Supplementary material for "Global Mechanistic Model of SOA Formation: Effects of Different Chemical Mechanisms"

Guangxing Lin¹, Joyce E. Penner¹, Sanford Sillman¹, Domenico Taraborrelli², and Jos Lelieveld^{2,3}

¹Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA.

²Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany.

³The Cyprus Institute, Nicosia, Cyprus.

Correspondence to: Guangxing Lin (gxlin@umich.edu)

This supplementary material includes four tables. Table S1 lists oxidation products that partition to aerosol phase through gas-particle partitioning, parent VOCs, partitioning coefficients (K), production rates and relative contributions (annual mean) to ne_oSOA in three different simulations. The other three tables describe the chemical species (Table S2) and reactions (Table S3 and S4) used in the HO_x recycling mechanism in Simulation B and C.

Table S1. Oxidation products that partition to aerosol phase through gas-particle partitioning, parent VOCs, partitioning coefficients (K), production rates and relative contributions (annual mean) to ne_oSOA in three different simulations.

Short name	Chemical formula	Parent VOC	$K~(m^3/\mu g)$	Pro	duction (Tg/ye	ear)	% cont	tribution to ne	_oSOA
				Simulation A	Simulation B	Simulation C	Simulation A	Simulation B	Simulation C
A-DI	С6Н5ОН(ОН)СНО	aromatics	1.47E-03	8.11E-02	5.12E-02	6.32E-02	3.31E-01	3.39E-01	2.38E-01
AD2P	С6Н4(СН3)ОН(ОН)ООН	aromatics	1.01E-1	1.59E+00	1.47E+00	1.53E+00	6.47E+00	9.71E+00	5.74E+00
AP	С6Н5ОН(ОН)С(О)ООН	aromatics	8.34E-1	1.35E+00	1.26E+00	1.30E+00	5.52E+00	8.35E+00	4.87E+00
APAN	C6H5OH(OH)CO3NO2	aromatics	1.76E-1	6.85E-01	6.43E-01	6.74E-01	2.80E+00	4.26E+00	2.53E+00
DPAN	CHOCH=CHCO3NO2	aromatics	4.34E-07	3.79E-05	3.43E-05	3.83E-05	1.55E-04	2.27E-04	1.44E-04
GPAN	HOCH2C(O)OONO2	isoprene	6.33E-07	1.72E-03	1.05E-08	1.32E-08	7.04E-03	6.96E-08	4.94E-08
NITP	C6H5ONO2	aromatics	3.24E-07	7.76E-05	3.66E-05	5.05E-05	3.17E-04	2.42E-04	1.90E-04
XAP	CH3COCH=CHC(O)OOH	aromatics	1.12E-05	1.21E-04	7.09E-05	8.89E-05	4.93E-04	4.69E-04	3.34E-04
XPAN	CH3COCH=CHCO3NO2	aromatics	1.81E-06	4.56E-05	3.64E-05	4.20E-05	1.86E-04	2.41E-04	1.58E-04
YAP	CHOCH=C(CH3)C(O)OOH	aromatics	7.24E-06	8.54E-05	4.78E-05	6.10E-05	3.49E-04	3.16E-04	2.29E-04
YPAN	CHOCH=C(CH3)CO3NO2	aromatics	1.33E-06	3.43E-05	2.66E-05	3.10E-05	1.40E-04	1.76E-04	1.17E-04
ZAP	CHOC(CH3)=CHC(O)OOH	aromatics	7.54E-06	8.90E-05	4.97E-05	6.36E-05	3.63E-04	3.29E-04	2.39E-04
ZPAN	CHOC(CH3)=CHCO3NO2	aromatics	1.38E-06	3.56E-05	2.76E-05	3.22E-05	1.45E-04	1.83E-04	1.21E-04
IAP	HOCH2C(CH3)(OOH)CH(OH)CHO	isoprene	7.77E-02	4.58E+00	8.71E-01	2.12E+00	1.87E+01	5.76E+00	7.97E+00
INPN	O2NOCH2C(OOH)(CH3)CH=CH2	Isoprene	1.83E-05	3.91E-03	2.77E-03	3.43E-03	1.60E-02	1.83E-02	1.29E-02
ISNP	HOCH2C(OOH)(CH3)CH(ONO2)CH2OH	Isoprene	3.39E+00	1.06E+00	4.51E-01	6.79E-01	4.32E+00	2.98E+00	2.55E+00
LIP	HOC10H16OOH	Limonene	2.54E-02	8.10E-01	1.07E+00	1.07E+00	3.30E+00	7.09E+00	4.01E+00
MRP	НОСН2С(ООН)(СН3)СНО	from MACR, isoprene, limonene, alpha pinene	6.15E-05	9.94E-03	2.00E-03	3.39E-03	4.06E-02	1.33E-02	1.27E-02
PINT	ONO2C10H16OOH	alpha pinene and limonene	1.55E-02	2.05E-01	1.11E-01	1.57E-01	8.37E-01	7.37E-01	5.92E-01
PIP	НОС10Н16ООН	alpha pinene	7.58E-03	7.87E-01	8.02E-01	8.63E-01	3.21E+00	5.31E+00	3.24E+00
VRP	HOCH2CH(OOH)C(O)CH3	Isoprene	9.90E-05	2.01E-02	4.25E-03	7.75E-03	8.21E-02	2.81E-02	2.91E-02
DB100H	HOCH=C(CH3)CH(OOH)CH2OH + HOCH2C(CH3)(OOH)CH=CHOH	Isoprene	6.40E-03	-	5.22E-01	1.41E+00	-	3.45E+00	5.30E+00
DB2OOH	CHOC(CH3)(OOH)CHOHCH2OH + HOCH2C(CH3)(OH)CH(OOH)CH2OH	Isoprene	1.10E-01	-	2.47E+00	6.34E+00	-	1.63E+01	2.38E+01
TRIOL	HOCH=C(CH3)CH(OH)CH2OH + HOCH2C(CH3)(OH)CH=CHOH	isoprene	4.78E-06	-	1.67E-06	5.16E-06	-	1.10E-05	1.94E-05
PRN2	C4H7O6N	Isoprene	4.42E-02	1.34E+01	8.07E+00	1.04E+01	5.45E+01	5.34E+01	3.91E+01
RIP	HOCH2C(OOH)(CH3)CH=CH2	isoprene	1.77E-05	7.04E-03	1.09E-03	3.28E-03	2.87E-02	7.21E-03	1.23E-02
Total anthr	opogenic sources		-	3.7	3.4	3.6	15.1	19.1	13.5
Total bioge	enic sources		-	20.8	14.4	23.0	84.9	80.9	86.5

Table S2. Additional species used in the HO_x recycling mechanism

Symbol	Formula	Description
RIPEEO2	Z-HOCH2C(CH3)=CHCH2O2 + Z- CH2O2C(CH3)=CHCH2OH	Z isomers of the internally double bonded isoprene peroxy
		radicals
RIPEEOOH	Z-HOCH2C(CH3)=CHCH2OOH + Z-	Hydroperoxide from RIPEEO2
	CH2OOHC(CH3)=CHCH2OH	
DB1O2	HOCH=C(CH3)CH(O2)CH2OH +	first-generation RO2 from
	HOCH2C(CH3)(O2)CH=CHOH	Dibble mechanism (Paulot et
		al., 2009a)
DB2O2	CHOC(CH3)(O2)CHOHCH2OH +	second-generation RO2 from
	HOCH2C(CH3)(OH)CH(O2)CH2OH	Dibble mechanism (Paulot et
		al., 2009a)
DB100H	HOCH=C(CH3)CH(OOH)CH2OH +	Hydroperoxide from DB1O2
	HOCH2C(CH3)(OOH)CH=CHOH	
DB2OOH	CHOC(CH3)(OOH)CHOHCH2OH +	Hydroperoxide from DB2O2
	HOCH2C(CH3)(OH)CH(OOH)CH2OH	
TRIOL	HOCH=C(CH3)CH(OH)CH2OH +	Triol from the molecular
	HOCH2C(CH3)(OH)CH=CHOH	channel of DB1O2 permutation
		reaction
ZCO3HC23DBCOD	HOCH=C(CH3)CH(OH)CH2OH +	Acylhydroperoxyaldehydes
	HOCH2C(CH3)(OH)CH=CHOH	(PACALD) predicted by Peeters
		et al., (2009)
ZCODC23DBCOOH	CHOC(CH3)=CHCH2OOH +	Hydroperoxyaldehydes
	HOOCH2C(CH3)CHCHO	(HPALD) predicted by Peeters
		et al., (2009)

Table S3. Additional reactions for HO_x recycling mechanism

Reaction	Rate constant	References	Notes
RIPEEO2 =>	9.82E8 * EXP(-	Peeters et al. (2009)	1,6-H-shift
ZCODC23DBCOOH + HO2	6303/T)		
RIO2 => 0.864 HO2 + 0.690	6.08E10 * EXP(-	Peeters et al. (2009)	1,5-H-shift for MVK and
HCHO + 0.402 MVK + 0.288	8893/T)	· · · · · · · · · · · · · · · · · · ·	MACR precursors;
MACR + 0.136 RIO1 + 0.127			Although the parent RO2 of
IALD			IALD do not undergo 1 5-
			H-shift for simplicity the
			products of $RIO2 + NO$ are
			taken except NO2
RIPEEO2 + HO2 =>	2 91E-13 *		MCM rate constant
RIPEEOOH	EXP(1300/T) * 0.706		
RIPEEO2 + MO2 => IAP +	K same as for $IAO2 +$		
HO2 + HCHO + HO2	MO2		
RIPEFO2 + NO => IAP + HO2	2 54F-12 *		Rate constant as for the
+ NO2	FXP(360/T)		others first-generation RO2
1102			from isoprene
RIPEFOOH + hy => OH + IAP	І(СНЗООН)		
+ HO2	5(01150011)		
RIPEFOOH + OH => 0.5	k = same as for RIP +		approximation: a carbonyl
IEPOX + 0.25MGI V +	OH		function should have been
0.25 GLVX + 0.25 WGET + 0.25 GLVX + 0.25	011		an -OH functional group
$0.250017X^+$			an -Orr functional group
0.25CH3COCH2OOH			
0.2301130001120011			
ZCODC23DBCOOH + OH =>	4 50F-11	SAR (Taraborrelli	rate constant calculated by
0.5MGLY + 0.5HOOCH2CHO	4.50L 11	et al in pren)	SAR by and similar to the
+ 0.5CH3COCH2OOH $+$		et al., in prop.)	estimate of Peeter and
0 5GLYX			Mueller PCCP 2010
$\overline{CODC23DBCOOH + hy} =>$	I(CH3OOH)+I(MAC		I value for MACR
OH + IAO2	R / 0.004		photolysis assuming
011 + 11102	10,0001		IMPACT has a quantum
			vield of 0 004 (as
			recommended by IUPAC)
			IAO2 should represent
			LHC4ACCO3 of MIM2
CH3COCH2OOH + OH =>	1 90F-12 *		H-abstraction channel from
ATO2	FXP(190/T)	101710	the $-OOH$ group
$\frac{1}{1} \frac{1}{1} \frac{1}$	8 39F-12	SAR (Taraborrelli	H-abstraction from the –
MGLV + OH	0.571 12	et al in prep)	CH200H group with
MOLT OIL		et al., in prop.)	following prompt OH-
			elimination
CH3COCH2OOH + hy =>	I(MFK) +		Structural analogy to methyl
MCO3 + HCHO + OH			ethyl ketone and methyl
			hydroperoxide
$I \land O 2 => 7 C O 3 H C 23 D B C O D +$	7 32F8 * FYP(_	Peeters et al (2000)	1 6-H-shift
$1102 \rightarrow LCOJIC2JDDCOD$	1.52E0 EAT (-	1 celeis et al. (2009)	1, 0-11-51111

1100			
HO2	5556./1)		
ZCO3HC23DBCOD + hv =>	J(CH3OOH)+J(MAC	Peeters et al. (2009)	enhanced photolysis
MCO3 + 2CO2 + 2OH + HO2 +	R)/0.004		
CO	,		
VBO2 => 0.7MGLV +	5 1F10 * FXP(-	Peeters et al. (2009)	1 5-H-shift
$0.7 \text{HCHO} \pm 0.3 \text{HOOCH2CHO} \pm$	9902/T)	1 ceters et ul. (2007)	1,5 11 51111
0.7110110 + 0.51100001120110 + 0.5110000000000000000000000000000000000	8893/1)		
$\frac{0.5\text{WCOS} + \text{OH}}{0.200}$		D (2000)	1.5.11.0
MRO2 => 0.830 HCHO + 0.830	4.5E10*EXP(-8893/1)	Peeters et al. (2009)	1,5-H-shift
MGLY1 + 0.170 + HAC + 0.170			
CO + .17 HO2 + OH			
HOOCH2CHO + OH => OH +	2.081E-11		0.29 HCOCH2O2 neglected
0.44HCHO + 0.44CO +			and the other two yields re-
0.56GLYX			scaled with a factor of $1/(1-$
			29)
HOOCH2CHO + hy => OH +	I(CH3OOH)+I(GLVC		Structural analogy to
$HCHO \pm CO \pm HO2$			glyaalaldabyda and mathyl
$\Pi C \Pi O + C O + \Pi O Z$)		grycolaidenyde and meniyi
	2.05.12		nydroperoxide
DB1O2 + MO2 => 0.8 DB2O2	2.9E-12		MCM rata constant for a
+0.2 TRIOL + HCHO + HO2			secondary RO2
DB1O2 + HO2 => DB1OOH	0.706 * 2.91E-13 *		MCM rate constant
	EXP(1300./T)		
DB1O2 + NO => DB2O2 +	2.54E-12 *		Rate constant as for the
NO2	EXP(360/T)		others first-generation RO2
			from isoprene
DB2O2 + MO2 => 0.5 HAC +	$2.9E_{-}12$		MCM rate constant for a
0.5 CI VC + 0.5 MCI V + 0.5	2.71-12		socondary PO2
0.5 OL I C + 0.5 MOL I + 0.5			secondary KO2
GLYX + HO2 + HCHO + HO2			
DB2O2 + HO2 => DB2OOH	0.706 * 2.91E-13 *		MCM Rate constants
	EXP(1300./T)		
DB2O2 + NO => 0.5 HAC +	2.54E-12 *		Rate constant as for the
0.5 GLYC + 0.5 MGLY + 0.5	EXP(360./T)		others first-generation RO2
GLYX + HO2 + NO2			from isoprene
DB1OOH + OH = >DB1O2	0.4*k CH3OOH OH		
DB1OOH + hy => DB2O2 +	I(CH3OOH)		Structural analogy to methyl
OH			bydroperovide
			Ilydroperoxide
DB200H + 0H => DB202			
DB2OOH + hv => 0.5 HAC +	J(CH3OOH)		Structural analogy to methyl
0.5 GLYC + 0.5 MGLY + 0.5			hydroperoxide
GLYX + HO2 + OH			
TRIOL + OH => IAO2	1E-11	SAR (Taraborrelli	Triol from permutations
		et al., in prep.)	reactions of DB1O2

Table S4. Modified reactions in HOx recycling mechanism	
---	--

Modified reactions	Original reactions	References	Notes
$MAO3 + HO2 \implies 0.44 \text{ OH}$	MAO3 + HO2 => 0.7MAOP +		Structural analogy to
+ 0.44 HO2 + 1.76HCHO +	0.30 RCOH + 0.3O3		MCO3
0.350 MAOP + 0.150			
RCOH			
MCO3 + HO2 => 0.44 OH	MCO3 + HO2 => O3 + ACTA	IUPAC, 2009	
+ 0.44 MO2 + 0.35 MAP	MCO3 + HO2 => MAP	,	
+ .15 ACTA + .15 O3			
RIO2 + NO => NO2 +	RIO2 + NO => NO2 + 0.864	Paulot et al.,	
0.864 HO2 + 0.690 HCHO	HO2 + 0.690 HCHO + 0.402	(2009a)	
+ 0.402 MVK + 0.288	MVK + 0.288 MACR + 0.136	()	
MACR + 0.09 DB1O2 +	RIO1 + 0.127 IALD		
0.046 RIO1 + 0.127 IALD			
MO2 + RIO2 => 1.864	MO2 + RIO2 => 0.25MOH +		Consistent with Paulot
HO2 + 1.690 HCHO +	0.92HO2 + HCHO + 0.2MVK +	This work	et al., (2009a)
0.402 MVK + 0.288	0.14MACR +0.07RIO1 +		
MACR + 0.09 DB1O2 +	0.06IALD + 0.25MEK		
0.046 RIO1 + 0.127 IALD	+0.25ROH		
MCO3 + RIO2 => MO2 +	MCO3 + RIO2 => MO2 +	This work	Consistent with Paulot
0.864 HO2 + 0.690 HCHO	0.864HO2 + 0.690HCHO +		et al (2009a)
+ 0.402 MVK + 0.288	0.402 MVK + 0.288 MACR +		
MACR + 0.09 DB1O2 +	0.136RIO1 + 0.127IALD		
0.046 RIO1 + 0.127 IAL D			
RIO2 + RIO2 => 1.728	RIO2 + RIO2 => 0.680MVK +	This work	Consistent with Paulot
HO2 + 1.38 HCHO + 0.804	0.390MACR + 0.930IPRD		et al (2009a)
MVK + 0.576 MACR +	+0.40HCHO $+ 1.380$ HO2		et al., (200)a)
0.18 DB102 + 0.092 RIO1	0.40110110 + 1.5001102		
+ 0.254 LAL D			
RIO2 + HO2 => RIP	BIO2 + HO2 => 0.88BIP +		the 12% yield of OH
	0.12OH + 0.047MACR +		was used in Paulot et al
	0.12011 + 0.047 WACK + 0.073 WVK + 0.120 HCHO + 0.073 WVK + 0.120 HCHO + 0.073 WVK + 0.073		(2009b) in order to
	0.075WVK + 0.120HCHO + 0.120		account for the initial
	0.1201102		NOv present in the
			"low NOv" experiments
$PIO1 \pm HO2 \rightarrow PIP$	$PIO1 \pm HO2 = > 0.88PID \pm$		The same above
KIOI + HO2 -> KIF	$120H \pm 0.047MACP \pm$		The same above
	$0.12011 + 0.047$ MACK + 0.072 MVV ± 0.120 HCHO \pm		
	0.073 MVK + 0.120 HCHO + 0.120 HCHO + 0.120 HO2		
$CLVV + OLL \rightarrow 1.9 CO +$	$\frac{0.120H02}{CLVV + OU} \rightarrow \frac{1002}{200}$	This work	Combination of nomilta
GLYX + OH = > 1.8 CO +	$GLYX + OH \rightarrow HO2 + 2CO$	THIS WORK	from Orlando and
0.8 HO2 + 0.2 OH			
			$\begin{array}{c} 1 \text{ yndall, } (2001), \\ \text{Existence and at al.} (2008) \end{array}$
			Felerabend et al., (2008)
GLYC + OH => 0.75 HO2	GLYC + OH => 0.80GCO3 + 0.201002	Butkovskaya et al.,	
+ 0.25 OH + 0.13 GLYX + 0.52 GO + 0.16 MGCOV	0.20 GLY X + 0.20 HO2	(2006a)	
0.52 CO + 0.16 HCOOH +			
HAC + OH => 0.75 MGLY	HAC + OH => MGLY + HO2	Butkovskaya et al.,	
+ 0.825 HO2 + 0.125		(2006b)	

HCOOH + 0.1 OH +0.125			
MO2 + 0.05 CO + 0.125			
АСТА			
$RIP + OH \Rightarrow 0.5 IAO2 +$	RIP + OH => 0.50IAO2 +	This work	Approximation
0.50MGLY + 0.50GLYX +	0.4RIO2 + 0.2RIO1		regarding the
0.50CH3COCH2OOH +			degradation products
0.50HOOCH2CHO			

References:

- Butkovskaya, N. I., Pouvesle, N., Kukui, A., and Le Bra, G.: Mechanism of the OH-initiated oxidation of glycolaldehyde over the temperature range 233-296 K, J. Phys. Chem. A, 110, 13492-13499, 2006a.
- Butkovskaya, N. I., Pouvesle, N., Kukui, A., Mu, Y. J., and Le Bras, G.: Mechanism of the OH-initiated oxidation of hydroxyacetone over the temperature range 236-298 K, J. Phys. Chem. A, 110, 6833-6843, 2006b.
- Feierabend, K. J., Zhu, L., Talukdar, R. K., and Burkholder, J. B.: Rate Coefficients for the OH+HC(O)C(O)H (glyoxal) Reaction between 210 and 390, J. Phys. Chem. A, 112, 73-82, 2008.
- IUPAC, 2009: http://www.iupac-kinetic.ch.cam.ac.uk/datasheets/pdf/HOx_VOC54_HO2_CH3CO3.pdf.
- Orlando, J. J., and Tyndall, G. S.: The atmospheric chemistry of the HC(O)CO radical, Int. J. Chem. Kinet., 33, 149-156, 2001.
- Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.: Isoprene photooxidation: new insights into the production of acids and organic nitrates, Atmos. Chem. Phys, 9, 1479-1501, 2009a.
- Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kurten, A., St Clair, J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected epoxide formation in the gas-phase photooxidation of isoprene, Science, 325, 730-733, 2009b.
- Peeters, J., and Muller, J.-F.: HO(x) radical regeneration in isoprene oxidation via peroxy radical isomerisations. II: experimental evidence and global impact, Physical Chemistry Chemical Physics, 12, 14227-14235, 2010.
- Peeters, J., Nguyen, T. L., and Vereecken, L.: HOx radical regeneration in the oxidation of isoprene, Physical Chemistry Chemical Physics, 11, 5935-5939, 2009.
- Taraborrelli et al.: Development of a detailed isoprene oxidation mechanism. In preparation, 2011.