
Supplementary Material to OP3 CCN-HTDMA Reconciliation Study

Section 1.1 shows the sigmoid function used to derive both critical super-
saturation (Sc,D0) and the dry diameter at which 50% of the particles have
activated (D50,S) are calculated from CCNc and CPC data, as described in the
main text.
Section 1.2 highlights the specific CCNc measurement uncertainties and their
calculation and Section 1.3 shows how the standard errors associated with the
HTDMA measurements were calculated.

1 Definition of terms and calculation procedures

1.1 Fitting S-step and D-step CCNc data

Defined in the main text, the fitting function used for deriving the point at which
FA(S,D0) = 0.5 is a sigmoidal function using orthogonal distance regression
(ODR), weighted according to the associated errors in each axis, using the Igor
Pro software package and associated libraries (ODRPACK95, Boggs et al. 1989).

y = K0 +
K1

1 + exp ((x−K2)/K3)
(S1)

Where K0 is the base of the sigmoid (held to zero), K1 is the maximum on the
sigmoid (unconstrained to to minimise effects caused by systematic inaccuracies
of either instrument), K2 is the x value at which y = 0.5 (either, D50,S or Sc,D0,
depending on the x-axis used) and K3 is the rate.

This function is used to derive both D50,S and Sc,D0 for CCNc data. The
fitting algorithm outputs a standard error of the x-axis value at y = 0.5, shown in
Figures S2 and S3. These errors are propagated through to further calculations
of quantities such as Dthres and NCCN . The standard error from S-step analysis
is larger as the data consists of only 5 data points (each Sset) and hence is more
sensitive to the relative positions of these data. Fitting D-step interpreted data
results in a smaller standard error, Figures S2 and S3, as there are many more
data points and thus higher resolution around each D50,S .

1.2 CCNc Measurement Uncertainty

1.2.1 Uncertainty in Sset

In order to estimate the uncertainty in S from the standard deviation of these
quantities, the standard deviation (σ) of each measurement of temperature, flow
and pressure (T,Q and P respectively, which are taken to vary independently)
is multiplied by its differential value, summed in quadrature and divided by the
square root of the number of observations (N ; number of particles measured
during an averaging period) to give the standard error in S:
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∆S =

√(
∂S
∂T σT

)2
+
(
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∂QσQ

)2
+
(
∂S
∂P σP

)2
√
N

(S2)

The dependence of ∆S on
√
N arises because the instrument detector (the

OPC) only samples the conditions when a particle is detected. As T , Q and P
have been assumed to vary randomly throughout the measurement period, the
more particles detected, the more precise the average supersaturation will be.

1.2.2 Uncertainty in D0

The range of diameters introduced into the CCNc for a given target diameter
is described by the DMA transfer function. For this analysis, we have assumed
an ideal, triangular transfer function (Knutson and Whitby, 1975), with sym-
metrical bounds 5% either side of the target dry diameter, DT . One standard
deviation of this transfer function is described by σ = c

√
1/6, where c = 0.1DT

i.e. the width of the base of the transfer function. When propagating the error
associated with the diameter measurement of DT , the standard error of DT has
been used:

∆DT =
c
√

(1/6)√
N

(S3)

where N is the number of particles counted.

1.2.3 Uncertainty in number concentration

The CCNc and CPC number concentration standard errors have been calculated
by invoking Poisson statistics:

∆(
∑

N) =

√ ∑
N

Q
∑
T

(S4)

whereN is the number of particles counted, substituted by either CCNc (N(S,D0))
or CPC (N(D0)), Q is the flow rate and T is the sampling time. The uncer-
tainty in N is calculated and then propagated through the multiple charging
correction procedure.

The error associated with the activated fraction, FA(S,D0) can then be
calculated:

∆(
∑

FA(S,D0)) =
N(S,D0)

N(D0)

√(
∆(
∑
N(S,D0))

N(S,D0)

)2

+

(
∆(
∑
N(D0))

N(D0)

)2

(S5)
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1.3 HTDMA errors

The hygroscopic growth factor probability distribution p(GF ) was corrected for
small deviations (typically ±2%RH) from the setpoint RH, as outlined by Gysel
et al. (2009) and calculated as follows:

GFD0,RH,c =

(
1 + (GF

3

D0,RHm
− 1)

(1−RHm)RHt

(1−RHt)RHm

) 1
3

(S6)

where GFD0,RH,c is the RH-corrected, mean, hyrgoscopic growth factor for a
particle of dry diameter D0, GFD0,RHm

is the uncorrected mean growth factor,
RHm is the measured RH and RHt is the target RH. A full explanation of the
correction applied is described by Gysel et al. (2009).

In order to propagate the error associated with the change in growth factor
from this correction, Eq. S6 is differentiated with respect to RHm to give:

∂(GFD0,RH,c)

∂(RHm)
= −

(
(GFD0,RHm

− 1)
RHt

(1−RHt)

1

(RHm)2

)− 1
3

(S7)

An error simulation which forms part of the TDMAinv analysis was used
on the data, with the results from the error simulation showing the sensitivity
of the inversion result to small changes in the measurement due to added noise
(incorporating counting statistics). This helps in, for example, judging whether
two peaks in the growth factor probability distribution function, p(GF ), can
be attributed to distinct modes or whether the structure of the p(GF ) can be
reliably attributed to distinct modes or whether they are indistinguishable from
instrument noise. This is outlined in detail by Gysel et al. (2009) and is shown
in Figs. 4B and C therein. 100 error simulations are performed on p(GF ) for
each growth factor bin, and the statistical mean of these taken. The standard
deviation of the mean 100 simulations was then calculated, representing the
effects of counting statistics and variability in size measurement, denoted by
σp(GF ). These two errors are summed in quadrature, representing the HTDMA
error, GFerror:

GFerror =

√(
∂(GFD0,RH,c)

∂(RHm)
0.015

)2

+ σp(GF )
2 (S8)

where 0.015 relates to the precision of the measurement of RH (1.5%) within
the HTDMA used for the COPS experiment.
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2 Supplementary figures

Cluster name No. of constituent trajectories (%) No.of 12 h periods (%) attributed

North-easterly 221 (31%) 15 (25%)

Easterly 208 (29%) 15 (25%)

Terrestrial 236 (33%) 18 (31%)

Westerly 51 (7%) 2 (3%)

Unclassified 9 (15%)

Table 2. Details of four cluster solution and resultant period classification for OP3-I.

(a) (b)

Fig. 6. OP3-III cluster mean (a) latitude and longitude and (b) pressure altitude in units of hPa different from

starting altitude of 950 hPa. Colours are consistent between plots. Solid and dashed lines show solutions from

each subset.

Cluster name No. of constituent trajectories (%) No.of 12 h periods (%) attributed

North-easterly 41 (5%) 2 (3%)

Marine 460 (58%) 33 (50%)

Coastal 107 (14%) 5 (8%)

Terrestrial 141 (18%) 10 (15%)

Westerly 41 (5%) 3 (5%)

Unclassified 13 (20%)

Table 3. Details of five cluster solution and resultant period classification for OP3-III.

10

Figure S1: This plot shows the period classification mean latitude and longitude.
The solid and dashed lines represent alternate back trajectory calculations. The
majority of the data presented from OP3-III was attributed to Marine and
Terrestrial clusters.
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Figure S2: This plot shows the standard error of Sc,D0 plotted against the
derivation of Sc,D0 from S-step analysis. The derivation of Sc,D0 has the smallest
error at the central Sset (S2). The closer the derived Sc,D0 of the particle to
that of the bounds of the measurement (S0; S4), the larger the error from the
fitting of the sigmoid. Data with large (relative) errors but a Sc,D0 between S1
and S3 may be influenced by mixing state or other variables within the sigmoid
fitting function.
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Figure S3: The error associated with fitting data using D-step analysis is, as
expected, different to that associated with S-step analysed data. Only at over
200 nm does the error increase significantly. This is because, as shown in Fig-
ure 2, the fraction of aerosol activated (on average) is over 50% at the lowest
supersaturation. When FA is just under 50% then the error will be large, but
if over 50% then no sigmoid can be plotted.
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Figure S4: A graph showing Sc,D0
−Sset vs D0. The two data points straddling

the zero line are linearly interpolated between, with the intercept defining the
physical threshold diameter of the aerosol, Dthres,Sc. The errors on Dthres,Sc

are propagated using standard procedure.
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Figure S5: A time series for the OP3-III campaign showing a comparison of
predicted NCCN from CCNc (top) S-step analysis and HTDMA measurements
respectively, as a function of bin-edge supersaturation (left axis).
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