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Abstract

We present a 60-yr record of atmospheric CO concentration and stable isotopic ra-
tios at high northern latitude based on firn air samples collected in the frame of the
North Greenland Eemian Ice Drilling (NEEM) project. Concentration, δ13C, and δ18O
of CO from trapped gases in the firn were measured by gas chromatography coupled5

with isotope ratio mass spectrometry (gc-IRMS). Using models of trace gas transport
in firn, the long-term trend of atmospheric CO and its stable isotopic composition at
high northern latitudes since the 1950s were reconstructed. Our best firn air scenar-
ios suggest that δ13C decreased slightly from −25.8 ‰ in 1950 to −26.4 ‰ in 2000,
then dropped to −27.2 ‰ in 2008. δ18O decreased more regularly from 9.8 ‰ in 195010

to 7.1 ‰ in 2008. The best firn air scenarios also suggest that CO concentration in-
creased gradually from 1950 and peaked likely in the late-1970s, followed by a gradual
decrease by present day (Petrenko et al., 2011). An isotope mass balance model is
applied to quantify the temporal evolution of CO source partitioning able to explain the
combined mixing ratio and isotopic ratio changes. It suggests that a slight increase15

followed by a large reduction in CO derived from fossil fuel combustion occurred since
1950. The increase of CO concentration from 1950 to the mid-1970s is the result of
a combined increase of multiple sources. The reduction of CO emission from fossil
fuel combustion after the mid-1970s is the most plausible mechanism for the drop of
CO concentration during this time. The mitigation policy for CO emission from vehicle20

exhaust such as application of catalytic converters and the growth of diesel engine ve-
hicles market share are the main expected reasons for the CO source strength change
from fossil fuel combustion.

1 Introduction

The importance and interest for reconstructing past atmospheric CO arises from its sig-25

nificant role on the chemistry of the troposphere, since CO is a major sink for hydroxyl
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radical (OH). Thus its abundance affects the lifetimes of reactive greenhouse gases
and ozone depleting gases. In addition to its significance for OH, oxidation of CO by
OH provides a source (high NOx) or a sink (low NOx) for ozone, which is a major con-
tributor to ground level photochemical smog under high NOx conditions (Levy, 1971;
Logan et al., 1981). The major sources of atmospheric CO in today’s atmosphere in-5

clude oxidation of methane (CH4) and non-methane hydrocarbons (NMHC), biomass
burning, fossil fuel and biofuel combustion (Duncan et al., 2007; Seiler, 1974). In ad-
dition to a complex mixture of sources, atmospheric CO has a relatively short global
averaged lifetime (Weinstock, 1969), resulting in large temporal and spatial variations
and adding difficulties in determining the global CO budget (Brenninkmeijer and Rock-10

mann, 1997). Certain sources produce atmospheric CO with distinct ratios of 13C/12C
and 18O/16O (Stevens et al., 1972; Stevens and Wagner, 1989; Brenninkmeijer, 1993),
hence isotopic information can help to determine the various sources and their relative
magnitudes (Mak et al., 2003; Mak and Kra, 1999; Mak and Brenninkmeijer, 1998;
Rockmann et al., 2002; Manning et al., 1997). Bergamaschi et al. reported that intro-15

ducing isotope data in source optimization provides relatively well constrained source
strengths of CO (Bergamaschi et al., 2000a,b). However, only few observations exist
from which the relative source strengths in past atmospheres can be estimated. Polar
ice core analyses have provided hints about the evolution of CO from its concentra-
tion (Ferretti et al., 2005; Haan et al., 1996; Haan and Raynaud, 1998; Wang et al.,20

2010) and isotopic ratios (Wang et al., 2010) over the last few centuries. They notably
revealed the importance of biomass burning changes in the Southern Hemisphere in
controlling past CO in Antarctica (Wang et al., 2010). A recent study based on firn
air analyses has provided a reconstruction of atmospheric CO from Berkner Island,
Antarctica, roughly covering the last decades, which is important for understanding the25

past CO budget in the Southern Hemisphere (Assonov et al., 2007). However, there is
limited information about the 20th century CO evolution in the Northern Hemisphere.
The only available firn air CO measurements from the Northern Hemisphere were per-
formed on firn air collected from the summit of Devon Island Ice Cap, Nunavut, Canada
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(75◦20′ N; 82◦08′ W; 1929 m a.s.l.) in April 1998 (Clark et al., 2007). However, they
showed the existence of in-situ CO production with depth, likely related to the relatively
high temperature of this site, associated with systematic summer melting and thick melt
layers in the firn column, as well as relatively high levels of impurities in Devon Island
ice.5

Greenland ice core records have shown that CO concentration at high northern lat-
itudes increased from ∼90 ppbv to ∼110 ppbv between 1800 and 1950 (Haan et al.,
1996), which is believed to result from rising anthropogenic emissions such as fos-
sil fuel combustion (Marland et al., 2008). Today’s annual mean CO concentration
over Summit, Greenland (72.58◦ N; 38.48◦ W; 3238 m a.s.l.) is around 120 ppbv based10

on flask measurements by National Oceanic and Atmospheric Administration Global
Monitoring Division (NOAA/GMD) (Novelli and Masarie, 2010). Therefore comparing
ice core and direct atmospheric CO measurements suggests that significant variations
of CO concentration and concurrent CO budget occurred over the last 60 yr. However,
the observations of atmospheric CO before 1988 were limited and the CO data earlier15

than 1980 is very sparse. The only available atmospheric CO concentration for 1950–
1951 was deduced indirectly from infrared total column amount measurements at the
Jungfrau Scientific Station in the Swiss Alps (Rinsland and Levine, 1985). The field
measurements of atmospheric CO started in the early 1970s (Seiler and Junge, 1970;
Seiler, 1974; Heidt et al., 1980) and systematic global monitoring of atmospheric CO20

by National Oceanic and Atmospheric Administration Global Monitoring & Diagnostics
Laboratory (NOAA/CMDL) started in the late 1980s (Novelli et al., 1992, 1994). An
increasing trend of atmospheric CO at Cape Meares, Oregon (45◦ N; 125◦ W) was first
recognized in 1979–1982 (Khalil and Rasmussen, 1984), and a decrease in global CO
concentration was observed in early 1990s (Khalil and Rasmussen, 1994; Novelli et al.,25

1994).
In this study, we present a record of CO concentration and stable isotopic ratios at

high northern latitudes since about 1950, based on measurements of firn air samples
collected at the NEEM ice core drilling site in Greenland. Due to signal smoothing by
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diffusion of gases in firn air (Schwander and Stauffer, 1984), firn air measurements do
not provide discretely resolved time evolutions of trace gas concentrations and isotopic
ratios. Models of trace gas transport in firn are thus used to derive this reconstruc-
tion from the observed firn air profile. The evolving CO budget over the last 50 yr at
high northern latitudes is then calculated based on measurement of CO concentration,5

δ13C, δ18O and an isotope mass balance model (Wang et al., 2010; Mak and Kra,
1999).

2 Experimental procedures

Within the framework of the international project NEEM, 18 firn air samples from sur-
face to 75.9 m of depth were obtained close to the NEEM deep drilling site (77.445◦ N;10

51.066 ◦ W; 2484 m a.s.l.) in July 2008. Details of the NEEM 2008 firn air campaign
have been described recently (Buizert et al., 2011). The NEEM firn air samples used
here were collected from the 2008 EU borehole (Buizert et al., 2011) in 3 l Silco cans
(Restek Inc.) at a pressure of 2.8 bar. Before being filled, the Silcocans already in-
cluded polar firn air from previous expeditions, at pressure above ambient. The firn15

air was dried through a Mg(ClO4)2 trap put on-line between the pumping unit and the
Silcocan. The filling procedure included evacuation of the Silcocan first, then two times
filling to 1 atm above ambient followed by evacuation, and lastly filling to 2.8 bar. The
surface sample was collected on 16 July 2008 at 10:00 p.m. local time. The air sam-
ples were then analyzed with an established protocol (Wang and Mak, 2010) at Stony20

Brook University in November/December 2008, 5 to 6 months after collection. Concen-
tration and isotopic ratios (δ13C and δ18O) were determined based on on-line cryo-
genic vacuum extraction followed by continuous-flow isotope ratio mass spectrometry
(CF-IRMS) (Wang and Mak, 2010). 100 ml sample (STP) was processed at a flow rate
of 50 ml min−1 for each run and 3 to 12 replicates were conducted for each sample.25

Calibration gas (CO mixing ratio 141 ppbv; δ13C=−45.56 ‰ VPDB; δ18O=−1.94 ‰
VSMOW) (Wang and Mak, 2010) was processed frequently between firn air samples,
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and the measurement results are shown in Fig. 1. Analytical precision of 3 ppbv (±1σ)
for CO concentration, 0.3 ‰ (±1σ) for δ13C and 0.8 ‰ (±1σ) for δ18O was obtained
for 100 ml firn air sample (STP).

Firn air samples were also collected from the same borehole (EU Borehole) in glass
flasks and analyzed for CO concentration at CSIRO, Australia, University of Heidelberg,5

Germany, as well as at NOAA/CMDL, USA, allowing for inter-laboratory comparison.
In addition, the 2008 US borehole (Buizert et al., 2011) was sampled and measured
for CO concentration at NOAA/CMDL and the University of Heidelberg (Petrenko et al.,
2011).

3 Results10

CO concentration and isotope profiles from NEEM firn air are shown in Fig. 2. Details
on discussions of CO concentration will be presented in a separate paper (Petrenko
et al., 2011) and CO concentration here is mainly used to evaluate our CO data with re-
spect to others. Good agreement of CO concentration trend was observed among four
independent labs, although there are differences in absolute values, most probably re-15

flecting different in calibration scales (see Petrenko et al., 2011, for further discussion).
The concentration profiles show that, on the Stony Brook scale, [CO] increases from
85 ppbv to 140 ppbv between the surface and 20 m of depth, followed by a relatively
constant value of around 130 ppbv to a depth of 60 m. The first feature results from the
seasonal variation of atmospheric CO concentrations, which ranged from, e.g., around20

160 ppbv in February 2008 to around 90 ppbv in August 2008 to in Summit, Greenland
(72.58◦ N; 38.48◦ W; 3238 m a.s.l.) (Novelli and Masarie, 2010). The surface observa-
tion on 16 July 2008, thus lies on the downward trend of the seasonal cycle, whereas
below about 35 m depth, the observed firn air CO concentration already reflects an
average atmospheric concentration over at least one year. A gradual increase of CO25

concentration is then observed from 60 m to 70 m, with measured peak value of around
155 ppbv at 70 m, followed by a gradual decrease down to the bottom of the firn.
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CO concentration peak at 70 m in NEEM firn layer is reproduced in deep NGRIP
(North Greenland Ice Core Project) firn, as well as deep firn at Summit, Greenland with
similar peak value (Petrenko et al., 2011), indicating CO is well preserved in NEEM firn
and that in-situ CO production affecting the firn air composition is unlikely at Greenland
sites without summer melting. The measured mixing ratio profiles for other trace gases5

such as SF6 also confirm that most NEEM samples are free of contamination with
ambient air and contamination in deepest samples is minimal (Buizert et al., 2011).

As for the CO isotopes, a seasonal imprint of both δ13C and δ18O in the first 0–
50 m is observed in NEEM firn (Fig. 2 and Sect. 4.2). δ13C of atmospheric CO at
Alert was −29 ‰ in September 1997 and −24 ‰ in May 1998, where δ18O ranged10

from −2 ‰ in August 1997 to 10 ‰ in February 1998 (Rockmann et al., 2002). Our
isotopic ratio data then exhibit more enriched values for δ13C below 50 m and for δ18O
below 60 m. As the mass difference between the 13CO–12CO (C18O–C16O) equals to
1 (2), the enrichment with depth of 13CO (C18O) with respect to the 12CO (C16O) due
to gravitational fractionation must be similar (twice) as gravitational enrichment of 15N–15
14N versus 14N–14N of molecular nitrogen. In the NEEM firn, δ15N of N2 amounts to
0.3 ‰ in the deepest air samples (Buizert et al., 2011). Thus gravitational enrichment
(0.3 ‰ for δ13C and 0.6 ‰ for δ18O) cannot account alone for the observed enrichment
of CO heavier isotopologues. This enrichment has to reflect diffusion gradients in the
NEEM firn and potential atmospheric changes of the CO isotopic ratios over the last20

several decades.

4 LGGE-GIPSA models of gas transport in firn

4.1 Model description

A 1-D inverse model initially developed by Rommelaere et al. (1997) and recently ex-
tended to isotopes was used to reconstruct the atmospheric trends of CO isotopes.25

The full procedure involves a suite of three models of gas transport in firn. A forward
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model provides the physical basis of all models and simulates a concentration pro-
file in firn using an atmospheric trend scenario as input. It needs to be constrained
by a depth profile of effective diffusivity in firn which is calculated by a new multi-gas
constrained optimization model. The LGGE-GIPSA forward and diffusivity optimization
models (Witrant et al., 2011) showed very good performances in a model comparison5

study based on the two NEEM 2008 firn air pumping operations (Buizert et al., 2011).
Alternatively, using a Dirac function as input, the forward model calculates a trace gas
age distribution (or Green function) which defines the response of the firn to a trace
gas change at the surface (Rommelaere et al., 1997).

Once the forward model has been properly constrained for a given firn air pumping10

site, the second step is to calculate the atmospheric trend scenario. The above Green
function and the target gas firn air concentrations with uncertainties are then used as
input to the inverse scenario diffusion model, in order to produce the calculated at-
mospheric trend. An infinite number of solutions can fit the data satisfactorily, thus
a regularization term aiming at selecting the simplest solution is used (Rommelaere15

et al., 1997). Isotopic records in firn are expressed as the deviation from a reference
of a concentration ratio between the major isotopologue and the target minor isotopo-
logue (δ unit). This unit is not mass-conservative and thus cannot be directly used in
most modeling studies. The variations with depth of isotopic ratios in firn can be due to
variations in the major isotopologue concentrations, the minor isotopologue concentra-20

tions, or both. Moreover, molecular diffusion coefficients are mass dependent (see e.g.,
Supplementary material in Buizert et al., 2011), thus trace gas transport in firn induces
an isotopic fractionation. The scenario reconstruction method used here is based on
separating the effects of the major and minor isotopologues on their concentration ra-
tio. The effect of the major isotopologue is first evaluated by using its atmospheric25

time trend as input to the forward model. A second forward model simulation calcu-
lates minor isotopologue concentrations in firn resulting from the latter scenario and
a constant isotopic ratio in the atmosphere. Then the isotopic ratios measured in firn
are corrected from this major isotopologue effect and the resulting values are inverted
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assuming a constant atmospheric concentration of the major isotopologue. The final
evaluation of the reconstructed atmospheric isotopic ratio is done by running again both
the major and minor isotopologue trends in the forward model (the latter is calculated
with regular δ to minor isotope concentration conversion using the former) in order to
check the consistency of the resulting isotopic ratios in firn with the measured values.5

In the case of CO isotopes, a data based CO concentration trend at Barrow, Alaska
(71.32◦ N 156.61◦ W 11 m a.s.l.) is available only since 1988 (Novelli and Masarie,
2010), thus an inverse model CO concentration trend (Petrenko et al., 2011) is used
in the reconstruction of atmospheric isotopic ratios for CO isotopes. Sensitivity tests
were performed in order to evaluate the effect of the uncertainty of the past CO trend10

on isotope reconstructions (see Sect. 4.4).

4.2 Impact of seasonal cycles on CO firn signals

Atmospheric CO and its stable isotopic ratios undergo strong seasonal variations (Mak
et al., 2003; Manning et al., 1997; Rockmann et al., 2002). In this section, we aim
at understanding how and until which depth firn results are affected by seasonality.15

The regularization term used in the inverse model for long-term atmospheric trend
reconstruction requires the use of a small second derivative of the scenario. Thus
the inverse model scenarios cannot capture seasonal changes. As a consequence,
the reconstruction of a long term atmospheric trend requires us to discard the firn data
strongly influenced by seasonality and/or correct the data from the effect of seasonality.20

Mean atmospheric seasonal cycles were estimated from atmospheric records of CO,
δ13C, and δ18O of CO in Iceland (Wang et al., 2011). Using the forward model, the
effect of seasonality on firn records is estimated on Fig. 3 for our target isotopic ratios
as the difference between concentrations in firn resulting from a constant atmospheric
scenario, and from a constant mean annual atmospheric scenario with a perpetual25

mean seasonality. The difference between both scenarios indicates that CO isotopic
ratios in firn can be seasonally influenced down to 50 m depth, and that most of the ob-
served δ13C and δ18O variations in the upper ∼40 m of the NEEM firn can be explained
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by the effect of seasonality (Fig. 3). However the amplitude of the seasonal effect is
small between 30 and 40 m depth (less than 0.1 ‰). Between 20 to 30 m, sub-monthly
time scale events in the atmosphere still potentially have a significant influence.

For the purpose of inverse modelling, our estimate of the seasonal effect was con-
sidered as acceptable when the corrected values fall within the mean uncertainty of5

the measured values. Thus the uppermost 3 data points for δ13C and 2 data points for
δ18O of CO were discarded. Seasonally corrected data were used at lower depths.

4.3 Atmospheric trend reconstructions for δ13C and δ
18O of CO

Best estimate atmospheric trends of CO concentration taken from (Petrenko et al.,
2011), δ13C and δ18O of CO are shown in Fig. 4. CO concentration trend will be10

discussed in Petrenko et al. (2011). We focus on CO isotopes here. Atmospheric
trends of δ13C and δ18O are required to explain the signal trends below 40 m of depth
but show small amplitude variations. The bell shape of the firn signals around 65 m
depth is mainly explained by the effect of the major isotopologue which peaks at simi-
lar depth in the firn. The root mean square deviation of the model results with respect15

to firn data (RMSDmod) is 0.27 ‰ for δ13C and 0.65 ‰ for δ18O. These numbers are
comparable to the experimental uncertainties. Varying the weight of the regularization
term (e.g. the imposed smoothness of the scenario) has more influence on δ13C than
δ18O (Fig. 5). The optimal solution for δ18O is nearly a linear trend with time. With
a less regular scenario, the model essentially tries to reduce the data-model discrep-20

ancy with the data point at 70 m depth. However, due to the gas age overlaps with
the neighboring data points at 68 and 72 m depth, an exact fit of the 70 m depth data
would require a very strong and unrealistic variation in the atmospheric scenario. The
variations of RMSDmod when varying the weight of the regularization term by five or-
ders of magnitudes are small: 0.63–0.70 ‰. RMSDmod varies more strongly for δ13C25

of CO: 0.19–0.31 ‰, in relation with a less stable behavior of the solution (Fig. 5). In
the firn, a less regular scenario for δ13C produces a steeper slope in the upper firn
(0–60 m). The higher/lower atmospheric values with respect to the optimal scenario
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can be related to higher/lower values in different depth ranges in firn which result in the
oscillating behavior of the scenario (the increasing values below 65 m are associated
with an atmospheric increase before 1952). The decreasing atmospheric trend in δ13C
in 2004–2008 is overall consistent with atmospheric data in Iceland (Wang et al., 2011)
but it should be reminded that at such short time scale, the model may not discriminate5

between the multi-annual trend and sub-annual events such as seasons with strong
biomass burning events.

4.4 Effect of CO past trend on isotope reconstructions

Isotopic ratios in firn are sensitive to variations of both the major and minor isotope (see
Sect. 4.1). Here we test the effect of uncertainties in the past CO trend on isotopic ra-10

tios. Eleven CO scenarios were built, aiming at covering the range of uncertainties (see
Supplement Fig. S1). Five of them use NEEM EU hole only CO data and smoothing
factors differing by five orders of magnitude, the other use different ways of averaging
single or multi-site simulations and connecting them to the ice core data (Haan et al.,
1996) (with or without rescaling). Supplement Fig. S1 shows the impact on δ13C and15

δ18O of using these different CO scenarios to reconstruct atmospheric isotopic trends.
The induced differences in both the atmospheric trends and the matching of firn data
fall well within uncertainties illustrated in Figs. 4 and 5. This indicates that the impact
on δ13C and δ18O of using these different CO scenarios to reconstruct atmospheric
isotopic trends is very small.20

4.5 Sensitivity to the deepest measurement for δ13C of CO

Trace gas concentrations in deep firn are affected by air removal from the firn by trap-
ping in bubbles. They also undergo the longest age mixing. As a consequence, they
do not constrain well the atmospheric trend at the times corresponding to their age dis-
tribution. The inverse model being only partially constrained, the fit of the deepest firn25

data is dependent on scenario values at longer time scales than its significant length.
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Supplement Fig. S2 illustrates the effect of not using the deepest measurement of
δ13C as a constraint for the inverse model. The results remain within error bars be-
tween 1940 and 2008 but lead to a somewhat different shape of the scenario for the
whole period. Figure S2 suggests that the early trend in δ13C (before ∼1975) is influ-
enced by the last data point.5

5 Discussions

The variation of CO concentration as well as the shifts of both isotopic ratios since 1950
indicates significant variations in CO source strengths and/or a change in the CO loss
rate. Isotopic ratios help us to distinguish between CO from different sources (Bren-
ninkmeijer, 1993; Stevens et al., 1972; Stevens and Wagner, 1989). Notably C18O10

is a good tracer for distinguishing combustion-derived CO (e.g. fossil fuel combustion
or biomass burning) from non-combustion derived CO (e.g. hydrocarbon oxidation)
(Brenninkmeijer and Rockmann, 1997). 18O enriched sources are fossil fuel combus-
tion, biomass burning and biofuel (Stevens et al., 1972; Stevens and Wagner, 1989;
Kato et al., 1999; Brenninkmeijer and Rockmann, 1997).15

An isotope mass balance model is used to quantify the different source partitioning
(Mak and Kra, 1999; Wang et al., 2010). The isotope mass balance model used in this
study includes the following equations:

7∑
i=1

[COi ]=[CO] (1)

20

7∑
i=1

[COi ]×δ18Oi=[CO]×δ18O (2)

where i denotes a given CO source: fossil fuel combustion, methane oxidation, NMHC
oxidation, biofuel burning, biomass burning, direct biogenic, and oceanic emission.
[COi ] stands for CO concentration from each source and [CO] is the atmospheric CO
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concentration derived from Greenland firn air measurements and diffusion model sim-
ulations (Petrenko et al., 2011). δ18Oi is the δ18O source signature at high northern
latitude and δ18O is the δ18O of atmospheric CO from NEEM firn air measurements
and diffusion model simulations in this study (Fig. 4). Both the best estimate of CO con-
centration and δ18O values and envelope values from LGGE-GIPSA models simulation5

will be used to calculate the mean source partitioning and uncertainties.
The δ13C data are not used in the mass balance calculation because δ13C signa-

tures for different Northern Hemisphere CO sources have much larger uncertainties.
First, the δ13C signature for biomass burning is largely uncertain since it is dependent
on the burned C3/C4 plants ratio, which could vary temporally and will be hard to be10

determined. Second, δ13C signatures for NMHC oxidation are also highly uncertain
since different NMHC have different carbon isotopic signatures (Rudolph et al., 1997)
and particularly the kinetic isotope effects for NMHC+OH cover a large range for dif-
ferent NMHCs (Iannone et al., 2003, 2009; Rudolph et al., 2000). Therefore, only δ18O
is used in the following mass balance calculation. A more detailed discussion of δ13C15

data is provided in the Supplement.
Assuming steady state, which is reasonable since CO lifetime is much shorter than

the decadal scale we are interested in, the contribution of methane to CO is only de-
pendent on the abundance of methane. [CO] from methane oxidation at high northern
latitude is calculated based on an atmospheric methane concentration trend (Buizert20

et al., 2011) and the following equation:

[CO]CH4
=k1/k2× [CH4] (3)

where [CO]CH4
is the methane-derived [CO], k1 is the rate constant of CH4+OH reac-

tion, k2 is the rate constant of CO +OH reaction, and [CH4] is the methane concentra-
tion.25

The δ18O signatures for different sources and [CO] contributions from these sources
in modern atmosphere at high northern latitude (Iceland: 63◦15′ N 20◦09′ W) have been
calculated with MOZART-4 model simulations (Model for Ozone and Related Chemi-
cal Tracers, version 4) (Emmons et al., 2010; Park, 2010) (Table 1). Simulations on
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other high northern latitudes such as Alert (78.5◦ N 11.5◦ W) and Spitsbergen (81.3◦ N
62.3◦ W) show very consistent results on CO contributions and δ18O. Variations of
δ18O source signatures over time are not taken into account since the mechanisms
of CO derived from different sources such as fossil fuel combustion, biomass burning,
NMHC/CH4 oxidation etc. are assumed to be constant over the last 60 yr.5

In the isotope mass balance model and in order to reduce the number of free pa-
rameters in the equation, biogenic and marine emissions since 1950 are fixed at to-
day’s values and their [CO] contributions are shown in Table 1. Marine CO emission
is tiny (1 %) and it is dependent on the solar radiation (particularly UV irradiance) and
dissolved organic matter (DOM) (Bauer et al., 1980; Conrad and Seiler, 1980). UV10

irradiance may have increased by 1.42 % since 1610 (Lean et al., 1995). Very large
variation of global or hemispheric ocean DOM amount did not likely occur in a short
period of time (e.g. 50 yr). A constant marine emission can thus be reasonably as-
sumed. Direct biogenic emission accounts for 10 % and it is likely a result of direct
photochemical transformation occurring inside the leaf (Tarr et al., 1995). We assume15

that biogenic emission is dependent on solar radiation and the amount of biomass (or
roughly on vegetation area). Considering small changes of vegetation area from 10
different world regions in 1950–1992 (Pongratz et al., 2008), the biogenic emission of
CO is assumed to be constant since 1950.

Biomass burning contribution is calculated based on simulated present-day value at20

Iceland 1997–2004 (Table 1) and biomass burning reconstructions for the past. It has
been found that around 90 % of biomass burning-derived CO at high northern latitudes
originates mainly from the Northern Hemisphere (NH) (Park, 2010). We use histori-
cal NH CO emission from biomass burning in 1950–2000 (Ito and Penner, 2005) and
biomass burning CO contribution at Iceland in 1997–2004 from MOZART-4 simulation25

(Table 1; Park, 2010) to scale the biomass burning contribution at the NEEM site since
1950. An uncertainty of ±50 % is considered in the scaling based on the uncertainty
suggested in Ito and Penner (2005). The resulting CO contribution from biomass burn-
ing bears a ±35 % uncertainty if we use historical global biomass burning CO emission
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data instead of NH biomass burning CO emission data (Ito and Penner, 2005). The
CO contributions from biomass burning calculated from other historical global biomass
burning CO emission using model simulations (van Aardenne et al., 2001; Lamarque
et al., 2010) and global wildfire simulations (Pechony and Shindell, 2010) (they assume
that CO emission from biomass burning is proportional to the fire activity each year in5

1950–2000) are within a ±50 % envelope.
CO derived from biofuel emission at high northern latitudes originates mainly from

the Northern Hemisphere (Park, 2010). Between 1950 and 2000, biofuel use in Asia
and Africa grew rapidly and dominates the global biofuel use as a result of population
growth in the developing countries (Fernandes et al., 2007). We thus use historical10

NH CO emission from biofuel burning in 1950–2000 (Ito and Penner, 2005) and biofuel
burning CO contribution at Iceland in 1997–2004 from MOZART-4 simulation (Table 1)
to scale the biofuel burning contribution at the NEEM site since 1950. An uncertainty
of ±50 % is considered in the scaling based on the uncertainty suggested in Ito and
Penner (2005). Even if we use historical global biofuel burning CO emission data in-15

stead of NH biofuel burning CO emission data (Ito and Penner, 2005), the results of CO
contribution from biofuel burning remain within a ±50 % envelope. Results based on
other historical global biofuel burning CO emission model simulations (van Aardenne
et al., 2001) are also within the ±50 % envelope. The historical CO emissions from
NH biomass and biofuel burning and relevant CO contribution by scaling are shown20

in Fig. 6. The biomass and biofuel inventory during 1997–2000 used in MOZART-4
simulation is within the uncertainty of those in historical reconstructions (Ito and Pen-
ner, 2005). The 1997–2000 CO contributions calculated by MOZART-4 simulation also
agree well with those from the scaling method decribed above, except for year 1998
which is affected by large wildfires.25

The two remaining variables are fossil fuel combustion and NMHC oxidation, which
can be evaluated from the above equations based on the CO reconstruction data from
LGGE-GIPSA models (Fig. 4).
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So far, we have assumed that the observations were driven by variations in CO
source strengths. It is possible, however, that the removal rate of CO by OH could
have changed. Previous studies showed that interannual variation of atmospheric OH
is less than 10 % since the late 1970s (Prinn et al., 2005; Bousquet et al., 2005).
This 10 % variation causes δ18O of CO changes of only 0.5 ‰ based on MOZART-45

simulation, which is lower than our analytical uncertainty. A recent study suggests that
the interannual variability of global [OH] was less than 5 % during 1985–2008 (Montzka
et al., 2011). There is no [OH] record available before the end of 1970s. Therefore, we
assume CO removal by OH has been constant over the past 50 yr.

The temporal evolution of CO partitioning between fossil fuel combustion and NMHC10

oxidation since 1950 calculated by the isotope mass balance model (Wang et al., 2010)
is shown in Fig. 7. It clearly suggests a dominant control from fossil fuel combustion
variation at high northern latitude since 1950 on the δ18O trend in Fig. 4. The first
feature along time is that CO contribution from methane oxidation has continuously
increased since 1950, which mainly causes a decrease of δ18O, since methane ox-15

idation source is depleted in 18O. We also find that no significant change in NMHC
oxidation has occurred since 1950. However, large variations of CO emissions from
fossil fuel combustion are suggested to have occurred since 1950. CO contribution
from fossil fuel combustion increased slightly from 1950 to the mid-1970s, and started
to decrease since then, and decreased 30 % from the mid-1970s to 2000. CO from20

fossil fuel combustion was as large as 59 % of all CO sources at high northern lati-
tudes in 1950, which is much larger than that for present day (32 % in Table 1). The
increase of [CO] from 1950 to the mid-1970s is thus the result of a combined increase
of all sources except for the two fixed sources. The decrease of δ18O during this time
is mainly caused by the increase of CO contribution from methane oxidation. The com-25

bined decrease of [CO] and its δ18O after the mid-1970s requires the decrease of CO
contribution from fossil fuel combustion during this time.

MOZART-4 simulation shows that CO at high northern latitude originates from three
major regions: North America, Western Europe, and Northern Asia (Park, 2010). The
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historical fossil fuel CO2 emissions in 1950–2006 for these three regions are shown
in Fig. 8. CO2 emissions from fossil fuel combustion increased from 1950 to the mid-
1970s, implying an increase of CO emissions from fossil fuel combustion during this
time (Fig. 7). On the other hand, the decrease of CO contribution after the mid-1970s
from our calculation (Fig. 7c) goes opposite with a net CO2 emission increase of ∼20 %5

between the mid-1970s and 2000.
We propose that the reduction of CO from fossil fuel combustion after the mid-1970s

reflects the implementation of catalytic converters in thermal-engine vehicles in North
America during this time. The catalytic converter was invented and was applied in
vehicles since late 1970s largely in the United States and Canada (Kummer, 1980;10

Young and Finlayson, 1976). Catalytic converters effectively reduce the CO emission
from vehicle exhaust (Tsunogai et al., 2003) based on the oxidation reaction 2CO+
O2 →CO2. CO emission from fossil fuel combustion would thus have dropped since
the mid-1970s, counteracting the CO growth due to the concomitant CH4 increase. It
would explain at least partly the [CO] peak in the late 1970s (Petrenko et al., 2011) and15

the decrease of its δ18O (Fig. 4).
Catalytic converters were introduced in Europe in 1975 and became mandatory in

1993. As a result, the CO emissions from fossil fuel combustion in Europe likely de-
creased only in the 1990s, which could cause the drop of CO from fossil fuel com-
bustion during this time. Moreover, growth of market share for diesel engine vehicles,20

improvements in the automobile technologies including three-way oxidation/reduction
catalytic converters, electronic ignition, fuel injection, and engine computer control in
the period 1990-present have possibly resulted in further reductions in vehicle CO
emissions.

Lead in gasoline can spoil the catalytic converter by forming a coating on the sur-25

face of the catalyst and disable the converter effectively. Vehicle manufacturers thus
required the oil companies to remove lead from gasoline and substitute it with other
chemical compounds to maintain the octane number (methyl tert-butyl ether (MTBE)
in the USA, or higher concentration of benzene, toluene, ethylbenzene and xylenes
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(BTEX) in Europe). The temporal variations of lead concentration in the Northern
Hemisphere should thus reflect the timeline of the application of catalytic converters.
The mandated phase-out of leaded gasoline preceded the application of catalytic con-
verters, suggesting the decrease of Pb emissions preceded the decrease of CO emis-
sions from fossil fuel combustion. Resulting from widespread use of leaded gasoline,5

Greenland ice core Pb concentration increased sharply from the 1950s and generally
remained high until 1970 (Fig. 9). With passage of the US Clean Air Act and similar
legislation in other countries (McConnell et al., 2002; McConnell and Edwards, 2008),
the Pb concentration started to drop after 1970. Most of the decline in Pb concentration
since the early 1970s came from the mandated phase-out of leaded gasoline, which10

allowed the usage of catalytic converters and reduced the on-road vehicle emissions
significantly (McConnell et al., 2002). The US on-road vehicle Pb emissions dropped
more than 99 % from 156 003 metric tons in 1970 to 17 metric tons in 1998 (EPA,
2000). Figure 9 indicates that the drop of Pb emissions from vehicles was followed
by that of CO emissions from fossil fuel combustion. This is consistent with the ex-15

pectation and supporting our conclusion that catalytic converters largely decrease the
on-road vehicle CO emissions affecting CO concentrations over Greenland.

Previous model simulations based on energy consumption data and emission fac-
tors (Lamarque et al., 2010; van Aardenne et al., 2001) suggested that global an-
thropogenic emissions of CO had been steadily increasing from 1950 to 1990. One20

of the main anthropogenic sources of atmospheric CO is emissions from fossil fuel
combustion (Duncan et al., 2007), most of which is taking place in Northern Hemi-
sphere (Petron et al., 2004). However, our results combining CO concentration evolu-
tion with those of its δ18O isotopic signature suggest that CO emission from fossil fuel
combustion has been decreasing since the late-1970s in the Northern Hemisphere.25

The continuous increase of CO emissions from biomass/biofuel burning and fossil fuel
combustion in model simulations (Lamarque et al., 2010; van Aardenne et al., 2001)
could not explain the observed atmospheric trend of CO concentration (Petrenko et al.,
2011) and of its δ18O (Fig. 4). In contrast, our calculated temporal evolution of CO
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contribution from fossil fuel combustion more likely explains both signals as fossil fuel
combustion is the biggest source and the most 18O enriched CO source at high north-
ern latitudes. A very recent study has assessed several different inventories of global
and regional anthropogenic and biomass burning emissions for the 1980–2010 period
and large discrepancies of CO emissions for both global and regional are identified5

(Granier et al., 2011). Our conclusion thus raises unanswered questions on the reason
of the inconsistency between the previous model simulations and the present calcula-
tion of fossil fuel combustion CO emissions in the Northern Hemisphere. This could
have consequences for correctly estimating the radiative forcing of tropospheric ozone
in the past as it directly depends on CO emission scenarios.10

6 Conclusions

In this study, we present the first record of isotopic ratios of carbon monoxide at high
northern latitudes since 1950 based on measurements on NEEM firn air and the use
of the LGGE-GIPSA models of gas transport in firn. Combined with the CO recon-
struction from different measurement sets on the same firn air (Petrenko et al., 2011)15

and an isotope mass balance model, we calculate the temporal evolution of CO source
partitioning since 1950. The mass balance model results suggest that variations in
fossil-fuel-derived CO are the primary factor behind the observed CO concentration
and its δ18O trends at high northern latitude since 1950. The decrease of CO emission
from fossil fuel combustion since the mid-1970s is ascribed to the invention and ap-20

plication of catalytic converters in the Northern Hemisphere, and the growth of diesel
engine vehicle market share in Europe, both of which contributing to reduce CO emis-
sions from vehicles.
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Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/11/30627/2011/
acpd-11-30627-2011-supplement.pdf.
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Röckmann, T., Jöckel, P., Gros, V., Bräunlich, M., Possnert, G., and Brenninkmeijer, C. A. M.:
Using 14C, 13C, 18O and 17O isotopic variations to provide insights into the high northern10

latitude surface CO inventory, Atmos. Chem. Phys., 2, 147–159, doi:10.5194/acp-2-147-
2002, 2002.

Rommelaere, V., Arnaud, L., and Barnola, J. M.: Reconstructing recent atmospheric trace gas
concentrations from polar firn and bubbly ice data by inverse methods, J. Geophys. Res.-
Atmos., 102, 30069–30083, 1997.15

Rudolph, J., Lowe, D. C., Martin, R. J., and Clarkson, T. S.: A novel method for compound
specific determination of δ13C in volatile organic compounds at ppt levels in ambient air,
Geophys. Res. Lett., 24, 659–662, 1997.

Rudolph, J., Czuba, E., and Huang, L.: The stable carbon isotope fractionation for reactions
of selected hydrocarbons with OH-radicals and its relevance for atmospheric chemistry, J.20

Geophys. Res.-Atmos., 105, 29329–29346, 2000.
Schwander, J. and Stauffer, B.: Age difference between polar ice and the air trapped in its

bubbles, Nature, 311, 45–47, 1984.
Seiler, W.: Cycle of atmospheric CO, Tellus, 26, 116–135, 1974.
Seiler, W. and Junge, C.: Carbon monoxide in atmosphere, J. Geophys. Res., 75, 2217–2226,25

1970.
Stevens, C. M. and Wagner, A. F.: The role of isotope fractionation effects in atmospheric

chemistry, Z. Naturfosch. A, 44, 376–384, 1989.
Stevens, C. M., Walling, D., Venters, A., Ross, L. E., Engelkem, A., and Krout, L.: Isotopic

composition of atmospheric carbon-monoxide, Earth Planet. Sc. Lett., 16, 147–165, 1972.30

Tarr, M. A., Miller, W. L., and Zepp, R. G.: Direct carbon monoxide photoproduction from plant
matter, J. Geophys. Res.-Atmos., 100, 11403–11413, 1995.

Tsunogai, U., Hachisu, Y., Komatsu, D. D., Nakagawa, F., Gamo, T., and Akiyama, K.: An

30652

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/30627/2011/acpd-11-30627-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/30627/2011/acpd-11-30627-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2004gl022228
http://dx.doi.org/10.5194/acp-2-147-2002
http://dx.doi.org/10.5194/acp-2-147-2002
http://dx.doi.org/10.5194/acp-2-147-2002


ACPD
11, 30627–30663, 2011

Northern Hemisphere
atmospheric carbon

monoxide

Z. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

updated estimation of the stable carbon and oxygen isotopic compositions of automobile CO
emissions, Atmos. Environ., 37, 4901–4910, doi:10.1016/j.atmosenv.2003.08.008, 2003.

Wang, Z. and Mak, J. E.: A new CF-IRMS system for quantifying stable isotopes of car-
bon monoxide from ice cores and small air samples, Atmos. Meas. Tech., 3, 1307–1317,
doi:10.5194/amt-3-1307-2010, 2010.5

Wang, Z., Chappellaz, J., Park, K., and Mak, J. E.: Large variations in Southern
Hemisphere biomass burning during the last 650 years, Science, 330, 1663–1666,
doi:10.1126/science.1197257, 2010.

Wang, Z., Park, K., and Mak, J. E.: Interannual variations of anthropogenic source of atmo-
spheric CO at high northern latitudes during 2004–2009, in preparation, 2011.10

Weinstock, B.: Carbon monoxide: residence time in atmosphere, Science, 166, 224–225,
1969.

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arel-
lano Jr., A. F.: Interannual variability in global biomass burning emissions from 1997 to 2004,
Atmos. Chem. Phys., 6, 3423–3441, doi:10.5194/acp-6-3423-2006, 2006.15

Witrant, E., Martinerie, P., Hogan, C., Laube, J. C., Kawamura, K., Capron, E., Montzka, S. A.,
Dlugokencky, E. J., Etheridge, D., Blunier, T., and Sturges, W. T.: A new multi-gas constrained
model of trace gas non-homogeneous transport in firn: evaluation and behavior at eleven
polar sites, Atmos. Chem. Phys. Discuss., 11, 23029–23080, doi:10.5194/acpd-11-23029-
2011, 2011.20

Young, L. C. and Finlayson, B. A.: Mathematical models of monolith catallytic converter 2:
application to automobile exhaust, Aiche J., 22, 343–353, 1976.

30653

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/30627/2011/acpd-11-30627-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/30627/2011/acpd-11-30627-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.atmosenv.2003.08.008
http://dx.doi.org/10.5194/amt-3-1307-2010
http://dx.doi.org/10.1126/science.1197257
http://dx.doi.org/10.5194/acp-6-3423-2006
http://dx.doi.org/10.5194/acpd-11-23029-2011
http://dx.doi.org/10.5194/acpd-11-23029-2011
http://dx.doi.org/10.5194/acpd-11-23029-2011


ACPD
11, 30627–30663, 2011

Northern Hemisphere
atmospheric carbon

monoxide

Z. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. MOZART-4 simulations on atmospheric CO at Iceland in January 1997–December
2004.

Sources [CO]source Relative Source δ18O δ18O at Iceland
contribution (‰)a (‰)b

Fossil fuel 40 32 % 24 20
Methane oxidation 28 22 % 0 −9
NMHC oxidation 21 17 % 0 −8
Biofuel 12 10 % 18 10
Biomass burning 12 9 % 18 9
Biogenic 11 9 % 0 −5
Ocean 1 1 % 15 10

a These are original δ18O signatures used for each type of emission in the model.
b δ18O at Iceland is the isotopic ratio calculated in the model based on the ratio between [C16O] and [C18O] at Iceland.
Data after Park (2010).
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Fig. 1. Measurements of (a) δ13C and (b) δ18O(CO2) for calibration gas during the measure-
ment period of the NEEM firn air samples (see details of method in Wang and Mak, 2010). S.D.
stands for ±1σ standard deviation.
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812 
 Fig. 2. 813 

814 

Fig. 2. Observations for the mixing ratio and isotopic ratios of CO in NEEM firn air collected
from the EU 2008 borehole. Top panel: [CO] in this study (green squares); middle panel: δ13C
of CO in this study (cross); bottom: δ18O of CO in this study. Error bars are ±1σ standard
deviations on replicates from 3 to 12 measurements at each depth level.
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35 

 

 815 

Fig. 3.816 Fig. 3. Estimation of the effect of atmospheric seasonality on δ13C (left) and δ18O (right) of CO
in NEEM firn. Measured isotopic ratios are shown as black circles with error bars, and green
stars show δ13C and δ18O values corrected from the effect of seasonality. Simulated values
with constant atmospheric trends are plotted as black lines, simulated values with constant
atmospheric trends and perpertual mean seasonal cycle are plotted as green dashed lines. The
increasing isotopic ratios with depth obtained from constant scenarios (black lines) illustrate
the effect of gravitational fractionation. The purple and blue dashed lines illustrate the effect of
shifting the final date of the simulation (drill date) by plus or minus 15 days, respectively.
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817 
 818 

Fig. 4. 819 

820 

Fig. 4. Best estimate trends of CO concentration (Petrenko et al., 2011) and isotopic ratios
simulated by LGGE-GIPSA models of gas transport in firn. Best estimate time trends and
uncertainty envelopes in firn are shown as continuous black lines and dashed black lines, re-
spectively.
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 821 

Fig. 5. 822 
823 

Fig. 5. Best estimate trends of CO isotopes and influence of the regularization factor. Best esti-
mate time trends (in black) and the resulting isotopic ratios in firn are the same as in Fig. 4. The
grey lines on right panels show the effect of the CO trend scenario with constant atmospheric
isotopic ratio. Blue lines show the effect of increasing the weight of the regularization term by
a factor of 10 (short dashed lines) and 100 (long dashed lines). Green lines show the effect of
decreasing the weight of the regularization term by a factor of 10 (short dashed lines) and 100
(long dashed lines). The circles with error bars on right panels show the measurements, and
those in grey were not used in the scenario reconstruction. Grey lines on the right panels show
the de-seasonalized atmospheric trends in Iceland (Wang et al., 2011).
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 824 

Fig. 6. 825 

826 

Fig. 6. (a) and (c): estimated CO emissions from NH biomass and biofuel burning (Tg CO yr−1)
based on model simulation (Ito and Penner, 2005). Also shown are 1997–2004 NH CO emis-
sion inventory of biomass burning (van der Werf et al., 2006) (green stars) and biofuel burning
(Petron et al., 2004) (red squares), used in MOZART-4 simulation (Park, 2010). (b) and (d):
calculated CO contribution (ppbv) from biomass ([CO]BB) and biofuel ([CO]BF burning by scaling
(see text), which is used in the isotope mass balance model. Also shown are CO contributions
from biomass burning (grey diamonds) and biofuel burning (blue crosses) at high northern lat-
itudes in MOZART-4 simulation (Park, 2010). Shading areas show the ±50 % uncertainty for
estimating both biomass burning and biofuel burning emissions.

30660

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/30627/2011/acpd-11-30627-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/30627/2011/acpd-11-30627-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 30627–30663, 2011

Northern Hemisphere
atmospheric carbon

monoxide

Z. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

39 

 

0

10

20

30

40

15

20

25

30

1950 1960 1970 1980 1990 2000

20

40

60

80

100

120

 Iceland in 1997-2004 (Park, 2010)

B

  

 

C
O

] N
M

H
C
 (

pp
bv

)

 [CO] from methane oxidation deduced from Buizert et al., 2011
 [CO] from methane oxidation at Iceland (Park, 2010)

[C
H

4 ]  ( ppbv)

 

 

[C
O

] C
H

4 (
pp

bv
)

A

 Iceland in 1997-2004 (Park, 2010)

C

  

 

Year (AD)

[C
O

] F
F
 (

pp
bv

)

0

400

800

1200

1600

2000

 [CH
4
] from NEEM firn (Buizert et al., 2011)

 

 

 Mean value from firn air data (This study)

 

 

 Mean value from firn air data (This study)

 

 827 

Fig. 7. 828 

829 

Fig. 7. Modeled CO source partitioning based on observations and isotope mass balance
model: (A) Methane atmospheric trend at high northern latitude (Buizert et al., 2011) (red
squares) and [CO] from methane oxidation ([CO]CH4

) deduced from the methane concentra-
tion (green circles); (B) [CO] from NMHC oxidation ([CO]NMHC), and (C) [CO] from fossil fuel
combustion ([CO]FF). Thick lines in (B) and (C) represent the mean values of different scenar-
ios and shaded areas represent the uncertainties which arise from the LGGE-GIPSA models
simulation uncertainties on both CO concentration and δ18O as well as the uncertainties for
estimating historical CO emissions from biofuel and biomass burning (Ito and Penner, 2005).
[CO] derived from the three major sources since 1950 is calculated based on an isotope mass
balance model (Wang et al., 2010). CO source partitioning at present day is calculated based
on MOZART-4 simulation and CO measurements in 1997–2004 at Iceland (orange squares)
(Park, 2010).
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Fig. 8. 832 

833 

Fig. 8. Fossil-Fuel CO2 emissions in these mid-high latitude Northern Hemisphere regions.
Symbols link to left y-axis and indicate the CO2 emissions in three different regions: green
triangles: North Asia; blue diamonds: Western Europe; red squares: North America. Black
line links to right y-axis and stands for the sum of CO2 emissions from the above three regions
(Marland et al., 2008).
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Fig. 9. 835  Fig. 9. Correlation between Greenland lead concentrations in snow cores (McConnell and Ed-

wards, 2008) and our reconstructed CO contribution from fossil fuel combustion in 1950–2000
(same as Fig. 7c: solid line shows the mean values and dotted lines show the uncertainties).
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