatial scales (∼ 2000 km), model
uncertainty is of greater importance than internal variability. Quantifying and reducing
the uncertainty of tunable input parameters in climate models can improve our under-10

standing of the physical process in climate systems as well as reduce the uncertainty
for projecting future climate change.

Parameterizations in climate models typically contain many input parameters that are
determined based on the physical processes being parameterized or estimated based
on tuning to obtain qualitative agreement between the simulations and observations15

from limited local measurements or global observations. Larger number or ranges of
input parameters usually result in higher uncertainties in climate simulations because
of nonlinear interactions and compensating errors of parameters (Gilmore et al., 2004;
Molders, 2005; Min et al., 2007; Murphy et al., 2007). Perturbed-Parameter Ensembles
(PPE) with the same climate model but different combinations of several key input20

parameters, within reasonable ranges, have been employed to assess future climate
uncertainty (Murphy et al., 2004; Jackson et al., 2003, 2008; Collins et al., 2011).

To approximate the posterior probability distribution of input parameters in physi-
cal parameterizations, many sampling strategies have been proposed, such as grid
search method, Metropolis/Gibbs algorithm (Metropolis et al., 1953; Kirkpatrick et al.,25

1983; Sen and Stoffa, 1996), Monte Carlo or Quasi Monte Carlo (QMC), (Moskowitz
and Caflisch, 1996), Latin Hypercube selection (Stein, 1987), Multiple Very Fast Simu-
lated Annealing (MVFSA) (Ingber, 1989; Jackson et al., 2004), among others (Tierney
and Mira, 1999; Haario et al., 2001). Grid search is a straightforward method to test

31772

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/31769/2011/acpd-11-31769-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/31769/2011/acpd-11-31769-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 31769–31817, 2011

Case study of
convective

parameterization
scheme

B. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the sensitivity of parameters by subdividing each parameter space into equally spaced
intervals and evaluating uncertainty arising from those combinations. However, this
method may require huge computational resources. For example, around 105 simu-
lations are needed if five parameters with 10 intervals for each parameter are to be
explored. Thus, high-efficiency sampling methods are needed for applications related5

to climate modeling. MVFSA is a stochastic importance sampling algorithm that can
progressively move toward regions of the parameter space that minimize model errors
and more efficiently provide useful information for optimizing or generating accurate
measures of the posterior distribution (Villagran et al., 2008). Jackson et al. (2008)
applied MVFSA to optimize six parameters related to the cloud process in a Global10

Climate Model (GCM) because cloud processes play a critical role in the hydrological
cycle and uncertainty of climate response to doubling of CO2 forcing (Colman, 2003;
Webb et al., 2006; Medeiros and Stevens, 2011). Constrained by different sets of
observations, their work provided a six-member ensemble of optimized model configu-
rations with a narrower range of future temperature change projection.15

Currently, UQ and parameter tuning in climate study are typically applied in GCMs,
with more focus on global climate sensitivity and large-scale climatic features. Equal
weighting of the state fidelity globally could compromise parameter tuning in GCMs
because the processes being tuned may only be relevant for particular regimes. Fur-
thermore, global tuning may produce parameter settings that approximate the observed20

global climate, but at the expense of yielding unphysical states or improper balance of
budgets at the local or regional scales. Even if the calibration produces realistic re-
gional means, important spatial variability may not be reproduced if observed spatial
patterns from high-resolution measurements are not utilized in the global tuning.

This study applies UQ and parameter tuning to a Regional Climate Model (RCM),25

which offers more flexibility in terms of model configuration and is computationally more
economical, allowing some of the above issues to be explored in more details. More
specifically, we explore the utility of high-resolution observations for improving simula-
tions of regional patterns. We further investigate three important questions. First, can
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calibration of specific physical parameterizations lead to improvements in aspects not
directly influenced by the parameterizations? Second, can model calibration performed
at a coarser scale improve simulations at a finer scale? Lastly, can optimal parameters
obtained by calibration in one climate regime lead to improvements in other climate
regimes? These questions aim at evaluating the transferability of UQ and parame-5

ter tuning across physical processes, spatial scales, and climatic regimes, which have
important implications to UQ and parameter tuning in global and regional models.

With the rapid growth of computing resources in past decades, some climate models
can now be applied at a cloud-resolving scale (Khairoutdinov et al., 2001; Tao et al.,
2009). However, because of simulation length and the need for ensemble modeling,10

climate models that are used in projecting climate change still use grid spacing of
25 km or more where cumulus processes have to be parameterized. Since convective
process contributes disproportionately to the total and intense precipitation, and the
diabatic heating from convective process is an important driver of global and regional
circulation, it is important to better understand and constrain the convective parame-15

terizations used in climate and weather forecasting models (Warner and Hsu, 2000;
Liu et al., 2001). Many different Convective Parameterization Schemes (CPS) have
been developed over the past decades (Janjic, 1994; Emanuel and Zivkovic-Rothman,
1999; Gregory et al., 2000; Grell and Devenyi, 2002). Among them, the Kain-Fritsch
(KF) scheme (Kain and Fritsch, 1993; Bechtold et al., 2001), including more recent20

updates (Kain, 2004), is commonly used in regional models including the Weather Re-
search and Forecasting (WRF) model (Skamarock et al., 2001).

This study applies UQ and model calibration to the WRF regional model to address
the questions discussed above. Simulations were performed with WRF constrained
by reanalysis data over the Southern Great Plains (SGP), where abundant observa-25

tional data from various sources are available for calibration of the input parameters
and validation of the model results. The MVFSA important-sampling algorithm was
applied to quantify the uncertainty ranges and identify the optimal values of five key
input parameters in the new KF CPS used in the WRF model. Because of its impor-
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tance and sensitivity to model physics, precipitation is used as the constrained variable
in the optimization process. The impact of precipitation-based optimization on a few
other variables, such as temperature and wind, was analyzed. Furthermore, param-
eter transferability across spatial scales and climate regimes was investigated using
sensitivity experiments.5

This paper is organized as follows. Parameter selection in the new KF CPS, the
MVFSA sampling algorithm, observational data, and the WRF model configuration are
described in Sect. 2 and the optimization results, sensitivities of model performance,
precipitation and other output variables to parameters in the KF scheme, and depen-
dence of optimization on model configurations are presented in Sect. 3. The conclusion10

is discussed in the last section.

2 Parameters, approach and experiment design

2.1 The new KF CPS and five key parameters

CPSs are appropriate for use in RCMs with a moderate grid spacing of 10–100 km.
This spacing is large enough so that a cloud ensemble within the grid can be treated as15

a statistical entity but small enough to keep the uniform characteristics of the cloud en-
vironment. The new KF CPS, which is commonly used in many mesoscale models in-
cluding WRF, was developed based on a mass flux parameterization (Kain, 2004). Us-
ing a Lagrangian parcel method (Simpson and Wiggert, 1969; Kreitzberg and Perkey,
1976), the new KF CPS operates by searching for the Updraft Source Layer (USL),20

which has a potential for inducing shallow or deep convection, starting from the surface
upward to within the lowest 300 hPa of the atmosphere. When the USL is identified,
updraft flux is initialized with a velocity based on atmospheric instability and grid-scale
vertical motion at USL (Kain and Fritsch, 1990). Air mass is exchanged between the
updraft and the environment through entrainment and detrainment at each layer. The25

rate of entrainment flux is related to the cloud radius that varies from 1000 to 2000 m
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depending on the large-scale vertical velocities. The intensity of updraft flux decreases
with altitude as the thermal contrast between the cloud and the environment is reduced
by mixing. Convective downdrafts, which play an essential role in determining the
heating profile and humidity features in the lower troposphere (Johnson, 1976; Cheng,
1989), are driven by the evaporation of condensate generated within the updrafts. The5

strength of the downdraft mass flux is related to the relative humidity of environmental
air (Knupp and Cotton, 1985; Ferrier et at., 1996; Shepherd et al., 2001). The fluxes
of updraft, entrainment/detrainment, downdraft, as well as of grid-scale compensating
subsidence are parameterized and used to calculate the convective temperature, water
vapor and cloud water tendencies that are used to advance the respective large-scale10

fields.
Five key parameters related to the downdraft flux rate and starting height, environ-

mental entrainment flux rate, turbulent kinetic energy (TKE) in the sub-cloud layer, and
the consumption time of Convective Available Potential Energy (CAPE) in the new KF
CPS in the WRF are thought to be important in the KF CPS, but the range of their15

possible values is quite wide (Kain, pers. commun.).
The intensities of both downdraft and entrainment fluxes are proportional to the up-

draft mass flux at the top of USL in the KF CPS. In this study, two parameters Pd
and Pe are defined as additional scale factors to modulate the rates of downdraft and
entrainment fluxes from 1/2 to 2 times of their original values, respectively.20

MUSL
d

MUSL
u

=2× (1−RH)×2Pd , Pd∈ (−1,1) , (1)

δMe

MUSL
u

=
−0.03×δp

R
×2Pe , Pe∈ (−1,1) . (2)

In Eqs. (1) and (2), MUSL
u and MUSL

d are the updraft and downdraft mass fluxes at the
top of USL, respectively. RH is the mean relative humidity of environment air from the
starting layer of downdraft to cloud base. δp is the pressure thickness of a model layer25
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and δMe is the maximum possible entrainment rate of this layer. R is the cloud radius.
Downdraft is assumed to start from 150 hPa above USL in the standard KF CPS. The

starting height of downdraft Ph controls the downdraft structures and also affects the
atmospheric properties in the sub-cloud layer. We set the range of Ph as 50–350 hPa
to allow a larger degree of freedom in the downdraft structures from tall and narrow to5

short and wide.
Shallow or deep convection are based on different closure assumptions. For shallow

convection, the intensity of updraft mass flux at USL is assumed to be a function of TKE
in the sub-cloud layer. For deep convection, the KF scheme incrementally rearranges
the updraft, downdraft and other mass flux until the CAPE is reduced by at least 90 %10

within a specified time, called CAPE consumption time. The CAPE consumption time
is related to the vertical shear defined as the difference between horizontal wind at the
cloud base and 500 hPa level (Bechtold et al., 2001). The TKE and average CAPE
consumption time are referred to as Pt and Pc, with values of 5 m2 s−2 and 2700 s in
the standard KF CPS. We allowed a range from 3 to 12 m2 s−2 for Pt and from 90015

to 7200 s for Pc. The default value in the standard KF scheme and range of value for
each parameter are shown in Table 1.

2.2 MVFSA optimization approach

Very Fast Simulated Annealing (VFSA) is a stochastic importance sampling algorithm
with high converging efficiency toward the optimal results (Ingber, 1989; Jackson et al.,20

2004). For most optimization applications, multiple extreme values (i.e., local mini-
mum/maximum) may exist and the selected parameter values may be trapped by some
local minimums within the parameter space in one VFSA procedure. Repeating the
VFSA multiple times with different initial starting parameter set (i.e., MVFSA) can help
prevent such local trapping and identify the global minimum (Jackson et al., 2008; Vil-25

lagran et al., 2008). The steps in the MVFSA algorithm, which is adapted from Jackson
et al. (2004, 2008), are the following;
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(1) Take random points in parameter spaces and run a simulation at each step. At
the first step, an initial starting parameter set (m0) is randomly selected to run the first
WRF simulation.

(2) Quantify the differences between simulation and observation in terms of a scalar
skill score or “cost,” referred to as E (m), where m is the parameter set. If Gaussian5

errors exist in the model results, E (m) is usually defined as

E (m)=
N∑
i=1

1
2N

{
[dobs−g(m)]T ×C−1[dobs−g(m)]

}
i
. (3)

N refers to different sets of observations/variables. dobs refers to observations and
g(m) refers to simulations with a specific parameter set m. C−1 is the inverse of the
data covariance matrix, which could include a weight coefficient for different variables.10

In this study, only one set of observation (precipitation) is used with equal weight at
each grid point in the observation constrain in Eq. (3), so E (m) is simplified as:

E (m)=


K∑

k=1

I∑
i=1

J∑
j=1

[dobs,i jk−gi jk(m)]2/Ci jk


/

(I×J×K ) , (4)

where i , j are the horizontal grid points in the model domain, and k represents the
number of time steps. In Eq. (4), the model biases are assumed to be spatially or15

temporally uncorrelated (i.e., the data covariance matrix C−1 in Eq. (3) only contains
nonzero elements along the diagonal). The frequency of precipitation rate tends to
have an exponential distribution rather than a Gaussian distribution, which indicates
that the score function of the model based on Eqs. (3) and (4) is dominated by the
upper range in the observation. Given that our case study has strong convection over20

a limited region during a short time period, the use of Eq. (4) is appropriate in this study
(see Sect. 2.3).

(3) Reselect the parameter values based on the skill score so that the algorithm pro-
gressively moves toward regions of the parameter space that minimize modeling errors.
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Starting from the second round of the procedure, the parameters will be perturbed to a
new set of mnew as follows:

mnew
i =m0

i +yi (m
max
i −mmin

i ) , (5)

yi ∈ (−1,1) , (6)

mmin
i ≤mnew

i ≤mmax
i , (7)5

where mmin
i and mmax

i represent the possible minimum and maximum values of each
parameter, and yi is drawn from a Cauchy distribution which is dependent on an an-
nealing coefficient T :

yi = sgn(RND−0.5)Tk

[(
1+

1
Tk

)|2RND−1|
−1

]
. (8)

Within Eqs. (5–8), subscript i , k are the parameter number and iteration number, re-10

spectively. sgn is the sign operator and RND represents a random number from a
uniform distribution between 0 and 1. At iteration k, the annealing coefficient T is
lowered according to

Tk = T0exp[−0.9× (k−1)1/2] . (9)

If the results with a new set of parameters show an improvement over the old one, in15

effect, ∆E =E (mnew)−E (m0)< 0, then the new set of m is accepted as the basis for
the next iteration, that is, m0 =m

new. If not, the new set of parameters can still possibly
be accepted with a probability

P =exp
(
−∆E
Tk

)
. (10)

With a lower T , the VFSA algorithm moves progressively toward regions of the param-20

eter space that minimize model errors since the width of the Cauchy distribution will
be incrementally focused on the current accepted parameter set, facilitating the VFSA
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algorithm to converge more efficiently. In this study, we lower T every two steps with
an initial value of T0 as 10.

(4) To get global optimal values, we repeat the VFSA procedure three times with
different starting parameter set (i.e., three chains). We conducted 50 experiments in
each chain. Only 148 simulations are valid because instability occurred in two of the5

simulations. The three chains nearly converge to the same region within the parameter
spaces (not shown), indicating that three chains are probably enough for this case
study.

Figure 1 shows the best values averaged for three iterations based on three inde-
pendent MVFSA chains. As seen in Fig. 1, the averaged best values monotonically10

decrease as the number of model integrations increases and finally reach convergence
after 28 integrations.

In climate model calibration, we are interested in not only the magnitudes of model
bias (e.g., standard deviation) but also the similarity of spatial pattern (e.g., spatial cor-
relation coefficient) between observed and modeled large-scale fields (Taylor, 2001).15

We define

C(m)=
K∑

k=1

SC[dobs,k ,gk(m)]/K , (11)

where SC[dobs,g(m)] refers to the spatial correlation coefficient between the obser-
vation and simulation, and k represents the time series. Both E (m) and C(m) are
normalized so they can be considered together as EC(m), EC(m)=E (m)−C(m). Do-20

ing so accounts for both the magnitude of bias and similarity of spatial pattern. For
brevity, E (m), C(m) and EC(m) are denoted as E , C, and EC, respectively hereafter.

The University of Washington (UW) 1/8 gridded meteorological data set includes
daily precipitation, maximum and minimum 2-m temperature and 10-m wind speed
(Maurer et al., 2002). Although only the daily precipitation data are used in the obser-25

vation constrain in Eq. (4), the maximum and minimum temperatures at 2-m height and
wind speed at 10-m height are also used to evaluate the WRF simulations that used
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the optimal parameters.

2.3 Model configuration

The Advanced Research Weather Research and Forecasting model Version 3.2.1
(WRF Version 3.2.1, Skamarock et al., 2008) is used in this study. WRF is a fully com-
pressible and non-hydrostatic model that uses a terrain-following hydrostatic-pressure5

vertical coordinate and an Arakawa C-grid staggering spatial discretization for vari-
ables. The simulation domain is located within 25◦ N–44◦ N and 112◦ W–90◦ W over
the SGP region (see Fig. 2), with horizontal grid spacing of 25 km and 36 sigma levels
from the surface to 100 hPa. Wind, temperature, water vapor, pressure, and underlying
surface variables used to generate initial and boundary conditions are derived from the10

North American Regional Reanalysis (NARR) data with 32-km horizontal resolution
and 3-h time intervals.

To obtain a reasonable simulation result for precipitation over the SGP region be-
fore starting the optimization process, we compared two different radiation schemes,
RRTMG (Rapid Radiative Transfer Model for GCMs, Barker et al., 2003; Pincus et al.,15

2003) vs. CAM (Community Atmosphere Model 3.0, Collins et al., 2004), and two differ-
ent microphysics schemes, WSM6 (WRF Single-Moment 6-class, Hong and Lim, 2006)
vs. Morrison 2-Moment (Morrison et al., 2005). Figure 3 shows the observed and sim-
ulated monthly mean precipitations for June 2007 with different radiation (RRTMG vs.
CAM) and microphysical parameterization schemes (WSM6 vs. Morrison) while the20

standard KF CPS was used in both simulations. The results show that more than
70 % of the rainfall is contributed by convective precipitation, indicating the importance
of the CPS in simulating precipitation for the region in the summer. We find that the
simulated precipitation is more sensitive to different radiation schemes than different
microphysical schemes in this study. While the CAM radiation scheme tends to under-25

estimate the amount of precipitation, the RRTMG seems to produce a more realistic
magnitude and spatial pattern of precipitation. However the RRTMG scheme produces
larger areas of precipitation than observed, especially over the northeast corner of the
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domain. Simulation result with the Morrison scheme is slightly better than with WSM6.
Finally, RRTMG radiation and Morrison microphysics schemes, as well as the Mellor-
Yamada-Janjic (MYJ, Janjic, 2002) PBL scheme and the Noah Land Surface Model
(LSM) (Chen and Dudhia, 2001) were used in all simulations in this study.

We selected 1 May to 30 June 2007 for our simulations to focus on a wet month5

(June) with mostly convection-type precipitation. To isolate the influence of the convec-
tive parameterization, model simulations were initialized every three days to minimize
errors in the large-scale circulation that can also affect precipitation. Each simulation
was initialized two days after the previous simulation. Discarding the first day as model
spin-up, the results of the last two days of each simulation are concatenated to form10

a continuous time series for analysis. Unlike the atmospheric state, which was initial-
ized every three days using the NARR data, the land surface state (soil moisture and
temperature) was initialized based on simulation of the previous three days to produce
better spun-up land surface conditions for realistic land-atmosphere interactions.

3 Results15

3.1 Model response to five parameters

The top panel of Fig. 4 shows the response of model performance (quantified as E as
introduced in Sect. 2.2) to five input parameters based on the 148 simulations through
the MVFSA procedure. E is equal to 137 in the simulation with default parameters in
the KF CPS. Figure 4 shows that E varies from 74 to 225, with lower E than 137 in20

the majority of experiments. We found that model response is more sensitive to the
changes of Pd (downdraft flux rate related coefficient), Pe (entrainment rate related
coefficient), and Pc (CAPE consumption time) than to the other two parameters. For
example, the model bias E significantly decreases with the increase of Pd or decrease
of Pe. The optimal values for Pd, Pe, and Pc that minimize E are around 0.9, –0.9, and25

4600 s, respectively. The optimal value for Ph and Pt are around 280 hPa and 9 m2 s−2,
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both larger than the default values in the standard KF scheme for the starting height of
downdraft above USL and the maximum TKE in the sub-cloud layer in this study. The
responses of E to variations in Ph and Pt are not as evident as those of the other three
parameters.

Among the 148 valid simulations derived from the MVFSA procedure, there were5

114 simulations with lower E (better performance) than the standard KF scheme with
default parameters. These 114 simulations are defined as “good” experiments. The
middle panel of Fig. 4 shows the frequency distributions of the “good” experiments as
a function of each parameter value. We found that around 51 % of the “good” experi-
ments were produced by Pd from 0.6 to 1.0, indicating that the ratio of downdraft to up-10

draft mass fluxes shown in Eq. (1) is too small in the standard KF CPS. Approximately
60.5 % of the “good” experiments were produced by Pe from –1.0 to –0.4, indicating
that the ratio of maximum possible entrainment rate to updraft mass fluxes shown in
Eq. (2) is too large in the standard KF CPS. As Ph, Pt, and Pc are within the range
from 230 to 320 hPa, 9 to 11 m2 s−2, and 3000 to 6000 s, respectively, there are better15

chances to obtain relatively lower E (better performance).
The marginal posterior probability distributions (PPD) for the five parameters derived

from kernel density estimation are also shown in the bottom panel of Fig. 4. Different
from the upper two panels of Fig. 4, the PPD was calculated using the proposed sample
instead of the admitted samples to avoid the heavily biased admitted samples towards20

the mode. Similar to the middle panel of Fig. 4, large probabilities are located at around
0.8, –0.7, 320, 9.5 and 3200, respectively for the five parameters of Pd, Pe, Ph, Pt and
Pc.

Figure 5 shows the observed and simulated monthly mean precipitation for June
2007 with default and optimal parameters (see Table 2) in the simulations. Overall, the25

model with default parameters captures the spatial pattern but over-predicts the amount
of precipitation, especially over the northeastern part of the domain. The simulation
with E -based optimal parameters has significantly reduced the wet bias of the model,
as E decreases from 137 to 74.
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Skill scores C describing the spatial pattern of precipitation (see Eq. 11) were calcu-
lated for all of the 148 experiments. The variations of E and C with perturbed parame-
ters are closely correlated, with a correlation coefficient of 0.79, implying that the spatial
pattern of the precipitation would likely be improved if the magnitude of the model’s bias
was reduced through the MVFSA process. Among the five input parameters, entrain-5

ment related parameter Pe has the most significant impact on C (not shown).
EC is calculated to represent the model performance in both magnitude and spatial

pattern of precipitation. The bottom panel of Fig. 5 shows the simulations with optimal
parameters based on E and EC, respectively. The E values for simulations with optimal
E and EC are 74 and 79, respectively. The C values are 0.34 and 0.36, respectively,10

indicating that the spatial pattern in the simulation with optimal EC is more similar to
the observation than that of the default or with optimal E .

Figure 6 shows the observed and simulated frequencies of daily precipitation as a
function of rain rate. Compared to the observation, the WRF with the standard KF
CPS evidently overestimates the frequency of precipitation across all rain rates and15

the model wet bias becomes larger for heavy rain. By applying the optimal parameters
based on E (not shown) or EC, the model markedly reduced the overestimated occur-
rence frequency for rainy events larger than 3 mm day−1. The improvement is more
evident for the heavy precipitation with rain rate larger than 20 mm day−1.

3.2 Sensitivity of precipitation and correlation with other variables20

Figure 7 shows the responses of convective, explicit and total precipitation to each of
the five parameters. As mentioned previously, total precipitation is contributed largely
by the convective precipitation in this case study. The amount of explicit precipitation
is around 0.2 to 1.5 mm day−1, while convective precipitation varies between 3.8 and
9 mm day−1. Because of the competition for moisture and physical interaction between25

the grid and sub-grid scale processes, the explicit precipitation is also affected by the
CPS in the model (Kain, 2004), although the convective precipitation is more sensitive
to the parameters.
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From the middle panel of Fig. 7 we found that downdraft related parameter Pd and
CAPE consumption time Pc have larger impact on the convective precipitation. With
a larger ratio of downdraft to updraft flux (larger Pd), more condensed water would
be evaporated associated with a stronger downdraft process, resulting in less precip-
itation. The larger CAPE consumption time (larger Pc) slows down the development5

and decreases the intensity of convection, thus reducing the convective precipitation.
Stronger entrainment rate usually produces less convective precipitation because it di-
lutes the moist convective core, which tends to suppress the updraft (Kain and Fritsch,
1990; Zhang and Mcfarlane, 1995). The impact of TKE on convective precipitation is
relatively small.10

The change of explicit precipitation is often anti-correlated with the convective precip-
itation. When the convective precipitation is suppressed with the perturbed parameters,
more moisture will be available in the atmosphere, favoring the formation of explicit pre-
cipitation calculated based on the microphysics scheme in the model. The top panel of
Fig. 7 shows that the explicit precipitation is more sensitive to the parameters related to15

entrainment and CAPE consumption time than the other three parameters. Since total
precipitation is mainly contributed by the convective precipitation, the responses of total
precipitation to the five parameters are consistent with that of convective precipitation.

Figures 8 and 9 demonstrate how the changes of two parameters, Pd and Pe, physi-
cally affect the convective process and other subsequent meteorological variables such20

as air temperature and humidity, cloud, and surface heat flux. In Fig. 8 we see clear
response of the low-level cloud, water vapor, temperature and surface energy flux to
the downdraft-related parameter Pd. While the downdraft flux became stronger with
the increase of Pd, it enhanced the evaporation of condensate, increasing the humidity
and decreasing the temperature in the lower troposphere (900–800 hPa), which favors25

the formation of a low cloud. Consequently, increased clouds reflect larger amounts
of solar radiation back into space and reduce the solar radiation flux at the surface.
Decreased surface shortwave radiation, together with decreased precipitation, sup-
pressed the evaporation and reduced the latent heat flux (LH) at the surface. Mean-
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while, the soil moisture also showed a decreasing trend with Pd partly due to the de-
creased precipitation.

The ratio of entrainment to updraft flux (Pe) also showed a remarkable impact on
the convection process and weather system (see Fig. 9). With a larger entrainment
rate, efficient mixing can suppress the development of updraft and increase the en-5

vironmental air humidity at the middle (800–600 hPa) atmosphere, so that deep con-
vection is weakened and the cloud top height decreases (i.e., outgoing longwave ra-
diation increases). In the lower atmosphere, the weaker condensate or evaporation
that results from weaker updraft can increase temperature and produce fewer clouds.
Consequently, the downward surface solar radiation and skin temperature significantly10

increase. Since the skin temperature and low-level air temperature increase consis-
tently, a clear trend of sensible heat flux (SH) was not seen with the change of entrain-
ment rate. LH increases primarily due to the increased downward solar radiation at the
surface.

The impact of the downdraft starting height Ph on the convection process is similar15

to that of the downdraft rate (not shown). Downdraft flux initiating at a higher level can
produce a tall and narrow downdraft, which has effects similar to a larger downdraft
rate.

The relative sensitivities of the response of the meteorological variables to the five
CPS parameters are shown in Fig. 10. The sensitivity ranking is calculated based20

on the correlation coefficients between output variables (y-axis) and input CPS pa-
rameters (x-axis) from 148 simulations, representing the variability of output variables
against the perturbed input parameters (e.g., the slope of the fitted curve shown in
Figs. 7–9). Figure 10 shows that Pd and Pe have more impact on the output variables
than the other three input parameters, while most of the output variables are least sen-25

sitive to Pt, the maximum TKE in the sub-cloud layer. The impact of CAPE consumption
time (Pc) on precipitation is significant as discussed in Sects. 3.1 and 3.2, because Pc
efficiently controls the development of the convection. As shown in Fig. 10, cloud wa-
ter content, outgoing longwave radiation (OLR) and downward long-wave radiation are
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very sensitive to Pc.
A total of 148 simulations with perturbed parameter sets were completed in this

study, providing an opportunity to investigate not only the response of various model
variables to the CPS parameters but also the correlation and interaction among dif-
ferent model variables. As summarized in Table 3, strong positive correlations can5

be found between monthly mean convective precipitation and soil moisture, skin tem-
perature and downward solar radiation flux, LH and air temperature, as well as LH
and downward solar radiation flux. We found significant negative correlations between
lower/mid-level air humidity and soil moisture, lower-level air humidity and convective
precipitation, OLR and soil moisture, SH and air temperature, as well as LH and low-10

layer cloud water content.

3.3 Impact of optimization on temperature and wind speed

Because only observed precipitation is used to constrain the MVFSA algorithm, the
question arises as to how other simulated variables vary with the five CPS parameters
when the model converges to the optimal results for precipitation. Table 4 shows the15

correlation coefficients of model skill scores between precipitation and 2-m temperature
and 10-m wind speed. The correlation coefficient is 0.31 between E (Tmean) and E(Prec)
and 0.76 between E (Tmean) and C(Prec), indicating that the bias of model temperature
is more correlated with spatial pattern than the bias of magnitude of simulated pre-
cipitation. The correlation coefficient between E(Wind) and E(Prec) is 0.86 and between20

E(Wind) and C(Prec)is 0.87, implying a consistent performance in simulating wind speed
and precipitation (i.e., simulations with better precipitation are also more likely to have
better wind speed).

Figure 11 shows the model performances for temperatures and wind speed with de-
fault and optimized parameters based on E and EC. Except for maximum temperature,25

all variables exhibit a better performance with optimized parameters than with default
parameters even though the optimal parameters are obtained only based on precip-
itation. The improvements for temperatures are more significant when using optimal
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parameters based on EC than based on E , which suggests that including precipitation
pattern in the skill score metrics may be important in the optimization process.

3.4 Dependence of optimized parameters on model grid spacing

It is well known that the performance of CPS may vary with model resolution as cur-
rent convective parameterizations generally exhibit scale dependence (Arakawa et al.,5

2011). Retuning of model parameters for high-resolution applications can be very time
consuming and compute intensive. In this study, the MVFSA procedure was performed
based on WRF simulations at 25-km grid spacing. To assess the transferability of
model calibration across spatial scales, we completed two simulations with default and
optimal parameters obtained from the 25-km simulations. Identical model configura-10

tions and domain size were used between the 25 km and 12 km resolution simulations.
Figure 12 shows the spatial distributions of observed and simulated precipitation

with default and optimal parameters, respectively. We found that with default CPS
parameters in the standard KF, the model can reasonably capture the spatial pattern
of precipitation but significantly overestimates the maximum precipitation, especially15

over Oklahoma, the Kansas-Missouri border, and the Texas-Louisiana border. By us-
ing the optimal parameters obtained from the 25-km simulations, both the magnitude
and spatial pattern of precipitation are improved at 12-km spatial resolution, with E de-
creasing from 148 to 89 and C increasing from 0.3 to 0.37. These results suggest that
quantitative optimization may yield more robust model parameters that can improve20

precipitation simulation across a range of spatial scales.

3.5 Dependence of optimized parameters on climate regime

In the previous sections, optimization was performed for a regional model applied to
a specific region (i.e. the SGP). However, the physical process and mechanism of
convection and precipitation may differ in different climatic regimes (Knupp and Cotton,25

1985; Grant, 2001; Kain et at. 2001). For example, Liang et al. (2004) showed that sim-
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ulations of summer rainfall in the US can be very sensitive to the CPS used because
relative influence of large-scale tropospheric forcing and boundary layer forcing in trig-
gering convection may vary in different CPSs. A critical question is how parameters
optimized based on application in one regimes transfer to a different climate regime.

We completed two additional simulations over the North America Monsoon (NAM)5

region (23◦ N–40◦ N, 121◦ W–100◦ W) using 25-km grid spacing on both simulations
with default and optimal parameters, respectively. The NAM represents a distinctly
different climate regime compared to the SGP in the Central US (Berbery, 2001; En-
glehart and Douglas, 2006). For example, convection in the semi-arid NAM region
is associated with strong surface heating, with a dominant late afternoon precipita-10

tion maxima related to the buildup of CAPE during the day. In the Central US, on the
other hand, precipitation maxima shows a distinct nocturnal maxima associated with
increased nighttime moisture brought in by the Great Plain Low-Level Jet. Figure 13
shows the spatial distributions of observed and simulated precipitation with default and
optimal parameters over the NAM region for July 1991. The model with default CPS15

parameters overestimates the maximum precipitation over coastal areas in Northern
Mexico. Precipitation over Eastern New Mexico and the Southern Colorado-Kansas
border is also largely overestimated. As optimal parameters are applied, the precipita-
tion over those regions is obviously improved, with E decreasing from 110 to 65 and C
increasing from 0.26 to 0.31.20

Similar to Fig. 6, Fig. 14 shows the observed and simulated frequencies of daily
precipitation as a function of rain rate over the NAM region for July 1991. Compared
with the observation, the WRF with default CPS parameters in the standard KF ev-
idently overestimates the frequency of precipitation across all rain rates. By apply-
ing the optimal parameters based on EC over SGP, the model markedly reduces the25

overestimated occurrence frequency for all rainy events except for light rain smaller
than 3 mm day−1 over the NAM region. The improvement is particularly evident for the
moderate and heavy precipitation rain rates of more than 12 mm day−1. These results
suggest the optimal parameters determined based on one regime are transferable and
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lead to obvious improvements in model performance in a different regime.

4 Summary and discussion

Currently, Uncertainty Quantification (UQ) and parameter tuning in climate study are
mostly applied in Global Climate Models (GCM). This may compromise the tuning by
equal weighting of the state fidelity globally, even though the processes being tuned5

may only be relevant for particular regimes. The tuning process of parameters is of-
ten performed subjectively, although some studies have also applied an optimization
procedure to minimize the difference between model fields and observations. While
the latter approach may provide more plausible values for a set of tunable parameters
to approximate the observed global climate or large-scale features, it is possible that10

the latter may be achieved by forcing the system to an unrealistic physical state or im-
proper balance of budgets through compensating errors over different regions in the
globe. In this study, regional climate model, the Weather Research and Forecasting
(WRF) model, was used to provide a more flexible framework to investigate a num-
ber of issues related UQ and parameter tuning. The WRF model was constrained by15

reanalysis data over the Southern Great Plains (SGP), where abundant observational
data from various sources were available for calibration of input parameters and vali-
dation of model results. Focusing on five key input parameters in the new Kain-Fritsch
(KF) convective parameterization scheme (CPS) used in the WRF model as an ex-
ample, our goal was to explore the utility of high-resolution observations for improving20

simulations of regional patterns and evaluate the transferability of UQ and parame-
ter tuning across physical processes, spatial scales, and climatic regimes, which have
important implications to UQ and parameter tuning in global models. The five parame-
ters identified in the KF scheme are related to downdraft flux rate and starting height,
environment flux rate, turbulent kinetic energy (TKE) in the sub-cloud layer, and the25

consumption time of Convective Available Potential Energy (CAPE), respectively. A
stochastic sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA), was
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employed to efficiently sample the input parameters in the KF scheme based on a skill
score so that the algorithm progressively moves toward regions of the parameter space
that minimize model errors.

The WRF simulation period was from 1 May to 30 June 2007, and was reinitialized
every three days, with 25-km grid spacing over the SGP. The results show the model5

bias for precipitation can be significantly reduced by using five optimal parameters
identified by the MVFSA algorithm, especially for heavy precipitation with rain rates
over 20 mm day−1. The model response to precipitation and other model variables was
more sensitive to the changes of downdraft- and entrainment-related parameters and
consumption time of CAPE than to the other two parameters. Utilizing high-resolution10

observations, the simulated spatial pattern of precipitation was improved when the
magnitude of model biases was reduced through the MVFSA process. The simulated
convective precipitation decreases as the ratio of downdraft to updraft flux increases.
Larger CAPE consumption time results in less convective but more stratiform precipi-
tation.15

The simulation using optimal parameters obtained by constraining precipitation alone
generated positive impacts on other output variables, such as temperature and wind.
By using the optimal parameters obtained at 25-km simulation, both the magnitude and
spatial pattern of precipitation are also improved at 12-km spatial resolution. When
moving the model domain to the North American Monsoon region, the optimal pa-20

rameters identified from the SGP region also improved the simulation of precipitation,
especially those with moderate and heavy precipitation with rain rates of more than
12 mm day−1. These results suggest that benefits of optimal parameters determined
through vigorous mathematical procedures such as the MVFSA process are transfer-
able across processes, spatial scales, and climatic regimes to some extent. While our25

findings are preliminary, they motivate future studies to further assess the strategies
for UQ and parameter optimization at both global and regional scales.

A number of limitations should be taken into account in evaluating the results of
this study and in planning future studies. The primary limitation is that we assessed

31791

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/31769/2011/acpd-11-31769-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/31769/2011/acpd-11-31769-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 31769–31817, 2011

Case study of
convective

parameterization
scheme

B. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the model performance and tunable parameters based on differences in observed and
modeled daily precipitation. Although most of the total rainfall was contributed by con-
vective precipitation generated from the CPS in our case, the tuning process may still
produce parameter settings that approximate the total observed rainfall, although the
balance of different physical processes to achieve the total precipitation amount is not5

directly constrained. It is possible that the optimal parameters may only work well
with the particular cloud microphysical scheme selected for this study. Furthermore, it
may be more appropriate and beneficial to calibrate model parameters by constraining
the behavior of physical processes (i.e., the turbulence, shallow and deep convection
process in this study) rather than precipitation, which is a product of many interact-10

ing processes with large numbers of sources and sinks. Second, how to define the
skill metrics for evaluating model performance can be improved. In future studies, we
would construct an auto-tuning procedure to minimize the bias in not only precipitation
but also process-level variables, such as eddy diffusivities, PBL height, shallow con-
vective mass fluxes, radiative heating rates, and so forth. In addition, future studies15

should explore the use of spatial correlation coefficient, in addition to mean bias, in
the skill score metrics for the optimization process, as this study already showed that
spatial correlation provides useful information for model evaluation. Third, different op-
timization approaches may affect the results and conclusions, but this issue has not
investigated in this study. We are currently comparing the MVFSA method and another20

sampling algorithm, the Annealing Evolutionary Stochastic Approximation Monte Carlo
(AESAMC) (Liang, 2010), to investigate the convergence efficiency and the impact on
the results.

Finally, the simulations conducted in this study were initialized every three days by
reanalysis data. This weather forecast mode of simulation minimizes potential discrep-25

ancy between observed and simulated large scale circulation so model biases can
be more directly related to the convective parameterization and its parameters. In fu-
ture studies, we will compare model response and performance based on optimization
process in free running simulations (i.e., climate simulation mode) strictly constrained
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(driven) by large-scale observations/reanalysis. Establishing the transferability of op-
timized parameters between weather and climate simulations would provide indirect
evidence further supporting the seamless prediction strategy (Hurrell et al., 2009) and
the transpose method of evaluating and diagnosing climate model biases through hind-
cast weather forecast simulations (e.g., Boyle et al., 2005).5
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Table 1. The short name, default, minimum and maximum values, and the descriptions of the
five parameters in the KF convective parameterization scheme in WRF 3.2.1.

Parameter Default Minimum Maximum Description

Pd 0 −1 1 Coefficient related to downdraft mass flux rate
Pe 0 −1 1 Coefficient related to entrainment mass flux

rate
Ph 150 50 350 Starting height of downdraft above USL (hPa)
Pt 5 3 12 Maximum TKE in sub-cloud layer (m2 s−2)
Pc 2700 900 7200 Average consumption time of CAPE (s)
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Table 2. The values of five identified parameters in the KF scheme, skill scores E and C,
used or obtained in the simulations with default or optimized (based on E or EC, respectively)
parameters.

Pd Pe Ph Pt Pc E C

Default 0 0 150 5 2700 137 0.3
Optimal E 0.89 −0.91 292 8.54 4615 74 0.34
Optimal EC 0.57 −0.72 321 8.9 3597 79 0.36
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Table 3. Correlations among different model output variables in 148 WRF simulations with
perturbed parameters in the KF scheme. The correlation coefficients are calculated based on
the domain average as shown in Fig. 3. TS: skin temperature; SM: soil moisture; QC: cloud
liquid water content at layers from 900 to 800 hPa; QV(L): air specific humidity for 900–800 hPa;
TA(L): air temperature for 900–800 hPa; QV(M): air humidity for 800–600 hPa; TA(M): air tem-
perature for 800–600 hPa; SWD: downward short-wave radiation at surface; LWD: downward
long-wave radiation at surface; OLR: outgoing long-wave radiation at top of atmosphere; SH:
sensible heat flux at surface; LH: latent heat flux at surface; EP: explicit precipitation; CP:
convection precipitation.

TS −
SM −0.42 −
QC −0.31 −0.58 −
QV(L) 0.02 −0.86 0.75 −
TA(L) 0.75 0.28 −0.74 −0.63 −
QV(M) 0.38 −0.83 0.19 0.67 −0.2 −
TA(M) 0.43 0.59 −0.81 −0.79 0.89 −0.46 −
SWD 0.8 −0.14 −0.7 −0.19 0.72 0.44 0.54 −
LWD 0.29 −0.52 0.65 0.49 −0.07 0.02 −0.26 −0.32 −
OLR 0.76 −0.86 0.2 0.58 0.18 0.75 −0.11 0.52 0.46 −
SH −0.18 −0.75 0.6 0.85 −0.73 0.77 −0.82 −0.18 0.15 0.44 −
LH 0.66 0.35 −0.86 −0.62 0.93 −0.13 0.86 0.82 −0.32 0.11 −0.71 −
EP 0.69 −0.77 0.35 0.56 0.17 0.45 −0.16 0.3 0.64 0.84 0.25 0.05 −
CP −0.29 0.97 −0.71 −0.91 0.39 −0.71 0.65 0.04 −0.64 −0.79 −0.76 0.48 −0.76 −

TS SM QC QV(L) TA(L) QV(M) TA(M) SWD LWD OLR SH LH EP CP
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Table 4. Correlations of model performance between the precipitation and the
mean/maximum/minimum 2-m temperature and 10-m wind speed. The correlation coefficients
are calculated on the basis of skill scores for the precipitation (based on E and C, respectively)
and for the temperature and wind speed (based on E ) of 148 simulations.

E (Tmean) E (Tmax) E (Tmin) E(wind)

E(prec.) 0.31 −0.18 0.51 0.86
C(prec.) 0.76 0.17 0.78 0.87
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Fig. 1. The best values obtained using MVFSA method as a function of the number of model
evaluations.
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Fig. 2. WRF model domain (Southern Great Plain, 25◦ N–44◦ N and 112◦ W–90◦ W) with grid
spacing of 25 km. Shades indicate the terrain (unit: m).
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Fig. 3. Spatial distributions of observed and simulated monthly mean precipitation for June
2007, with different radiation (RRTMG vs. CAM) and microphysics schemes (WSM6 vs. Morri-
son). Solid box highlighted in top panel shows the sub-region for later analysis.
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Fig. 4. (Top) The response of model performance (quantified as E as introduced in Sect. 2.2) to
five input parameters based on the 148 simulations through the MVFSA procedure. Red curves
represent an average of results at each bin. Default number of each parameter is marked as
red crosses. (Middle) The frequency distributions of “good” experiments as a function of each
parameter. “Good” experiments are defined as those with lower E (better performance) than
that using the standard KF scheme with default parameters. (Bottom) The marginal probability
density functions (PDF) for the five input parameters derived by kernel density estimation.
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Fig. 5. Spatial distributions of observed and simulated monthly mean precipitations for June
2007, with default and optimized (based on E or EC) parameters in the KF scheme.
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Fig. 6. The observed and simulated frequency distributions of daily precipitation as a function
of rain rates, with default and optimized (based on EC) parameters in the KF scheme. The
result is derived from daily precipitation at all grids within the model domain as shown in Fig. 2
for June 2007.
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Fig. 7. The response of simulated explicit (top), convective (middle) and total (bottom) precipi-
tation averaged over the sub-domain shown in Fig. 3 to the five parameters in the KF scheme.
The meaning of red curves is same as in Fig. 4.
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Fig. 8. The response of 12 model output variables (see Table 3) to the downdraft mass flux
related parameter Pd.
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Fig. 9. Same as Fig. 8 except for the entrainment rate related parameter Pe.
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Fig. 10. Relative sensitivities of the response of the 14 meteorological variables (see Table 3)
to the five CPS parameters (see Table 1). The sensitivity ranking is calculated based on the
correlation coefficients between output variables (y-axis) and input CPS parameters (x-axis)
from 148 simulations.
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Fig. 11. The model performances for precipitation, temperatures and wind speed with default
and optimized parameters based on E and EC. Here, the skill score E for optimized simulations
are normalized by the E from default simulations.
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Fig. 12. The spatial distributions of observed and WRF simulated (with 12-km spatial resolu-
tion) monthly mean precipitations for June 2007, with default and optimal parameters based on
25-km simulation. 31815
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Fig. 13. The spatial distributions of observed and simulated monthly mean precipitation with
default and optimal parameters obtained at the SGP, respectively, over the North America Mon-
soon (NAM) region for July of 1991.
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Fig. 14. The observed and simulated frequency distributions of daily precipitation over NAM
for July 1991 as a function of rain rates, with default and optimized (based on EC in SGP)
parameters in the KF scheme.
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