Atmos. Chem. Phys. Discuss., 11, 26815–26848, 2011 www.atmos-chem-phys-discuss.net/11/26815/2011/ doi:10.5194/acpd-11-26815-2011 © Author(s) 2011. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

The adsorption of peroxynitric acid on ice between 230 K and 253 K

T. Ulrich^{1,2}, M. Ammann¹, S. Leutwyler², and T. Bartels-Rausch¹

¹Department of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland ²Department of Chemistry and Biochemistry, University of Berne, Berne, Switzerland

Received: 12 September 2011 – Accepted: 22 September 2011 – Published: 28 September 2011

Correspondence to: T. Bartels-Rausch (thorsten.bartels-rausch@psi.ch)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Discussion Pa	ACPD 11, 26815–26848, 2011						
per Discussior	The adso peroxynite ice betwo and 2 T. Ulric	The adsorption of peroxynitric acid on ice between 230 K and 253 K T. Ulrich et al.					
ר Paper	Title	Title Page					
	Abstract	Introduction					
Disc	Conclusions	References					
ussion	Tables	Figures ►I					
Pap	14						
θŗ	•	•					
	Back	Close					
iscussi	Full Screen / Esc						
on P	Printer-friendly Version						
aper	Interactive Discussion						

Abstract

Peroxynitric acid uptake to ice and snow has been proposed to be a major loss process from the atmosphere with impacts on the atmospheric oxidation capacity. Here we present results from a laboratory study on the interaction of peroxynitric acid with

- ⁵ water ice at low concentrations. Experiments were performed in a coated wall flow tube at atmospheric pressure and in the environmentally relevant temperature range of 230 K to 253 K. The interaction was found to be fully reversible and decomposition was not observed. Analysis based on the Langmuir adsorption model showed that the partitioning of peroxynitric acid to ice is orders of magnitude lower than of nitric acid and similar to nitrous acid partitioning behavior. The partition coefficient (K_{LinC}) and its temperature dependency can be described by $3.74 \times 10^{-12} \times e^{(7098/T)}$ [cm]. Atmospheric
- implications are discussed and show that the uptake to cirrus clouds or to snow-packs in polar areas is an important sink for peroxynitric acid in the environment.

1 Introduction

- ¹⁵ The nitrogen oxide peroxynitric acid (HO₂NO₂) is an atmospheric trace gas that interlinks both HO_x (= OH + HO₂) and NO_x (= NO + NO₂) chemistry. Connected with those trace gas families are the rate of ozone (O₃) production and also the oxidative capacity of the atmosphere. Because HO₂NO₂ is thermally unstable (Gierczak et al., 2005), HO₂NO₂ makes up a significant fraction of the total nitrogen oxide budget in the colder
- ²⁰ parts of the environment. Concentrations up to 1.6×10^9 molecules cm⁻³ have been measured at South Pole (Slusher et al., 2002), up to 2.9×10^{10} molecules cm⁻³ above the Antarctic plateau (Slusher et al., 2010) and a mean of 5.7×10^8 molecules cm⁻³ in the upper troposphere (Kim et al., 2007). The thermal lifetime of HO₂NO₂ is a strong function of temperature and is approximately a few seconds at 298 K, 10 h in
- the upper troposphere, and 2 h at South Pole. Currently, the fate of HO_2NO_2 in the atmosphere is not well enough known to be captured in atmospheric-chemistry mod-

els, which generally overestimate its gas-phase concentrations. The observed diurnal profiles of HO₂NO₂ at South Pole could only be explained when postulating a strong sink removing HO₂NO₂ from the gas-phase (Slusher et al., 2002). Deposition to snow has been proposed as such sink. Also, the observed decrease in gas-phase HO_x con-

- $_{\rm 5}$ centration at high NO_x levels was explained by the deposition of HO₂NO₂ to the snow (Chen et al., 2001; Grannas et al., 2007). In the upper troposphere, a HO₂NO₂ sink is also missing from the model descriptions; currently the observed altitude profiles cannot be reproduced. In their field study Kim et al. (2007) did not find a clear indication for reduced HO₂NO₂ gas-phase concentrations in ice clouds, but data is insufficient to draw sound conclusions, and uptake to ice particles in cirrus clouds remains one of several potential sink processes as the authors noted.
- 10

15

The choice to include a strong deposition of HO₂NO₂ to the snow or ice clouds was motivated by an earlier laboratory study that showed a strong irreversible uptake of HO₂NO₂ to ice (Li et al., 1996). In their study Li et al. (1996) derived a steady state uptake coefficient of 0.2 for HO₂NO₂ on ice. The uptake coefficient is defined as the net probability that a molecule that gas-kinetically collides with a surface is taken up at the

- surface. Values of 0.2 persisting over longer times indicate a strong uptake. A strong uptake over longer timescales has been recognized for acidic trace gases such as HNO₃ (Huthwelker et al., 2006; Ullerstam et al., 2005). The results of Li et al. (1996) are however not representative for HO₂NO₂ ice interactions, because the experiments have 20
- been performed at very high concentrations of HO₂NO₂. HO₂NO₂hydrates may form at such high HO₂NO₂ levels. Further, HNO₃ concentrations, a by-product of the HO₂NO₂ synthesis, were so high that the work was certainly done outside the ice stability regime of the HNO₃ –water phase diagram. Both might well explain the observed long lasting uptake. Uptake behavior to ice surfaces might therefore be distinctly different than 25 observed by Li et al. (1996). The main aim of this study was thus to investigate the
- uptake of HO_2NO_2 to ice at low surface coverage of HO_2NO_2 and its by-products. Further the uptake of HO₂NO₂ to ice is compared with that of other trace gases and discussed, based on their solubility and acidity.

2 Methods

The interaction of HO₂NO₂ with a smooth water-ice film was studied in a coated wall flow tube (CWFT) at atmospheric pressure. The HO₂NO₂ was synthesized in the gas phase by reaction of NO₂ with HO₂ and monitored by means of a chemical ionization
⁵ mass spectrometer (CIMS) situated after the CWFT. Figure 1 shows the setup of the experiments. Gases originate from certified gas bottles of N₂ (CarbaGas, 99.999%), 20% O₂ (CarbaGas, 99.995%) in N₂ (CarbaGas, 99.999%), 10 ppm NO (Messer, 99.8%) in N₂ (Messer, 99.999%) and 10% CO (Messer, 99.997%) in N₂ (Messer, 99.999%). Gas flows were controlled with calibrated mass flow controllers (Brooks 5850) or gas flow regulators (Voegtlin red-y) with better than 1% accuracy. The flow through the CWFT was given by the size of the sampling orifice situated between the CWFT and the CIMS at low pressure. The volumetric gas flows were measured once a day with a gas flow calibrator (M-5 mini-Buck Calibrator, A.P. Buck Inc.) with 0.5% accuracy. All flows in this work refer to standard pressure and temperature (1.013×10⁵)

- Pa and 273.15 K). The entire flow system consisted of perfluoroalkoxy (PFA) tubing. The synthesis has been described previously (Bartels-Rausch et al., 2011). First, NO₂ is quantitatively synthesized in a reactor of 2 L (RV 1, Fig. 1) by mixing a flow of 83 ml min⁻¹ NO in N₂ with a flow of 700 ml min⁻¹ N₂ and a small flow (around 6 ml min⁻¹) of O₃. O₃ is produced by irradiating dry synthetic air with 172 nm light (PhotRct 1, Fig. 1). Then HO₂NO₂ is produced by the reaction of NO₂ with HO₂, which is synthesized by photolysis of H₂O in presence of CO and O₂ also at 172 nm. NO₂ at typically 3.4×10¹² molecules cm⁻³ initial concentration is also present for immediate reaction in the photolysis reactor (PhotRct 2, Fig. 1), where the synthesis took place. CO lowers the yield of HNO₃ and raises the yield of HO₂NO₂ as shown in BartelsRausch et al. (2011). In the photolysis reactor a flow of 700 ml min⁻¹ N₂ was mixed with 2.5 ml min⁻¹ CO and with 783 ml min⁻¹ NO₂ in N₂. About half of the experiments
- were done at a higher CO flow of $10 \,\mathrm{mmm}^{-1}$. The residence time in the photolysis reactor was 270 ms. Humidity in the photolysis reactor was set to 10%. The concen-

tration of the by-products HONO, HNO₃, and H₂O₂ in the gas flow was reduced by a Ti(IV) oxysulfate denuder and by a cooling trap at 243 K. The Ti(IV) oxysulfate denuder was prepared by wetting a 49 cm long sandblasted quartz glass tube with a diameter of 0.7 cm with a 5% solution of Ti(IV) oxysulfate in 30% H₂SO₄ (Fluka 89532) and drying the solution in a flow of nitrogen until a very concentrated and highly viscous solution was gained. The cooling trap consisted of a 46 cm long glass tube with an inner diameter of 2.4 cm that was filled with 10 ml quartz spheres to enhance surface area.

Following the synthesis and purification of HO₂NO₂ 560 ml min⁻¹ of the gas flow were
fed into the CWFT after a dilution step with humidified N₂. The CWFT consisted of a quartz tube with an inner diameter of 0.8 cm and a length of 44 cm. To prepare the ice film, the quartz tube was etched on the inside with a 5% solution of hydrofluoric acid (HF) in water, and then rinsed with ultra pure water (MilliQ water, 0.05 µS, pH: 7.3) until the pH was neutral. The pH was determined with a pH electrode optimized and calibrated for solutions of low ionic strength (Orion 3 Star, Thermo). The quartz tube was

- then held vertically for exactly 60 s, to let excess water flow out. An ice film was frozen at 258 K by rotating the quartz tube in a snuggly-fitting cooling jacket. This procedure results in smooth ice films, so that its surface area can be calculated based on its geometry (Abbatt, 2003; Huthwelker et al., 2006). The ice had a thickness of 10 μ m ±2.7 μ m
- as determined by weighing. Weighing was also used to check for eventual gain or loss of water during the CWFT experiment; gain was never observed, in most experiments a slight loss of 15 % (mean value) was observed. The cooling jacket was tempered with a circulating ethanol bath. Temperatures were measured with a Pt100 thermo-element directly inside the CWFT at experimental conditions. The temperature gradient along
- ²⁵ the length of the flow tube was very small. At 253 K the entrance of the CWFT was about 0.03 K warmer than temperatures at its end, and at 230 K the difference was about 0.2 K. At any position temperatures were very stable, the standard deviation at 230 K was ± 0.05 K. For the HO₂NO₂ adsorption measurements, a gas flow of typically 560 ml min⁻¹, containing around 8.16×10^{10} molecules cm⁻³ HO₂NO₂ was passed over

the ice and its change in concentration with time was monitored in the gas-phase after the CWFT. Reynolds numbers with an average value of 112 indicate a laminar flow regime in the CWFT. To evaluate the desorption behavior of the adsorbed HO_2NO_2 , the release of HO₂NO₂ from the ice surface was observed by passing HO₂NO₂ free ⁵ carrier gas over the ice that was previously exposed to HO₂NO₂ until equilibrium was reached. This was achieved by selectively decomposing HO₂NO₂ to NO₂ and HO₂ in a heating system, consisting of a 2 m long PFA tube (I.D.: 4 mm) heated up to 373 K, in front of the CWFT. The residence time of the gas in the heating system was 730 ms. The advantage of this method is that exactly the same gas mixture is used with the same humidity, only without HO₂NO₂. The evolution of HO₂NO₂ in the gas-phase after 10 contact with the ice was measured using a CIMS (Guimbaud et al., 2003). The CIMS is differentially pumped: ionization chamber (CI): 12 mbar, intermediate chamber (IC): 1.4×10^{-4} mbar and quadrupole and detection chamber (MS): 1.3×10^{-6} mbar. SF₆⁻ was used as ionization species. The CI had a total length of 16.5 cm and an I.D. of 17 mm. The flow in STP of around 560 ml min⁻¹ exiting the HO₂NO₂ synthesis was mixed with 15 5 mImin^{-1} 1 % SF₆ (Messer, UHP) in Ar (Messer, 99.999 %) and 1200 mImin⁻¹ N₂ (CarbaGas, 99.999%). SF₆⁻ ions were produced by passing the SF₆ in N₂ mixture through a ²¹⁰Po-ionizer (NRD, p-2031). A negative voltage of 236 V was applied to the CI, while the orifice of the CIMS was held at -5 V. Several clusters, which have been described earlier, have been observed with the CIMS: SF₆⁻ the ionizing species 20 at mass to charge ratio (m/z) 146, $SF_6^-(H_2O)$ its water cluster at m/z 164, $NO_4^-(HF)$ from HO₂NO₂ at m/z 98 (Slusher et al., 2001), NO₃⁻(HF) from HNO₃ at m/z 82 (Huey, 2007), NO₂⁻(HF) from HONO and HO₂NO₂ at m/z 66 (Longfellow et al., 1998), NO₂⁻ from NO₂ at m/z 46 (Huey, 2007) and SF₄O₂⁻ from H₂O₂ at m/z 140 (Bartels-Rausch et al., 2011). The fragment with m/z 66 originates not only from HONO but also from 25 HO₂NO₂. To derive HONO levels from the m/z 66 trace, the fraction of the NO₂⁻(HF) cluster originating from HO₂NO₂ was subtracted from total intensity. Stable humidity during the experiment, and in particular identical humidity in the carrier gas, whether or not it passed the ice in the CWFT, was ensured by monitoring the intensity of the

 SF_6^- (H₂O) cluster at m/z of 164. We observed that this cluster responds strongly and reproducible to changes in relative humidity between 0.2% and 10%. For further analysis, the intensities of the individual traces were normalized to the intensity of SF₆ trace. With this setup detection limits $(3 \times \sigma)$ for HO₂NO₂ of 2.3×10^8 molecules cm⁻³ in the chemical ionization chamber were reached. This corresponds to a concentration of 5 5.2×10^{10} molecules cm⁻³ in the CWFT, i.e. before dilution and pressure drop. To evaluate the performance of the Ti(IV) denuder and the cooling trap the concentrations of HO₂NO₂ and the by-products were quantified with individual experiments. The HONO concentration was guantified with a commercial HONO analyzer (LOPAP, QUMA (Heland et al., 2001; Kleffmann et al., 2002)). The H_2O_2 concentration was measured with 10 a commercial H₂O₂ analyzer (AeroLaser AL 1002). NO₂, HNO₃ and HO₂NO₂ concentrations were quantified by a commercial NO_x analyzer (Monitor Labs 9841 A). This instrument measures NO directly by chemiluminescence, and NO_v (= NO + NO₂ + $NO_3 + N_2O_4 + N_2O_5 + HONO + HNO_3 + HO_2NO_2 + PAN + other organic nitrates)$ after conversion to NO in a molybdenum converter. In this study NO could not be guantified, because the CO in the sample gas interfered with the NO detection. This interference was not observed when the CO was passed via the molybdenum converter. To differentiate between the individual NO_v species chemical traps were used (Ammann, 2001). A trap of Na₂CO₃ coated on firebricks, was used to scavenge all acidic nitrogen oxides that might be produced by the synthesis (HONO, HNO₃ and HO₂NO₂) and thus 20 to differentiate between those and the remaining NO and NO₂ in the gas phase. Prior to its use the Na₂CO₃ was exposed to NO₂ in order to minimize the uptake of NO₂ that is otherwise observed during the experiments. Similarly a NaCl trap was used to differentiate between HNO₃ and the other NO_v species; it consisted of a sandblasted guartz tube with a length of 49 cm and an inner diameter of 0.8 cm, wetted inside with 25 a slurry of NaCl in 1/1 water/methanol, and dried in a stream of N₂ (Ammann, 2001). To quantify HO_2NO_2 a heating trap was used to decompose HO_2NO_2 quantitatively to NO₂ in combination with the Na₂CO₃ trap to either scavenge HONO, HNO₃, and HO₂NO₂ or only HONO and HNO₃ (Bartels-Rausch et al., 2011). This measurement

was also used to calibrate the HO_2NO_2 trace of the CIMS for continuous quantification of HO_2NO_2 during each CWFT experiment.

3 Results and discussion

Conventionally HO₂NO₂ is synthesized in the aqueous phase by reaction of NO₂BF₄
in 90 % H₂O₂ or of NaNO₂ and HClO₄ in 30% H₂O₂, which is then delivered to a gasflow by bubbling carrier gas through the solution (Kenley et al., 1981; Appelman and Gosztola, 1995). One advantage of the gas-phase synthesis used here is that it can continuously provide HO₂NO₂ levels over long time periods, as needed for our experiments. Also, the handling of concentrated, explosive H₂O₂ solutions is omitted. Niki
et al. (1977) synthesized HO₂NO₂ in the gas-phase by photolysis of HCl and subsequent reaction of the produced HO₂ with NO₂. Here, we used a different approach where H₂O is photolyzed as the HO₂ source in order to eliminate HCl and ClONO and potential interference of these by-products with the adsorption experiments. We have shown previously that HO₂NO₂ yields of up to 30 % can be achieved with this synthe-

sis route by adding CO to the photolysis gas mixture (Bartels-Rausch et al., 2011). The presence of CO shifts the OH to HO₂ equilibrium towards HO₂ (Reactions R3 and R4) (Aschmutat et al., 2001). HO₂NO₂ is then formed by the same reaction as in the atmosphere (Niki et al., 1977):

 $HO_2 + NO_2 + M \rightarrow HO_2NO_2 + M$

The hydrolysis of water at 172 nm in the presence of oxygen is the source of HO and HO_2 (Reactions R2 and R4).

 $H_2O + h\nu \rightarrow OH + H$

 $CO + OH \rightarrow CO_2 + H$

 $H + O_2 \rightarrow HO_2$

(R1)

(R2)

(R3)

(R4)

The main problem associated with both, gas-phase and aqueous phase synthesis routes, is the presence of by-products. In our previous study we identified HNO₃ with a yield of 30% and HONO with a yield of 10% (Bartels-Rausch et al., 2011). HNO₃ is formed by reaction of NO₂ with OH (Reaction R5). In the absence of CO, this reaction has been used previously as a gas-phase source of HNO₃ with yields of up to 70% (Vlasenko et al., 2009). HONO is the product of the OH + NO Reaction (R6), where NO is presumably formed by reaction of NO₂ with H or O radicals.

 $NO_2 + OH \rightarrow HNO_3$

 $NO + OH \rightarrow HONO$

5

¹⁰ Another, major by-product – that has not been previously analyzed – might be H_2O_2 , which is formed by the HO_2 self-reaction (Reaction R7).

 $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$

3.1 Purification of the synthesis from by-products

For this study the HO₂NO₂ synthesis was significantly improved by adding a Ti(IV) denuder to remove H_2O_2 . HNO₃ was scrubbed from the gas phase 15 Figure 2 shows the performance of the two purificain a cooling trap. tion steps for a typical experimental run. The data were obtained at initial concentrations of 3.4×10^{12} molecules cm⁻³ NO₂, 5.4×10^{15} molecules cm⁻³ O₂, 1.6×10^{16} molecules cm⁻³ CO, and 2.36×10^{18} molecules cm⁻³ water vapor. We found that the Ti(IV) denuder leads to a significant decrease of H_2O_2 by 99% (Fig. 2, 20 235 min–295 min). Ti(VI) oxysulphate reacts quantitatively and fast with H_2O_2 to form $[Ti(O_2)(OH)_{aq}]^+$ complexes. This has previously been used as an analytical method (Possanzini et al., 1988). Also HONO was reduced by 94% and 55% of the HO₂NO₂ is trapped by the denuder, which lowers the overall yield of the synthesis route substantially. The increase of NO₂ and strong rise in HNO₃ of 15% and 240%, respectively, 25

(R5)

(R6)

(R7)

indicate that these species were produced by redox processes in the Ti(IV) denuder system. The subsequently installed cooling trap reduces the HNO₃ by 86% of its concentration after the Ti(IV) denuder (Fig. 3 235-267 min). The remaining concentration of HNO₃ was 20% of the HO₂NO₂ concentration, which is comparable to or lower than that reported for the two synthesis routes in the aqueous phase (Jimenez et al., 2004; 5 Knight et al., 2002). Knight et al. (2002) measured a HNO₃ concentration of around 10% of the HO₂NO₂ in his sample at 273 K. Jimenez et al. (2004) measured a HNO₃ concentration of around 50 % of the HO₂NO₂ concentration behind a cold trap at 252 K. Considering H₂O₂, Knight et al. (2002) measured H₂O₂ concentrations of around 50 % and Jimenez et al. (2004) of about 10% of the HO₂NO₂ concentration both of which 10 is substantially lower than achieved here, even with the very efficient Ti-denuder. In our experiments the H_2O_2 concentration was still twice as that of HO_2NO_2 . Without purification HNO₃ levels stayed well below 10% of the HO₂NO₂ concentration (Fig. 2, 310 min-330 min), i.e. the HNO₃ concentration could be substantially reduced without the use of the Ti(IV) denuder at the expense of more H_2O_2 . The HNO₃ and HONO 15 levels reported here prior to the purification are significantly lower than observed in our previous study (Bartels-Rausch et al., 2011) and HO₂NO₂ level is higher. Reasons for this might be the increased flow velocity through the photo reactor, or differences in the detection mode of HNO₃ and HONO, which were measured using very selective methods in this work. 20

In summary, this synthesis resulted in a reproducible concentration of HO₂NO₂ in the flow tube of $1.2 \times 10^{11} \pm 2.2 \times 10^{10}$ molecules cm⁻³ at a CO concentration of 1.6×10^{16} molecules cm⁻³. For about half of the experiments the CO concentration was lowered to 0.4×10^{16} molecules cm⁻³ that – in qualitative agreement with our previous study – resulted in lower yields of HO₂NO₂ and higher levels of HNO₃. For these experiments a mean HO₂NO₂ concentration of $0.8 \times 10^{11} \pm 1.7 \times 10^{10}$ molecules cm⁻³ was determined.

25

3.2 Adsorption experiments

Figure 3 shows typical evolutions of the HO₂NO₂ concentration with time at different temperatures as measured at the end of the CWFT. Such measurements are referred to as breakthrough curves. At time = 0 s, the gas flow containing the HO₂NO₂ was passed over the ice film, and its intensity drops to the background level. Before the exposure to ice, stable levels of HO₂NO₂ in the gas flow were observed and for the analysis HO_2NO_2 was normalized to the average of its level between -50 s and 0 s. Then, within 200 seconds at our experimental conditions, the gas-phase concentration of HO₂NO₂ starts to recover. The onset of the recovery shows temperature dependence with a longer lag-time at lower temperatures. The time needed to reach 10 full recovery depends strongly on temperature as expected for an adsorption process. The number of adsorbed HO₂NO₂ molecules in equilibrium is the primary observable of these experiments and is directly derived from the breakthrough curve. The area enclosed by the breakthrough curves is a direct measure of the number of HO_2NO_2 molecules adsorbed (n_{ads}) by the ice film until equilibrium over the entire length of the 15 CWFT is reached. The number of adsorbed molecules (n_{ads}) is given by

$$n_{\rm ads} = F(T) \cdot {\rm Int}_{\rm A} {\rm rea} \cdot \frac{\rho_{\rm HO_2 NO_2} \cdot N_{\rm a}}{R \cdot T}$$
(1)

where *F*(*T*) is the volumetric velocity of the gas flow in cm³ s⁻¹ at the temperature of the CWFT, Int_Area is the integrated area of the curve in s, corrected for the time
an inert trace gas would take to pass the CWFT, *p*_{HO2NO2} is the partial pressure of HO2NO2 [MPa], *N*_a is the Avogadro constant [molecules mol⁻¹], *R* is the universal gas constant [J mol⁻¹ K⁻¹] and *T* is the temperature [K]. The surface concentration of adsorbed HO2NO2 molecules at our experimental conditions ranged from 4.2×10¹¹ ±2.1×10¹¹ molecules cm⁻² at 253 K to 7.8×10¹² ±3.9×10¹² molecules cm⁻²
HO2NO2 at 230 K, thus at most a few percent of a monolayer. The error estimates are based on the standard deviation of five repeated experiments at 230 K.

The HO_2NO_2 gas-phase concentration recovered to its initial level in all experiments. Incomplete recovery would suggest (i) chemical decomposition, (ii) slow, continuous uptake, or (iii) irreversible adsorption of HO_2NO_2 . (i) Decomposition of HO_2NO_2 has been observed in water at moderate and acidic pH (Kenley et al., 1981; Lammel et ⁵ al., 1990; Regimbal and Mozurkewich, 1997). HNO₃, NO₂, HONO, and H₂O₂ have been identified as products. On ice, Li et al. (1996) detected HNO₃ emissions from ice exposed to HO₂NO₂ but attributed those to impurities in the HO₂NO₂ source, and thus also concluded that HO₂NO₂ does not decompose on the ice surface. In our experimental setup, we would not expect to observe HNO₃ emissions from the ice, because of its strong tendency to stick to the ice surface. The CIMS traces of NO₂ 10 at m/z 46 and of HONO at m/z 66 (corrected for intensity originating from HO₂NO₂) showed no increase when HO₂NO₂ was exposed to the ice surface, which further underlines our conclusion. (ii) HO₂NO₂ clearly does not show a long-term uptake as the HO₂NO₂ signal recovered completely within less than 20 minutes at our experimental conditions. The observation of a strong uptake over long timescales on thin ice 15 films is restricted to highly acidic trace gases. Typical examples are HNO₃, HCl, and trifluoracetic acid (CF₃COOH) (McNeill et al., 2006; Ullerstam et al., 2005). Weaker acids, such as HO₂NO₂, show a fast and complete recovery. Analogous examples are formic acid (Symington et al., 2010; von Hessberg et al., 2008), acetic acid (Kerbrat et al., 2010a; Symington et al., 2010; von Hessberg et al., 2008), HONO (Chu et al., 20 2000), and SO₂ (Clegg and Abbatt, 2001). The non-acidic H_2O_2 shows no long term uptake (Clegg and Abbatt, 2001; Pouvesle et al., 2010). Table 1 lists the acidity and the molecular Henry coefficients (H_{298}) for different trace gases and shows that the ob-

served complete recovery of HO_2NO_2 fully fits into the emerging picture where acidity largely determines the tendency for long-term uptake. Molecular solubility seems to be of minor importance. Instrumental fluctuations of $\pm 10\%$ however give the possibility that small deviations from the complete recovery remained undetected. For the weak acids HONO and SO₂ a long term uptake has been observed in a packed bed flow tubes that have a much larger ice volume and surface area and are thus much

more sensitive to slow bulk and surface effects (Kerbat et al., 2010b; Huthwelker et al., 2001). (iii) To further test the reversibility of the uptake, the number of desorbing molecules was determined in 4 experiments at 230, 236.1, 238.3 and 244.1 K, respectively. For the individual experiments below 240 K the number of adsorbed and desorbed molecules was equal within the uncertainty of the measurements (\pm 50%) indicating fully reversible uptake. At 244.1 K the number of desorbed molecules was lower than the number of adsorbed molecules. This might be due to altered surface characteristics of the ice at higher temperatures. The observation of reversible adsorption is in agreement with other data available for weak acids or non-acidic species such as H₂O₂ (Pouvesle et al., 2010), acetone (Bartels-Rausch et al., 2004), formic acid (upper blacked or the state available of the state available of the state available of the state available of the term black of term black of the term black of the term black of the term black of term b

(von Hessberg et al., 2008) and acetic acid (Sokolov and Abbatt, 2002; Symington et al., 2010). For the strong acids HNO_3 (Ullerstam et al., 2005) and HCI (McNeill et al., 2006) the peak area was significantly lower in the desorption experiments.

3.3 Partition coefficient

¹⁵ In summary, the uptake of HO_2NO_2 to the ice surface can be described as reversible adsorption equilibrium at temperatures below 240 K. To compare the adsorption behavior among different trace gases, we express the adsorption equilibrium in terms of the partition coefficient K_{LinC} (cm), which is defined as ratio of the concentration of adsorbed molecules to the gas-phase concentration at equilibrium and describes ²⁰ the initial linear part of an adsorption isotherm as defined by the Langmuir model. At equilibrium the surface concentration of adsorbates is related to the gas-phase concentration as:

$$\mathcal{K}_{\text{LinC}} = \frac{\frac{n_{\text{ads}}}{A}}{\frac{n_{\text{gas}}}{V}},$$

where n_{gas} is the number of molecules in the gas phase [molecules], *V* the volume of the flow tube [cm³] and *A* the geometric surface area of the ice film [cm²]. The Langmuir

cussion rape

(2)

model has proven to describe the partitioning of a number of atmospheric trace gases well, including HNO₃ at low coverage (Ullerstam et al., 2005), HONO (Kerbrat et al., 2010b) and VOCs (Sokolov and Abbatt, 2002) and has also been adopted by IUPAC (Crowley et al., 2010). The temperature dependent K_{LinC} also allows extrapolation of our findings to different temperatures.

Figure 4 shows $ln(K_{linC})$ of HO₂NO₂ between ice and air, plotted versus the inverse temperature over the range T = 230-253 K. K_{LinC} at 230 K is 91.2 ±15.7 cm and decreases to 6.0 ±0.4 cm at 253 K. The data follow a linear trend, clearly showing that reversible partitioning describes the interaction of HO_2NO_2 with the ice surface very well. The single measurement of desorbing HO₂NO₂ at 244.1 K seems thus to be an outlier. The linear fit of $ln(K_{LinC})$ vs. 1/T allows to describe the temperature dependency of K_{LinC} as $3.74 \times 10^{-12} \times e^{(7098/T)}$; the uncertainty of the exponent is ±661 K. The values of K_{LinC} and their uncertainty are independent the concentration of HO₂NO₂. Such a negative and Arrhenius type temperature dependency is in agreement with other trace gases that physically adsorb on ice (Huthwelker et al., 2006). Figure 4 also shows that 15 K_{LinC} of HO₂NO₂ is nearly three orders of magnitude lower than the K_{LinC} of HNO₃ and lies in the same range as the K_{LinC} of HONO over the temperature range investigated. This means that at equilibrium HO_2NO_2 adsorbs less to ice than HNO_3 and about as much as HONO. Both K_{LinC} values were taken from the recent IUPAC compilation (Crowley et al., 2010) and are based on data from (Abbatt, 1997; Chu et al., 2000; 20 Cox et al., 2005; Hynes et al., 2002; Kerbrat et al., 2010b; Ullerstam et al., 2005). This relative adsorption strength is in agreement with our previous study, where the migration of HO₂NO₂, HNO₃, HONO, and NO₂ was investigated in a packed ice bed

flow tube along which temperature decreased with distance (Bartels-Rausch et al., 25 2011). Those experiments showed an increasing preference for the ice phase in the sequence $NO_2 < HONO = HO_2NO_2 < HNO_3$. It is also in agreement with Li et al. (1996) who observed that HNO_3 desorbs at higher temperatures (+25 K) than HO_2NO_2 in temperature programmed desorption experiments. This relative order of K_{LinC} deviates somehow from the sequence of solubility in liquid water where HNO_3 is much more

soluble than HO₂NO₂ and HO₂NO₂ is better soluble than HONO. The (effective) solubility of the these three acidic nitrogen oxides was derived from the molecular Henry constant (*H*₂₉₈) and the acidity, as listed in Table 1, in the pH range 5 to 9. Based on a broader comparison with a larger number of trace gases, an apparent correlation ⁵ between the partitioning to ice, the acidity constant, and the molecular Henry constant is evident. Figure 5 shows the results of such a multiple linear regression for SO₂, HCOOH, CH₃COOH, CF₃COOH, HONO, HNO₃, HO₂NO₂, HCI and H₂O₂. The correlation is rather good when considering the large errors that might be associated with the three input parameters. Especially, the reported values of *H*₂₉₈ for HO₂NO₂
¹⁰ might be overestimated as HO₂NO₂ easily decomposes in water, which makes reliable measurement of its *H*₂₉₈ difficult.

The good correlation illustrates the importance of both the acidity and the solubility on the partitioning to ice. Apparently similar molecular properties determine the tendency for uptake into water and the adsorption on ice for these acidic trace gases.

- ¹⁵ This even holds for organic trace gases. Sokolov et al. (2002) have found a poor correlation for a number of organic trace gases between H_{298} and K_{LinC} and argued that this indicates that complete solvation of the adsorbing trace gas does not occur. The difference in both studies is mainly, that we focused on acidic trace gases here, while Sokolov et al. (2002) studied mostly non-acidic, polar organics and the results indicate
- that acidic trace gases form of a hydrate shell upon adsorption similar to the solvation process. The relationship found is given in Eq. (3) and can be used to roughly estimate the partitioning of any acidic trace gas to ice as long as the pH of the ice allows for significant dissociation:

$$\log(K_{\rm LinC}) = 0.4977 \cdot \log(H_{298}) - 0.1282 \cdot pK_{\rm a} + 1.1362$$

25 3.4 Enthalpy of adsorption

The slope of the linear fits to the data in the $ln(K_{LinC})$ versus the inverse temperature plot (Fig. 4) is similar for HNO₃ and HONO and steeper for HO₂NO₂. This impression is

(3)

confirmed by a statistical F-test, that compares the slopes of the regressions in a pairwise manner, based on the uncertainties of each, where slope and uncertainty were derived from the IUPAC recommendation for the respective species (Crowley et al., 2010): While the slopes of the HNO₃-HONO pair and the HNO₃-HO₂NO₂ pair could 5 not be shown to be different, which might be due to the large error of the temperature dependence of the K_{LinC} values for HNO₃, the slope of the HONO-HO₂NO₂ pair were statistically different with a confidence of 95%. From the slope the standard enthalpy of adsorption (ΔH_{ads}^0) of $-59.0^{+5.5}_{-8.6}$ kJ mol⁻¹ can be derived for HO₂NO₂. The uncertainties are given by the 95% confidence interval of the fit and by the effect that competitive Langmuir adsorption with H_2O_2 might have on the slope in Fig. 4 (see be-10 low). The later is temperature dependent which explains the asymmetric uncertainty bonds. When comparing ΔH_{ads}^0 with literature values for other nitrogen oxides as given in Table 1, one obtains the sequence NO<NO₂<HONO = HNO₃<HO₂NO₂ except from a very high enthalpy of adsorption for HNO₃ reported by Thibert and Dominé (1998) of -68 ± 8.9 kJ mol⁻¹. The higher enthalpy of adsorption of HO₂NO₂ as compared to the 15 other nitrogen oxides is a sign for stronger molecule-ice interactions of HO₂NO₂.

4 Effect of by-products

Despite careful purification steps, the possibility that remaining H₂O₂, HNO₃, HONO, and NO₂ impurities interfere with the adsorption measurements of HO₂NO₂ remains
 and is discussed in the following. NO₂ does not interact with the ice at temperatures of our experiment (Bartels-Rausch et al., 2002), thus its presence does not influence the adsorption measurements of HO₂NO₂. Dimerization of NO₂ to N₂O₄ is unlikely at these low concentrations and is thus neglected. HONO does adsorb to the ice, but since its concentration is only 1 % of HO₂NO₂ its contribution can be neglected. HNO₃
 and H₂O₂ are present at relatively high concentration by the mass spectrometer

while for H_2O_2 the onset of the recovery of the signal is only visible in some very long experiments. This observation strongly suggests larger partitioning of either species to ice compared to HO₂NO₂, which – as a side note – strengthens the recent work on H_2O_2 adsorption to ice by Pouvesle et al. (2010) rather than the work by Clegg and ⁵ Abbatt (2001). Using the K_{LinC} temperature relationship recommended by IUPAC for HNO_3 (Crowley et al., 2010) and by Pouvesle et al. (2010) for H_2O_2 , the length of the CWFT along which both species are present during the time of the experiments can be estimated. HNO₃ completely adsorbs within less than 2 cm of the flow tube at any temperature and its influence on the partitioning of HO₂NO₂ to the ice in equilibrium over the whole length of the CWFT is thus neglected. H_2O_2 adsorbs along a length 10 of up to 30 cm with a surface coverage ranging from 5% to 10% for temperatures between 253 K and 238 K, and from 10% to 18% below 238 K. At such low surface coverage, the interaction of HO_2NO_2 with ice is not influenced. To confirm this, we calculated the reduction in the number of adsorbed HO_2NO_2 molecules when H_2O_2 is present due to competition for adsorption sites, using the competitive Langmuir model 15 as detailed in (Kerbrat et al., 2010a). The model did show that the surface concentration of HO₂NO₂ on the ice is lowered by 22 % at 228 K, by 11 % at 238 K and by 5 % at 250 K in presence of H_2O_2 . This reduced uptake slightly reduces the derived values of K_{LinC} . As this effect is well within the experimental uncertainty of K_{LinC} , we neglected the

²⁰ influence of competitive adsorption.

All experiments were done in the ice stability regime of the HNO₃ – water phase diagram (Thibert and Dominé, 1998), and the H₂O₂ – water phase diagram (Foley and Giguere, 1951). Considering the first 2 cm of the CWFT, surface modification of the ice by HNO₃ could be important. McNeill (2006) have observed increased adsorption of acetic acid to ice when another strong acid, HCI, was dosed to the surface at a concentration that induced modifications to the surface as observed by ellipsometry. McNeill (2006) observed this increased adsorption at HCI concentrations near the boundary of the solid ice stability regime of the HCI-water phase diagram. For partial pressures corresponding more to the center of the ice stability regime in the phase diagram no

surface modification and no increased uptake of acetic acid was observed. The HNO₃ concentration in this study was rather in the middle of the solid ice stability regime of the HNO₃-water phase diagram, making it unlikely that surface modifications might have occurred, which enhance the uptake of HO₂NO₂. In agreement solid ice was still observed at upper 1.1 nm of the ice surface in presence of nitrate at concentrations similar to this study (Krepelova et al., 2010).

5 Atmospheric implications

Ice surfaces have been proposed to represent a sink for gas phase HO₂NO₂ (Kim et al., 2007; Slusher et al., 2002), and the magnitude of the uptake of HO₂NO₂ to ice surfaces has been proposed to be similar to that of HNO₃ (Slusher et al., 2002). In this study we could show that equilibrium partitioning of HO₂NO₂ to the ice surface at low concentration is orders of magnitude lower than expected purely based on its molecular solubility and propose the use of K_{LinC} to estimate the partitioning of a trace gases between ice surface and gas phase. Molecular Henry constants have been used to estimate the gas phase concentration of HO₂NO₂ over ice surfaces (Abida et al., 2011). With the results presented in this study, HO₂NO₂ would be detected, even at temperatures where HNO₃ stays on the ice surface. Here we discuss the equilibrium partitioning of HO₂NO₂ to ice clouds in the upper troposphere and to surface snow-pack under

environmentally relevant conditions once the adsorption equilibrium is reached. Figure 6 shows the fraction of HO_2NO_2 adsorbed to the ice phase in typical cirrus clouds in the upper troposphere. Typical temperatures and surface area densities of dense cirrus clouds, 3×10^{-4} to 10^{-5} cm² ice surface per cm³ of free gas phase, were taken from observations (Popp et al., 2004). The fraction of the adsorbed species was calculated with the following equation proposed by Pouvesle et al. (2010):

$$\alpha = \frac{K_{\text{LinC}} \cdot \text{SAD}}{K_{\text{LinC}} \cdot \text{SAD} + 1},$$

(4)

where α [–] is the adsorbed fraction, K_{LinC} [cm] the partition coefficient as a function of the temperature and SAD [cm⁻¹] is the ice surface area per volume of gas phase (surface area density). The adsorption of HO₂NO₂ to the ice particles is only significant at cold temperatures (<210 K) and very dense cirrus clouds (3×10⁻⁴ cm⁻¹); then up to ⁵ 70% of the total HO₂NO₂ is trapped. Thus – when very dense clouds are present – the equilibrium partitioning of HO₂NO₂ to cirrus clouds could explain the discrepancy between measured and modeled data for HO₂NO₂ in the upper troposphere. That Kim et al. (2007) did not observe a drop of gas-phase HO₂NO₂ in the presence of cirrus

- clouds, was possibly because the clouds were simply not dense enough. Considering the snow cover on the ground, the surface to air-volume ratio is orders of magnitude higher than in clouds and HO_2NO_2 adsorbs almost completely to the ice phase in the interstitial air in snow even at warmer temperatures. Specific surface area of snow ranges from 20 cm² g⁻¹ to >1000 cm² g⁻¹ for melt-freeze crust and fresh dentritic snow, respectively. The density, and connected with that solid to air volume ratio, ranges from
- ¹⁵ 0.1 g cm⁻³ to 0.6 g cm⁻³ for fresh and wind-packed snow, respectively (Dominé et al., 2008). The resulting surface area densities are in the range of 10's to 100's cm⁻¹. This extensive partitioning to the ice phase directly influences the transport of HO₂NO₂ through a snow-pack by diffusion. The diffusivity of species with a strong tendency to stick to ice surfaces, i.e. large K_{LinC} , is attenuated by a factor 1/*f* [–] (Eq. 8) (Dominé et al., 2008).

$$f_{\rm HO_2NO_2} = \frac{1}{1 + \rm SAD \cdot K_{\rm LinC, HO_2NO_2}},$$

where SAD is the surface area density $[cm^{-1}]$. Figure 7 shows *f* versus the temperature typical for snow-covered environments for a range of surface area densities, where the high SAD value represents fresh dendritic snow and the low value wind packed snow.

At temperatures below 240 K diffusion is slowed more than a hundred times due to the interaction with the ice surface for any given snow-pack. Note that also the geometric properties of the snow-pack impact diffusion in snow.

(5)

In summary snow and ice particles represent a sink for HO_2NO_2 in the environment. Snow surfaces represent a sink at any typical temperature; adsorption of HO_2NO_2 on atmospheric ice particles strongly depends on the density of the ice clouds and temperature. The pH at the surfaces will further impact the adsorption processes.

5 6 Conclusions

The adsorption of HO₂NO₂ on ice and its temperature dependence has been characterized at low surface coverage. At our experimental conditions, uptake of HO₂NO₂ to ice is fully reversible and a slow, long-term loss to the ice was not observed. The partition constant K_{LinC} with a negative temperature dependence of $3.74 \times 10^{-12} \times e^{(7098/T)}$

- ¹⁰ (cm) was derived. Partitioning to ice of HO_2NO_2 is orders of magnitude smaller than values for HNO_3 , and in the same range as values reported for HONO. Acidity and solubility of the trace gas could be shown to have an important impact on the adsorption behavior. Cirrus clouds in the upper troposphere and ice and snow surfaces at South Pole and other very cold parts of the environment are sink for gas-phase HO_2NO_2 .
- Acknowledgements. We gratefully thank M. Birrer for excellent technical support. We thank Josef Dommen and Peter Mertes for providing and help with the H₂O₂ analyzer. We also thank Yulia Sosedova for help with the HONO analyzer. We appreciate funding by the Swiss National Science Foundation, grant number 200021_121857.

Discussion Pa	ACPD 11, 26815–26848, 2011 The adsorption of peroxynitric acid on ice between 230 K and 253 K T. Ulrich et al.				
per Discussio					
on Paper					
—	Abstract	Introduction			
Disc	Conclusions	References			
ussion	Tables	Figures			
Pap	14				
θŗ	•	•			
	Back	Close			
iscussi	Full Screen / Esc				
on Pa	Printer-friendly Version				
aper	Interactive Discussion				

References

5

- Abbatt, J. P. D.: Interaction of HNO₃ with water-ice surfaces at temperatures of the free troposphere, Geophys. Res. Lett., 24, 1479–1482, doi:10.1029/97GL01403, 1997.
- Abbatt, J. P. D.: Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction, Chem. Rev., 103, 4783–4800, doi:10.1021/cr0206418, 2003.
- Abida, O., Mielke, L. H., and Osthoff, H. D.: Observation of gas-phase peroxynitrous and peroxynitric acid during the photolysis of nitrate in acidified frozen solutions, Chem. Phys. Lett., 511, 187–192, doi:10.1016/j.cplett.2011.06.055, 2011.
- Amels, P., Elias, H., Götz, U., Steingens, U., and Wannowius, K. J.: Chapter 3.1: Kinetic investigation of the stability of peroxonitric acid and of its reaction with sulfur(IV) in aqueous solution, edited by: Warneck, P., Springer Verlag, Berlin, Germany, 77–88 pp., 1996.
 - Ammann, M.: Using N-13 as tracer in heterogeneous atmospheric chemistry experiments, Radiochim. Acta, 89, 831–838, doi:10.1524/ract.2001.89.11-12.831, 2001.
- Appelman, E. H. and Gosztola, D. J.: Aqueous peroxynitric acid (HOONO₂) a novel synthesis and some chemical and spectroscopic properties, Inorg. Chem., 34, 787–791, doi:10.1021/ic00108a007, 1995.
 - Aschmutat, U., Hessling, M., Holland, F., and Hofzumahaus, A.: A tunable source of hydroxyl (OH) and hydroperoxy (HO₂) radicals: in the range between 106 and 109 cm⁻³, Institut für Atmosphärische Chemie, Forschungszentrum Jülich, Jülich, 811–816, 2001.
- ²⁰ Bartels-Rausch, T., Eichler, B., Zimmermann, P., Gäggeler, H. W., and Ammann, M.: The adsorption enthalpy of nitrogen oxides on crystalline ice, Atmos. Chem. Phys., 2, 235–247, doi:10.5194/acp-2-235-2002, 2002.
 - Bartels-Rausch, T., Guimbaud, C., Gäggeler, H. W., and Ammann, M.: The partitioning of acetone to different types of ice and snow between 198 and 223 K, Geophys. Res. Lett., 31,
- ²⁵ L16110, doi:10.1029/2004GL020070, 2004.
 - Bartels-Rausch, T., Ulrich, T., Huthwelker, T., and Ammann, M.: A novel synthesis of the radiactively labelled atmospheric trace gas peroxynitirc acid, Radiochim. Acta, 99, 1–8, doi:10.1524/ract.2011.1830, 2011.

Becker, K. H., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: Solubility of nitrous acid (HONO)

³⁰ in sulfuric acid solutions, J. Phys. Chem.-US, 100, 14984–14990, doi:10.1021/jp961140, 1996.

Bowden, D. J., Clegg, S. L., and Brimblecombe, P.: The Henry's law constant of trifluoroacetic

acid and its partitioning into liquid water in the atmosphere, Chemosphere, 32, 405–420, doi:10.1016/0045-6535(95)00330-4, 1996.

- Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res.-Atmos., 89, 4739–4755, doi:10.1029/JD090iD03p05865, 1984.
- ⁵ Chen, C. C., Britt, H. I., Boston, J. F., and Evans, L. B.: Extension and Application of the Pitzer Equation for Vapor-Liquid-Equilibrium of Aqueous-Electrolyte Systems with Molecular Solutes, Aiche J., 25, 820–831, doi:10.1002/aic.690250510, 1979.

Chen, G., Davis, D., Crawford, J., Nowak, J. B., Eisele, F., Mauldin, R. L., Tanner, D., Buhr, M., Shetter, R., Lefer, B., Arimoto, R., Hogan, A., and Blake, D.: An investigation of South Pole

- HOx chemistry: Comparison of model results with ISCAT observations, Geophys. Res. Lett., 28, 3633–3636, 10.1029/2001GL013158, 2001.
 - Chu, L., Diao, G. W., and Chu, L. T.: Heterogeneous interaction and reaction of HONO on ice films between 173 and 230 K, J. Phys. Chem. A, 104, 3150–3158, 10.1021/jp9937151, 2000.
- ¹⁵ Clegg, S. M. and Abbatt, J. P. D.: Uptake of gas-phase SO₂ and H₂O₂ by ice surfaces: Dependence on partial pressure, temperature, and surface acidity, J. Phys. Chem. A, 105, 6630–6636, doi:10.1021/jp010062r, 2001.
 - Cox, R. A., Fernandez, M. A., Symington, A., Ullerstam, M., and Abbatt, J. P. D.: A kinetic model for uptake of HNO₃ and HCl on ice in a coated wall flow system, Phys. Chem. Chem. Phys., 7, 3434–3442, doi:10.1039/b506683b, 2005.
- Phys., 7, 3434–3442, doi:10.1039/b506683b, 2005.
 Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V heterogeneous reactions on solid substrates, Atmos. Chem. Phys., 10, 9059–9223, doi:10.5194/acp-10-9059-2010, 2010.
- Dominé, F., Albert, M., Huthwelker, T., Jacobi, H. W., Kokhanovsky, A. A., Lehning, M., Picard, G., and Simpson, W. R.: Snow physics as relevant to snow photochemistry, Atmos. Chem. Phys., 8, 171–208, doi:10.5194/acp-8-171-2008, 2008.
 - Durham, J. L., Overton, J. H., and Aneja, V. P.: Influence of gaseous nitric-acid on sulfate production and acidity in rain, Atmos. Envrion., 15, 1059–1068, doi:10.1016/0004-6981(81)90106-2, 1981.

30

Foley, W. T. and Giguere, P. A.: Hydrogen peroxide and its analogues. 2. Phase equilibrium in the system hydrogen peroxide water, Canad. J. Chem., 29, 123–132, doi:10.1139/v51-016, 1951.

ACPD 11, 26815–26848, 2011 The adsorption of peroxynitric acid on ice between 230 K and 253 K T. Ulrich et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** Back Close Full Screen / Esc **Printer-friendly Version**

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Paper

Interactive Discussion

- Gaffney, J. S. and Senum, G. I.: ?, in: Gas-liquid chemistry of natural waters, edited by: Newman, L., Brookhaven National Laboratory, 5-1–5-7, 1984.
- Gierczak, T., Jimenez, E., Riffault, V., Burkholder, J. B., and Ravishankara, A. R.: Thermal decomposition of HO₂NO₂ (peroxynitric acid, PNA): Rate coefficient and determination of
- the enthalpy of formation, J. Phys. Chem. A, 109, 586–596, doi:10.1021/jp046632f, 2005.
 Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Domine, F., Frey, M. M., Guzman, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klan, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino,
- J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, doi:10.5194/acp-7-4329-2007, 2007.

Guimbaud, C., Bartels-Rausch, T., and Ammann, M.: An atmospheric pressure chemical ionization mass spectrometer (APCI-MS) combined with a chromatographic technique to mea-

- ¹⁵ sure the adsorption enthalpy of acetone on ice, Int. J. Mass. Spectrom., 226, 279–290, doi:10.1016/S1387-3806(03)00019-8, 2003.
 - Heland, J., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere, Environ. Sci. Technol., 35, 3207–3212, doi:10.1021/es000303t, 2001.
- ²⁰ Hoffmann, M. R. and Jacob, D. J.: Kinetics and mechanisms of the catalytic oxidation of dissolved sulfur dioxide in aqueous solution: An application to nighttime fog water chemistry, in: SO₂, NO and NO₂ oxidation mechanisms: Atmospheric considerations, edited by: Calvert, J. G., Butterworth Publishers, Bosten, MA, USA, 101–172, 1984.

Huey, L. G.: Measurement of trace atmospheric species by chemical ionization mass spec-

- trometry: Speciation of reactive nitrogen and future directions, Mass. Spectrom. Rev., 26, 166–184, doi:10.1002/mas.20118, 2007.
 - Huthwelker, T., Lamb, D., Baker, M., Swanson, B., and Peter, T.: Uptake of SO₂ by polycrys-talline water ice, J. Colloid Interf. Sci., 238, 147–159, doi:10.1006/jcis.2001.7507, 2001.
 Huthwelker, T., Ammann, M., and Peter, T.: The uptake of acidic gases on ice, Chem. Rev.,
- ³⁰ 106, 1375–1444, doi:10.1021/cr020506v, 2006.
 - Hwang, H. and Dasgupta, P. K.: Thermodynamics of the hydrogen-peroxide water-system, Environ. Sci. Technol., 19, 255–258, doi:10.1021/es00133a006, 1985.

Hynes, R. G., Fernandez, M. A., and Cox, R. A.: Uptake of HNO3 on water-ice and coadsorp-

tion of HNO_3 and HCl in the temperature range 210–235 K, J. Geophys. Res.-Atmos., 107, 4797, doi:10.1029/2001JD001557, 2002.

- Jimenez, E., Gierczak, T., Stark, H., Burkholder, J. B., and Ravishankara, A. R.: Reaction of OH with HO₂NO₂ (peroxynitric acid): Rate coefficients between 218 and 335 K and product vields at 298 K, J. Phys. Chem. A, 108, 1139–1149, doi:10.1021/jp0363489, 2004.
- yields at 298 K, J. Phys. Chem. A, 108, 1139–1149, doi:10.1021/jp0363489, 2004.
 Kenley, R. A., Trevor, P. L., and Lan, B. Y.: Preparation and thermal-decomposition of pernitric acid (HOONO₂) in aqueous-media, J. Am. Chem. Soc., 103, 2203–2206, doi:10.1021/ja00399a012, 1981.
- Kerbrat, M., Huthwelker, T., Bartels-Rausch, T., Gäggeler, H. W., and Ammann, M.: Coadsorption of acetic acid and nitrous acid on ice, Phys. Chem. Chem. Phys., 12, 7194–7202, doi:10.1039/b924782c. 2010a.
 - Kerbrat, M., Huthwelker, T., Gäggeler, H. W., and Ammann, M.: Interaction of nitrous acid with polycrystalline ice: Adsorption on the surface and diffusion into the bulk, J. Phys. Chem. B, 114, 2208–2219, doi:10.1021/jp909535c, 2010b.
- Kim, S., Huey, L. G., Stickel, R. E., Tanner, D. J., Crawford, J. H., Olson, J. R., Chen, G., Brune, W. H., Ren, X., Lesher, R., Wooldridge, P. J., Bertram, T. H., Perring, A., Cohen, R. C., Lefer, B. L., Shetter, R. E., Avery, M., Diskin, G., and Sokolik, I.: Measurement of HO₂NO₂ in the free troposphere during the intercontinental chemical transport experiment North America 2004, J. Geophys. Res.-Atmos., 112, D12S01, doi:10.1029/2006JD007676, 2007.
- ²⁰ Kleffmann, J., Heland, J., Kurtenbach, R., Lorzer, J., and Wiesen, P.: A new instrument (LOPAP) for the detection of nitrous acid (HONO), Environ. Science Pollut. Res., 48–54, 2002.
 - Knight, G., Ravishankara, A. R., and Burkholder, J. B.: UV absorption cross sections of HO₂NO₂ between 343 and 273 K, Phys. Chem. Chem. Phys., 4, 1432–1437, doi:10.1039/b108904h, 2002.
 - Krepelova, A., Newberg, J. T., Huthwelker, T., Bluhm, H., and Ammann, M.: The nature of nitrate at the ice surface studied by XPS and NEXAFS, Phys. Chem. Chem. Phys., 12, 8870–8880, doi:10.1039/c0cp00359j, 2010.

25

30

Lammel, G., Perner, D., and Warneck, P.: Decomposition of pernitric acid in aqueous-solution, J. Phys. Chem.-US, 94, 6141–6144, doi:10.1021/j100378a091, 1990.

Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric photochemistry, J. Atmos. Chem., 12, 229–267, doi:10.1007/BF00048075, 1991.

Li, Z. J., Friedl, R. R., Moore, S. B., and Sander, S. P.: Interaction of peroxynitric acid with solid

H2O ice, J. Geophys. Res.-Atmos., 101, 6795–6802, doi:10.1029/96JD00065, 1996.

- Liss, P. S. and Slater, P. G.: Flux of gases across air-sea interface, Nature, 247, 181–184, doi:10.1038/247181a0, 1974.
- Longfellow, C. A., Imamura, T., Ravishankara, A. R., and Hanson, D. R.: HONO solubility
- and heterogeneous reactivity on sulfuric acid surfaces, J. Phys. Chem. A, 102, 3323–3332, doi:10.1021/jp9807120, 1998.

Marsh, A. R. W. and McElroy, W. J.: The dissociation-constant and Henry law constant of HCl in aqueous-solution, Atmos. Envrion., 19, 1075–1080, doi:10.1016/0004-6981(85)90192-1, 1985.

- McNeill, V. F., Loerting, T., Geiger, F. M., Trout, B. L., and Molina, M. J.: Hydrogen chloride-induced surface disordering on ice, P. Natl. Acad. Sci. USA, 103, 9422–9427, doi:10.1073/pnas.0603494103, 2006.
 - Niki, H., Maker, P. D., Savage, C. M., and Breitenbach, L. P.: Fourier-transform IR spectroscopic observation of pernitric acid formed via HOO + NO₂ → HOONO₂, Chem. Phys. Lett., 45, 564–566. doi:10.1016/0009-2614(79)85027-7. 1977.
- Popp, P. J., Gao, R. S., Marcy, T. P., Fahey, D. W., Hudson, P. K., Thompson, T. L., Karcher, B., Ridley, B. A., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Baumgardner, D., Garrett, T. J., Weinstock, E. M., Smith, J. B., Sayres, D. S., Pittman, J. V., Dhaniyala, S., Bui, T. P., and Mahoney, M. J.: Nitric acid uptake on subtropical cirrus cloud particles, J. Geophys.
 Res.-Atmos., 109, D06302, doi:10.1029/2003JD004255, 2004.

15

Possanzini, M., Dipalo, V., and Liberti, A.: Annular denuder method for determination of H₂O₂ in the ambient atmosphere, Sci. Total Environ., 77, 203–214, doi:10.1016/0048-9697(88)90056-3, 1988.

Pouvesle, N., Kippenberger, M., Schuster, G., and Crowley, J. N.: The interaction of H₂O₂

- with ice surfaces between 203 and 233 K, Phys. Chem. Chem. Phys., 12, 15544–15550, doi:10.1039/c0cp01656j, 2010.
 - Regimbal, J. M. and Mozurkewich, M.: Peroxynitric acid decay mechanisms and kinetics at low pH, J. Phys. Chem. A, 101, 8822–8829, doi:10.1021/jp971908n, 1997.

Servant, J., Kouadio, G., Cros, B., and Delmas, R.: Carboxylic monoacids in the air of mayombe

- ³⁰ forest (Congo) Role of the forest as a source or sink, J. Atmos. Chem., 12, 367–380, doi:10.1007/BF00114774, 1991.
 - Slusher, D. L., Pitteri, S. J., Haman, B. J., Tanner, D. J., and Huey, L. G.: A chemical ionization technique for measurement of pernitric acid in the upper troposphere and the polar boundary

layer, Geophys. Res. Lett., 28, 3875–3878, doi:10.1029/2001GL013443, 2001.

5

15

20

- Slusher, D. L., Huey, L. G., Tanner, D. J., Chen, G., Davis, D. D., Buhr, M., Nowak, J. B., Eisele, F. L., Kosciuch, E., Mauldin, R. L., Lefer, B. L., Shetter, R. E., and Dibb, J. E.: Measurements of pernitric acid at the South Pole during ISCAT 2000, Geophys. Res. Lett., 29, 2011, doi:10.1029/2002GL015703, 2002.
- Slusher, D. L., Neff, W. D., Kim, S., Huey, L. G., Wang, Y., Zeng, T., Tanner, D. J., Blake, D. R., Beyersdorf, A., Lefer, B. L., Crawford, J. H., Eisele, F. L., Mauldin, R. L., Kosciuch, E., Buhr, M. P., Wallace, H. W., and Davis, D. D.: Atmospheric chemistry results from the ANTCI 2005 Antarctic plateau airborne study, J. Geophys. Res.-Atmos., 115, D07304, doi:10.1029/2009JD012605, 2010.
 - Sokolov, O., and Abbatt, J. P. D.: Adsorption to ice of n-alcohols (ethanol to 1-hexanol), acetic acid, and hexanal, J. Phys. Chem. A, 106, 775–782, doi:10.1021/jp013291m, 2002.
 - Symington, A., Cox, R. A., and Fernandez, M. A.: Uptake of organic acids on ice surfaces: Evidence for surface modification and hydrate formation, Z. Phys. Chem., 224, 1219–1245, doi:10.1524/zpch.2010.6149, 2010.
 - Thibert, E. and Dominé, F.: Thermodynamics and kinetics of the solid solution of HNO₃ in ice, J. Phys. Chem. B, 102, 4432–4439, doi:10.1021/jp980569a, 1998.
 - Ullerstam, M., Thornberry, T., and Abbatt, J. P. D.: Uptake of gas-phase nitric acid to ice at low partial pressures: evidence for unsaturated surface coverage, Faraday Discuss., 130, 211–226, doi:10.1039/b417418f, 2005.
 - Vlasenko, A., Huthwelker, T., Gaggeler, H. W., and Ammann, M.: Kinetics of the heterogeneous reaction of nitric acid with mineral dust particles: An aerosol flowtube study, Phys. Chem. Chem. Phys., 11, 7921–7930, doi:10.1039/b904290n, 2009.

von Hessberg, P., Pouvesle, N., Winkler, A. K., Schuster, G., and Crowley, J. N.: Interac-

- tion of formic and acetic acid with ice surfaces between 187 and 227 K. Investigation of single species- and competitive adsorption, Phys. Chem. Chem. Phys., 10, 2345–2355, doi:10.1039/b800831k, 2008.
 - Wilhelm, E., Battino, R., and Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, doi:10.1021/cr60306a003, 1977.
- Yaws, C. L. and Yang, H.-C.: Henry's law constant for compound in water, Thermodynamic and Physical Property Data, edited by: Yaws, C. L., Gulf Publishing Company Houston, Texas, USA, 181–206, 1992.

Species	H ₂₉₈ [M atm ⁻⁺]		рК _а	ΔH_{ads} [k mol ⁻⁺]	
	min	max		min	max
NO	_	_	_	-17.4 ¹⁷	-22.6 ¹⁷
NO ₂	-	-	_	-21 ¹⁷	-23 ¹⁷
HONO	37 ¹	50 ²	3.25	-32 ¹⁷	-45 ¹⁸
HNO ₃	$2.1 \times 10^{5^3}$	2.6×10 ⁶⁴	-1.37	-44 ¹⁷	-68^{19}
HO_2NO_2	4×10 ³⁵	1.2×10 ⁴⁶	5.85	-59^{20}	-
HCI	1.1 ⁷	1.5×10 ³⁸	-7	_	_
SO ₂	1.1 ⁹	1.4 ¹⁰	1.77	-	-
H_2O_2	6.9×10 ^{4¹¹}	1.4×10 ⁵¹²	11.6	-32 ²¹	_
HCOOH	9×10 ²¹³	1.3×10 ^{4¹⁴}	3.7	-51 ²²	_
CH₃COOH	8.3×10 ²¹³	1×10 ⁴¹⁵	4.76	-17.5 ²³	-55 ²²
CF₃COOH	8.9×10 ³¹⁶	-	0.3	_	-

Table 1. Solubility, acidity ($p K_a$), and adsorption enthalpies (ΔH_{ads}). The solubility is given as molecular Henry constant at 298 K (H_{298}).

¹: Durham et al. (1981), ²: Becker et al. (1996), ³: Lelieveld and Crutzen (1991), ⁴: Chameides (1984), ⁵: Amels et al. (1996), ⁶: Regimbal and Mozurkewich (1997), ⁷: Marsh and McElroy (1985), ⁸: Chen et al. (1979), ⁹: Liss and Slater (1974), ¹⁰: Wilhelm et al. (1977), ¹¹: Hwang and Dasgupta (1985), ¹²: Hoffmann and Jacob (1984), ¹³: Yaws and Yang (1992), ¹⁴: Servant et al. (1991), ¹⁵: Gaffney and Senum (1984), ¹⁶: Bowden et al. (1996), ¹⁷: Bartels-Rausch et al. (2002), ¹⁸: Kerbrat et al. (2010b), ¹⁹: Thibert and Dominé (1998), ²⁰: This study (2011)²¹: Pouvesle et al. (2010), ²²: von Hessberg et al. (2008), ²³: Sokolov and Abbatt (2002).

Discussion Paper **ACPD** 11, 26815-26848, 2011 The adsorption of peroxynitric acid on ice between 230 K **Discussion** Paper and 253 K T. Ulrich et al. **Title Page** Abstract Introduction **Discussion** Paper Conclusions References **Tables** Figures ► Close Back **Discussion** Paper Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Fig. 2. Time traces of HO_2NO_2 (blue solid line, left axis) and the by-products NO_2 (black dotted line, left axis), HONO (green dash dotted line, left axis), HNO₃ (red dashed line, left axis), and H_2O_2 (turquoise solid line, right axis). Times at which traps were active are indicated by horizontal bars: Red: HO_2NO_2 trap (heating system), green: Ti(IV) denuder, blue: Cooling trap. Concentrations are given for the photolysis reactor, where the synthesis took place.

CC () BY

Fig. 3. Breakthrough curves of three CWFT adsorption experiments at 236 K (blue triangles), 240 K (green squares), and 250 K (red diamonds). The gas flow is led over the CWFT at time = 0 s. The variation in intensity at 250 K (t = 400-1000 s) is due to instrument fluctuations.

Fig. 4. Natural logarithm of K_{LinC} versus the inverse temperature for HO₂NO₂ (blue diamonds). If several data points were available mean values are plotted with an uncertainty of $1 \times \sigma$. The blue, dotted lines give the 95% confidence bounds for the linear fit (blue solid line). The red diamonds indicate desorption experiments. The data are compared to the IUPAC recommendation (Crowley et al., 2010) for HONO (green, dashed line with triangles) and HNO₃ (red, dash-dotted line with squares). The dotted lines show the error for HONO and HNO₃ according to the IUPAC recommendation.

Fig. 5. Multiple linear regression with the input parameters acid dissociation constant ($p K_a$) and molecular Henry constant (H_{298} [M atm⁻¹]) versus the K_{LinC} [cm⁻¹] on ice at 228 K.

Fig. 6. Fraction of adsorbed HO₂NO₂ (blue line) and HNO₃ (red line, triangles) to cirrus clouds at temperatures of the upper troposphere. Solid lines represent clouds with a surface area density of 10^{-5} cm⁻¹, dashed lines represent clouds with a surface area density of 3×10^{-4} cm⁻¹.

Fig. 7. Retention factor *f* versus temperature for three different surface area densities of snow: Solid line = 10 cm^{-1} , dashed line: 50 cm^{-1} and dotted line: 100 cm^{-1} .

