SUPPORTING INFORMATION:

2	
3	Soil-Air Exchange Controls on Background Atmospheric Concentrations of
4	Organochlorine Pesticides
5	
6	Ana Cabrerizo ¹ , Jordi Dachs ¹ *, Kevin C. Jones ² Damià Barceló ¹
7	
8	Annex 1. List of figures.
9	Figure S1. Map of selected background areas4
10	Figure S2a-Examples of back trajectories for selected sites for α-HCH5
11	Figure S2b. Examples of back trajectories for selected sites for γ -HCH6
12	Figure S2c. Examples of back trajectories for selected sites for p,p'-DDD7
13	Figure S3. Ambient air fugacity*10 ¹⁰ for selected sampling sites of the Ebro
14	river basin (Spain) for Organochlorine Pesticides
15	Figure S4. Log Cs (soil concentration in ng gdw^{-1}) versus Log f_{OC} for selected
16	HCH isomers and DDT metabolites
17	Figure S5. Soil fugacity (Log fs*10 ¹⁰) regressed against 1/T10
18	Figure S6. Log K_{OCA} regressed versus Log K_{OA} for different sampling sites in
19	Spain (Ebro) and UK (Hazelrigg and Langden)11
20	Figure S7. Examples of Log K _{OCA} regressed against 1/T12
21	Figure S8a. Log fugacity in soil (fs) versus log fugacity in air (fa) for individual
22	HCHs isomers and DDT metabolites for sampling sites in Spain13
23	Figure S8b. Log fugacity in soil (fs) versus log fugacity in air (fa) for individual
24	HCHs isomers and DDT metabolites for sampling sites in UK14

Annex 2. List of tables:

26	Table S1: Sampling sites and sampling details. 15
27	Table S2a. Ambient air concentration (mean±SD) in ng m ⁻³ , ambient air
28	temperature and precipitation for Ebro sampling sites in June 2006. <loq: data<="" td=""></loq:>
29	below quantification limit16
30	Table S2b. Ambient air concentration (mean±SD) in ng m ⁻³ , ambient air
31	temperature and precipitation for Ebro sampling sites in November 2006. <loq:< td=""></loq:<>
32	data below quantification limit17
33	Table S2c. Ambient air concentration (mean±SD) in ng m ⁻³ , ambient air
34	temperature and precipitation for Ebro sampling sites in September 2007. <loq:< td=""></loq:<>
35	data below quantification limit
36	Table S2d. Ambient air concentration (mean±SD) in ng m ⁻³ , ambient air
37	temperature and precipitation for UK sampling sites. <loq: below<="" data="" td=""></loq:>
38	quantification limit
39	Table S3a. Soil concentration in (ng g dw ⁻¹) and soil physico-chemical
40	properties (%TOC: soil organic carbon, %N: soil nitrogen, Soil T: Soil
41	temperature, soil pH, soil redox, soil water content (SWC) and site altitude for
42	selected sites along the Ebro river basin. <loq: below="" cuantification="" data="" limit,<="" td=""></loq:>
43	Nd: not measured data due to sensor problems. Na: non-available
44	data20
45	Table S3b. Soil concentration in (ng g dw ⁻¹) and soil physico-chemical
46	properties (%TOC: soil organic carbon, %N: soil nitrogen, Soil T: Soil
47	temperature, soil pH, soil redox, soil water content (SWC) and site altitude in
48	UK s sites. <loq: below="" data="" quantification<="" td=""></loq:>
49	limit

50	Table S4. Correlation coefficients for all soils
51	Table S5a. Soil fugacity regressed against f_{OC} ; a, b are the fitting parameters in
52	the equation Log fs=a +b(log f_{OC}) p the level of significance and N the number
53	of samples considered23
54	Table S5b. Soil fugacity regressed against f_{OC}/f_N ; a, b are the fitting parameters
55	in the equation Log fs=a +b(log f_{OC}/f_N) p the level of significance and N the
56	number of samples considered24
57	Table S5c. Soil fugacity regressed against pH; a, b are the fitting parameters in
58	the equation Log fs=a +b(pH) p the level of significance and N the number of
59	samples considered
60	Table S6a. K_{OCA} regressed against altitude; a, b are the fitting parameters in the
61	equation Log K_{OCA} =a +b(log altitude), p the level of significance, ne (not
62	enough data for statistic analysis) and N the number of samples considered25
63	Table S6b. K_{OCA} regressed against f_{OC}/f_N ; a, b are the fitting parameters in the
64	equation Log $K_{OCA} = a + b(\log f_{OC}/f_N)$, p the level of significance, ne (not enough
65	data for statistic analysis) and N the number of samples considered 25
66	Table S6c. K _{OC} regressed against soil pH; a, b are the fitting parameters in the
67	equation Log K_{OC} =a +b (pH), p the level of significance, ne (not enough data
68	for statistic analysis) and N the number of samples considered26
69	
70	
71	
72	
73	
74	

Figure S2a-Examples of back trajectories for selected sites for α -HCH

_

Figure S4. Log Cs (soil concentration in ng gdw-1) versus Log f_{OC} for selected HCH isomers and DDT metabolites

Figure S5. Soil fugacity (Log fs*10¹⁰) regressed against 1/T

127Figure S6. Log K_{OCA} regressed versus Log K_{OA} for different sampling sites in128Spain (Ebro) and UK (Hazelrigg and Langden)

Figure S8a. Log fugacity in soil (fs) versus log fugacity in air (fa) for individual
 HCH isomers and DDT metabolites for sampling sites in Spain

161 Annex 2. List of tables

	Lat	Long	Sampling	Sampling period	Nº air	Nº soil
			site		samples	samples
Borau	42°38N	0°35W	Rural	*13-15/06/2006	3	1
				*17-19/11/2006	4	1
				*16/09/2007	2	1
Alfaro	42°11N	1°47W	Rural	*19-21/06/2006	3	1
				*14-16/11/2006	4	1
				*17-19/09/2007	4	1
Tudela	42°04N	1°36W	Semi-	*19-21/06/2006	4	1
			rural	*14-16/11/2006	4	1
				*17-19/09/2007	4	1
Sabiñanigo	42°31N	0°22W	Semi-	*16-18/06/2006	3	1
			rural	*17-19/11/2006	3	1
				*14-16/09/2007	4	1
Najera	42°25N	2°45W	Rural	*22-24/06/2006	4	1
Uruñuela	42°43N	2°7W	Rural	*22-24/06/2006	4	1
Lasieso	42°42N	0°43W	Rural	*16-18/06/2006	4	1
				*17-19/11/2006		1
				*14-16/09/2007		1
Hazelrigg	54°1N	2°46W	Semi-	*12-17/08/2008	8	1
			rural	*18-29/08/2008	10	1
Langden	53°95N	2°56W	Rural	*17-24/09/2008	12	1
Total					84	20
number of						
Samples						

Table S1. Sampling sites and sampling details

	BORAU	SABIÑANIGO		TUDELA	ALFARO	NAJERA		URUÑUELA	A	LASIESO	
		Mean	SD			Mean	SD	Mean	SD	Mean	SD
НСВ	Nd	nd		nd	nd	nd		nd		nd	
α-ΗCΗ	0.020	0.132	0.086	0.025	0.022	0.081	0.038	0.069	0.038	0.044	0.002
β-НСН	0.006	0.033	0.014	0.008	0.047	0.126	0.087	0.188	0.151	0.096	0.110
g-HCH	0.031	0.135	0.070	0.046	0.033	<loq< th=""><th></th><th><loq< th=""><th></th><th>0.050</th><th>0.013</th></loq<></th></loq<>		<loq< th=""><th></th><th>0.050</th><th>0.013</th></loq<>		0.050	0.013
d-HCH	0.005	0.052	0.029	0.022	0.010	0.034	0.006	0.025	0.001	0.016	0.001
o,p´ -DDE	<loq< th=""><th><loq< th=""><th></th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th></th><th><loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th></th><th><loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>		<loq< th=""><th><loq< th=""><th><loq< th=""><th></th><th><loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th></th><th><loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th><loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>		<loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<>		<loq< th=""><th></th></loq<>	
p,p´-DDE	0.006	0.007	0.001	0.010	0.012	0.028	0.004	0.016	0.009	0.010	0.004
p,p´-DDD	<loq< th=""><th><loq< th=""><th></th><th>0.009</th><th>0.010</th><th>0.033</th><th>0.014</th><th>0.023</th><th>0.012</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>0.009</th><th>0.010</th><th>0.033</th><th>0.014</th><th>0.023</th><th>0.012</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>		0.009	0.010	0.033	0.014	0.023	0.012	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
o,p´-DDT	<loq< th=""><th><loq< th=""><th></th><th><loq< th=""><th><loq< th=""><th>0.006</th><th>0.009</th><th><loq< th=""><th></th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th><loq< th=""><th><loq< th=""><th>0.006</th><th>0.009</th><th><loq< th=""><th></th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>		<loq< th=""><th><loq< th=""><th>0.006</th><th>0.009</th><th><loq< th=""><th></th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.006</th><th>0.009</th><th><loq< th=""><th></th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.006	0.009	<loq< th=""><th></th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>		<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
p,p´-DDT	<loq< th=""><th><loq< th=""><th></th><th><loq< th=""><th>0.009</th><th>0.005</th><th>0.008</th><th>0.008</th><th>0.012</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th><loq< th=""><th>0.009</th><th>0.005</th><th>0.008</th><th>0.008</th><th>0.012</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>		<loq< th=""><th>0.009</th><th>0.005</th><th>0.008</th><th>0.008</th><th>0.012</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	0.009	0.005	0.008	0.008	0.012	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
ΣHCHs	0.062	0.352		0.102	0.113	0.242		0.282		0.206	
ΣDDTs	0.006	0.007		0.019	0.031	0.083		0.047		0.010	
Air T (K)	278.24	283.46		284.33	284.16	293.57	1.31	293.94	1.28	293.63	0.75
Precipitation (mm)	5.25	0.2		0.4	1.65	0	-	3.3	4.67	7.0	8.20

Table S2a. Ambient air concentration (mean±SD) in ng m⁻³, ambient air temperature and precipitation for Ebro sampling sites in June

2006. <loq: data below quantification limit. Nd: not determined due to chromatographic problems.

	BORAU		SABIÑANIGO	TUDELA		ALFARO	
	Mean	SD		Mean	SD	Mean	SD
НСВ	0.018	0.022	0.022	ND		0.065	0.024
α-ΗCΗ	0.004	0.001	0.054	0.026	0.020	0.013	0.002
β-НСН	0.005	0.000	0.006	0.040	0.023	0.018	0.002
g-HCH	0.007	0.000	0.058	ND		0.031	0.006
d-HCH	0.003	0.004	0.019	0.036	0.008	0.032	0.018
o,p´ -DDE	<loq< th=""><th></th><th><loq< th=""><th><loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>		<loq< th=""><th><loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<>		<loq< th=""><th></th></loq<>	
p,p´-DDE	0.007	0.003	0.009	0.007	0.002	0.013	0.007
p,p´-DDD	0.003	0.004	<loq< th=""><th><loq< th=""><th></th><th>0.003</th><th>0.004</th></loq<></th></loq<>	<loq< th=""><th></th><th>0.003</th><th>0.004</th></loq<>		0.003	0.004
o,p´-DDT	<loq< th=""><th></th><th><loq< th=""><th><loq< th=""><th></th><th>0.012</th><th>0.001</th></loq<></th></loq<></th></loq<>		<loq< th=""><th><loq< th=""><th></th><th>0.012</th><th>0.001</th></loq<></th></loq<>	<loq< th=""><th></th><th>0.012</th><th>0.001</th></loq<>		0.012	0.001
p,p´-DDT	0.005	0.007	<loq< th=""><th>0.018</th><th>0.012</th><th>0.017</th><th>0.006</th></loq<>	0.018	0.012	0.017	0.006
ΣHCHs	0.019		0.137	0.101		0.093	
ΣDDTs	0.015		0.009	0.024		0.045	
Air T (K)	278.24	1.60	283.46	284.33	2.56	284.16	3.82
Precipitation (mm)	5.25	0.21	0.2	0.4	0.57	1.65	2.33

Table S2b. Ambient air concentration (mean±SD) in ng m⁻³, ambient air temperature and precipitation for Ebro sampling sites in

November 2006. <loq: data below quantification limit

	BORAU	SABIÑANIO	30	ALFARO		TUDELA	
	Mean	Mean	SD	Mean	SD	Mean	SD
НСВ	0.054	0.055	0.003	0.057	0.018	0.066	0.023
α-ΗCΗ	0.004	0.038	0.019	0.010		<loq< th=""><th></th></loq<>	
β-НСН	0.007	0.010	0.008	0.031	0.038	0.009	0.000
g-HCH	0.010	<loq< th=""><th></th><th><loq< th=""><th></th><th>0.010</th><th>0.002</th></loq<></th></loq<>		<loq< th=""><th></th><th>0.010</th><th>0.002</th></loq<>		0.010	0.002
d-HCH	0.018	0.007	0.002	0.004	0.001	0.016	0.004
o,p´ -DDE	<loq< th=""><th><loq< th=""><th></th><th><loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th><loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<></th></loq<>		<loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<>		<loq< th=""><th></th></loq<>	
p,p´-DDE	0.005	0.005	0.000	0.019	0.013	0.012	0.007
p,p´-DDD	0.002	0.001	0.000	0.002	0.000	0.005	0.003
o,p´-DDT	0.008	0.009	0.000	0.009	0.001	0.008	0.003
p,p´-DDT	0.018	0.019	0.000	0.018	0.001	0.015	0.006
ΣHCHs	0.035	0.055		0.046		0.034	
ΣDDTs	0.111	0.035		0.048		0.041	
Air T (K)	288.83	293.50	1.52	289.60	2.29	289.83	2.10
Precipitation (mm)	na	0.3	0.42	0.4	0.57	0.75	1.06

Table S2c. Ambient air concentration (mean±SD) in ng m⁻³, ambient air temperature and precipitation for Ebro sampling sites in

September 2007.<loq: data below quantification limit, na= non-available data

	Hazelrigg		Langden	
	Mean	SD	Mean	SD
НСВ	0.037	0.013	0.034	0.010
α-ΗCΗ	0.014	0.008	0.009	0.004
β-НСН	0.041		<loq< th=""><th></th></loq<>	
g-HCH	0.024	0.012	0.014	0.010
d-HCH	<loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<>		<loq< th=""><th></th></loq<>	
o,p´ -DDE	0.002	0.001	0.001	0.000
p,p´-DDE	0.011	0.007	0.009	0.001
o,p´-DDD	0.001	0.000	0.001	0.000
p,p´-DDD	0.001	0.000	0.001	0.000
o,p´-DDT	<loq< th=""><th></th><th><loq< th=""><th></th></loq<></th></loq<>		<loq< th=""><th></th></loq<>	
p,p´-DDT	0.001	0.000	0.001	0.000
ΣHCHs	0.078		0.023	
ΣDDTs	0.016		0.012	
Air T (K)	288.22	0.48	285.70	0.64
Precipitation (mm)	0.41	0.54	0.03	0.00

Table S2d. Ambient air concentration (mean±SD) in ng m⁻³, ambient air temperature and precipitation for UK sampling sites. <loq: data below quantification limit

	BORAU			SABIÑANIGO			LASIESO			ALFARO			TUDELA			URUÑUELA	NAJERA
	Jun-06	Nov-06	Sep-07	Jun-06	Nov-06	Sep-07	Jun-06	Nov-06	Sep-07	Jun-06	Nov-06	Sep-07	Jun-06	Nov-06	Sep-07	Jun-06	Jun-06
НСВ	0.0439	0.0447	0.0397	0.0400	0.0443	0.0989	0.0036	0.0089	0.0086	0.0508	0.0474	0.1559	0.1697	0.1503	0.4853	<loq< th=""><th>0.1174</th></loq<>	0.1174
α-HCH	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.2442</th><th>0.0037</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0324</th><th>0.0277</th><th><loq< th=""><th><loq< th=""><th>0.0105</th><th>0.0249</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.2442</th><th>0.0037</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0324</th><th>0.0277</th><th><loq< th=""><th><loq< th=""><th>0.0105</th><th>0.0249</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.2442</th><th>0.0037</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0324</th><th>0.0277</th><th><loq< th=""><th><loq< th=""><th>0.0105</th><th>0.0249</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.2442</th><th>0.0037</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0324</th><th>0.0277</th><th><loq< th=""><th><loq< th=""><th>0.0105</th><th>0.0249</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.2442	0.0037	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0324</th><th>0.0277</th><th><loq< th=""><th><loq< th=""><th>0.0105</th><th>0.0249</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0324</th><th>0.0277</th><th><loq< th=""><th><loq< th=""><th>0.0105</th><th>0.0249</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.0324</th><th>0.0277</th><th><loq< th=""><th><loq< th=""><th>0.0105</th><th>0.0249</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0324</th><th>0.0277</th><th><loq< th=""><th><loq< th=""><th>0.0105</th><th>0.0249</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.0324	0.0277	<loq< th=""><th><loq< th=""><th>0.0105</th><th>0.0249</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0105</th><th>0.0249</th><th><loq< th=""></loq<></th></loq<>	0.0105	0.0249	<loq< th=""></loq<>
β-НСН	0.0002	0.0002	0.0277	0.0013	<loq< th=""><th>0.0077</th><th><loq< th=""><th>n</th><th>0.0039</th><th><loq< th=""><th><loq< th=""><th>0.0081</th><th><loq< th=""><th><loq< th=""><th>0.0108</th><th>0.0554</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.0077	<loq< th=""><th>n</th><th>0.0039</th><th><loq< th=""><th><loq< th=""><th>0.0081</th><th><loq< th=""><th><loq< th=""><th>0.0108</th><th>0.0554</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	n	0.0039	<loq< th=""><th><loq< th=""><th>0.0081</th><th><loq< th=""><th><loq< th=""><th>0.0108</th><th>0.0554</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0081</th><th><loq< th=""><th><loq< th=""><th>0.0108</th><th>0.0554</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.0081	<loq< th=""><th><loq< th=""><th>0.0108</th><th>0.0554</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0108</th><th>0.0554</th><th><loq< th=""></loq<></th></loq<>	0.0108	0.0554	<loq< th=""></loq<>
ү-НСН	0.0022	0.0051	0.0032	0.0005	0.1149	<loq< th=""><th>0.0001</th><th>0.0001</th><th>0.0011</th><th><loq< th=""><th>0.0151</th><th>0.0029</th><th><loq< th=""><th><loq< th=""><th>0.0120</th><th>0.0271</th><th>0.0136</th></loq<></th></loq<></th></loq<></th></loq<>	0.0001	0.0001	0.0011	<loq< th=""><th>0.0151</th><th>0.0029</th><th><loq< th=""><th><loq< th=""><th>0.0120</th><th>0.0271</th><th>0.0136</th></loq<></th></loq<></th></loq<>	0.0151	0.0029	<loq< th=""><th><loq< th=""><th>0.0120</th><th>0.0271</th><th>0.0136</th></loq<></th></loq<>	<loq< th=""><th>0.0120</th><th>0.0271</th><th>0.0136</th></loq<>	0.0120	0.0271	0.0136
δ-ΗCΗ	0.0038	0.0062	0.0044	0.0009	0.1570	0.0090	0.0004	0.0002	0.0041	<loq< th=""><th>0.0767</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0054</th><th>0.0672</th><th>0.0281</th></loq<></th></loq<></th></loq<></th></loq<>	0.0767	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0054</th><th>0.0672</th><th>0.0281</th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.0054</th><th>0.0672</th><th>0.0281</th></loq<></th></loq<>	<loq< th=""><th>0.0054</th><th>0.0672</th><th>0.0281</th></loq<>	0.0054	0.0672	0.0281
o,p´-DDE	<loq< th=""><th><loq< th=""><th>0.0014</th><th>0.0019</th><th>0.0449</th><th>0.0016</th><th>0.0003</th><th><loq< th=""><th>0.0002</th><th><loq< th=""><th>0.1015</th><th>0.0001</th><th>0.0042</th><th>0.0049</th><th>0.0279</th><th>0.3618</th><th>0.2232</th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0014</th><th>0.0019</th><th>0.0449</th><th>0.0016</th><th>0.0003</th><th><loq< th=""><th>0.0002</th><th><loq< th=""><th>0.1015</th><th>0.0001</th><th>0.0042</th><th>0.0049</th><th>0.0279</th><th>0.3618</th><th>0.2232</th></loq<></th></loq<></th></loq<>	0.0014	0.0019	0.0449	0.0016	0.0003	<loq< th=""><th>0.0002</th><th><loq< th=""><th>0.1015</th><th>0.0001</th><th>0.0042</th><th>0.0049</th><th>0.0279</th><th>0.3618</th><th>0.2232</th></loq<></th></loq<>	0.0002	<loq< th=""><th>0.1015</th><th>0.0001</th><th>0.0042</th><th>0.0049</th><th>0.0279</th><th>0.3618</th><th>0.2232</th></loq<>	0.1015	0.0001	0.0042	0.0049	0.0279	0.3618	0.2232
p,p´-DDE	0.0324	0.0792	0.0607	0.0747	0.0690	0.1126	0.0099	0.0150	0.0106	0.0161	0.2320	0.2274	0.6494	0.7226	2.4911	0.8141	0.0195
p,p´-DDD	0.0015	0.0076	0.0052	<loq< th=""><th>0.0795</th><th><loq< th=""><th>0.0001</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.1049</th><th><loq< th=""><th><loq< th=""><th>0.0118</th><th>0.0948</th><th>0.1147</th><th>0.2409</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.0795	<loq< th=""><th>0.0001</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.1049</th><th><loq< th=""><th><loq< th=""><th>0.0118</th><th>0.0948</th><th>0.1147</th><th>0.2409</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.0001	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.1049</th><th><loq< th=""><th><loq< th=""><th>0.0118</th><th>0.0948</th><th>0.1147</th><th>0.2409</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.1049</th><th><loq< th=""><th><loq< th=""><th>0.0118</th><th>0.0948</th><th>0.1147</th><th>0.2409</th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.1049</th><th><loq< th=""><th><loq< th=""><th>0.0118</th><th>0.0948</th><th>0.1147</th><th>0.2409</th></loq<></th></loq<></th></loq<>	0.1049	<loq< th=""><th><loq< th=""><th>0.0118</th><th>0.0948</th><th>0.1147</th><th>0.2409</th></loq<></th></loq<>	<loq< th=""><th>0.0118</th><th>0.0948</th><th>0.1147</th><th>0.2409</th></loq<>	0.0118	0.0948	0.1147	0.2409
o,p´-DDT	0.0072	0.0162	0.0122	0.0195	0.0303	0.0347	0.0022	0.0036	0.0063	0.0045	0.0000	0.0173	0.0598	0.0568	0.4004	0.0994	0.0729
p,p´-DDT	0.0197	0.0305	0.0315	0.0279	0.1302	0.0557	0.0040	<loq< th=""><th>0.0145</th><th>0.0043</th><th>0.0829</th><th>0.0327</th><th>0.1531</th><th>0.1817</th><th>1.7154</th><th>0.3691</th><th>0.6607</th></loq<>	0.0145	0.0043	0.0829	0.0327	0.1531	0.1817	1.7154	0.3691	0.6607
Σ HCHs	0.0062	0.0114	0.0354	0.0026	0.5161	0.0204	0.0005	0.0003	0.0091	<loq< th=""><th>0.1242</th><th>0.0387</th><th><loq< th=""><th><loq< th=""><th>0.0387</th><th>0.1745</th><th>0.0417</th></loq<></th></loq<></th></loq<>	0.1242	0.0387	<loq< th=""><th><loq< th=""><th>0.0387</th><th>0.1745</th><th>0.0417</th></loq<></th></loq<>	<loq< th=""><th>0.0387</th><th>0.1745</th><th>0.0417</th></loq<>	0.0387	0.1745	0.0417
Σ DDTs	0.0608	0.1334	0.1110	0.1240	0.3538	0.2046	0.0166	0.0186	0.0316	0.0249	0.5212	0.2775	0.8665	0.9778	4.7297	1.7591	1.2173
%ТОС	4.78	5.75	5.21	5.97	6.54	7.88	1.20	1.26	0.48	6.66	14.07	9.88	8.92	9.5	22.53	2.92	3.06
%N	0.49	0.58	0.51	0.44	0.47	0.57	0.12	na	na	0.66	1.33	0.93	0.55	0.60	1.00	0.27	0.22
Soil T	295.4	283.6	294.8	293.0	284	287.7	295.5	285.4	299.3	295.6	285.5	292.0	295 .0	287 .0	291.0	292.0	290.8
рН	7.96	7.87	8.2	7.81	7.66	8.00	8.38	8.18	8.60	7.83	8.13	8.30	7.93	8.14	8.20	8.20	8.03
Redox	250	298	305	242	266	nd	214	298	298	253	240	240	231	254	261	239	238
SWC %	3.36	30.06	4.29	14.62	28.87	5.97	3.38	16.50	5.57	19.92	27.87	17.53	9.16	15.07	22.29	18.85	16.89
Altitude	910	910	910	790	790	790	720	720	720	302	302	302	269	269	269	499	265

Table S3a. Soil concentration in (ng gdw⁻¹) and soil physico-chemical properties (%TOC: soil organic carbon, %N: soil nitrogen, Soil T: Soil temperature, soil pH, soil redox, soil water content (SWC) and site altitude for selected sites along the Ebro river basin. <loq: data below quantification limit, Nd: not measured data due to sensor problems. Na: non-available data

	Hazelrigg	Hazelrigg	Langden
НСВ	0.0792	0.1044	0.4127
α-ΗCΗ	0.0014	0.0064	0.0320
β-НСН	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
g-HCH	0.0007	0.0128	0.0349
d-HCH	0.0040	0.0124	0.0307
o,p´ -DDE	0.0083	0.0187	0.0560
p,p´-DDE	0.0391	3.3920	0.7008
o,p´-DDD	<loq< th=""><th></th><th></th></loq<>		
o,p´-DDT	0.0083	0.0726	0.0483
p,p´-DDT	0.0165	0.0226	0.0533
Σ HCHs	0.0061	0.0316	0.0975
Σ DDTs	0.0722	3.5058	0.8584
%ТОС	4.48	5.54	48.33
%N	0.20	0.30	1
Soil T	289.10	289.7	286.4
рН	5.87	5.94	4.5
Redox	427	400	407
SWC %	47.45	56.20	81.80
Altitude	94.2	94.2	190

Table S3b. Soil concentration in (ng g dw⁻¹) and soil physico-chemical properties (%TOC: soil organic carbon, %N: soil nitrogen, Soil T: Soil temperature, soil pH, soil redox, soil water content (SWC) and site altitude in UK s sites. <loq: data below quantification limit.

	HCB	ΣDDT	ΣΗCΗ	ΣPCBs	ΣPAHs
HCB	1.00				
ΣDDT	0.67**	1.00			
ΣΗCΗ	0.42*	0.54*	1.00		
ΣPCBs	0.71**	0.64**	0.24*	1.00	
ΣPAHs	0.57**	0.48*	0.30*	0.49**	1.00

*p<0.05, **p<0.001, the data were log-transformed before analysis.

Table S4. Correlation coefficients for all soils

	R ²	А	р	b	р	Ν
НСВ			>0.05		>0.05	
α-HCH	0.14	-0.80	<0.05	-0.72	<0.05	39
β-НСН	0.12	-0.46	>0.05	-0.86	0.09	25
g-HCH	0.15	-0.51	>0.05	-0.66	>0.05	34
d-HCH			>0.05		>0.05	
o,p´ -DDE			>0.05		>0.05	
p,p´-DDE			>0.05		>0.05	
p,p´-DDD			>0.05		>0.05	
o,p´-DDT	0.19	-0.63	>0.05	-0.86	<0.05	20
p,p´-DDT	0.12	-1.12	>0.05	-0.70	<0.05	35

Table S5a. Soil fugacity regressed against f_{OC} ; a, b are the fitting parameters in the equation Log fs=a +b(log f_{OC}) p the level of significance and N the number of

samples considered

	R ²	А	р	b	р	Ν
НСВ			>0.05		>0.05	
α-HCH	0.16	1.65	<0.05	-1.37	<0.05	39
β-НСН			>0.05		>0.05	
g-HCH	0.21	1.91	<0.05	-1.38	<0.05	34
d-HCH			>0.05		>0.05	
o,p´ -DDE	0.26	0.23	>0.05	-1.56	<0.05	15
p,p´-DDE	0.32	2.26	<0.05	-2.25	<0.001	41
p,p´-DDD	0.42	2.08	<0.05	-2.35	<0.001	26
o,p´-DDT			>0.05		>0.05	
p,p´-DDT	0.59	3.12	<0.001	-2.79	<0.001	35

Table S5b. Soil fugacity regressed against f_{OC}/f_N ; a, b are the fitting parameters in
the equation Log fs=a +b(log f_{OC}/f_N) p the level of significance and N the number of

samples considered

	R ²	Α	р	b	р	Ν
НСВ			>0.05		>0.05	
α-HCH	0.19	-1.77	<0.05	0.25	<0.05	39
β-НСН			>0.05		>0.05	
g-HCH	0.30	-1.67	<0.05	0.27	<0.05	34
d-HCH			>0.05		>0.05	
o,p´ -DDE	0.47	-4.46	<0.001	0.45	<0.05	15
p,p´-DDE	0.50	-3.70	<0.001	0.45	<0.001	41
p,p´-DDD	0.67	-4.10	<0.001	0.47	<0.001	26
o,p´-DDT			>0.05			
p,p´-DDT	0.80	-3.92	>0.001	0.51	<0.001	35

Table S5c. Soil fugacity regressed against pH; a, b are the fitting parameters in the equation Log fs=a +b(pH) p the level of significance and N the number of samples

considered

	R ²	Α	р	b	р	Ν
НСВ	0.16	8.38	<0.001	-0.75	<0.05	35
α-HCH	0.17	9.37	<0.001	-0.78	<0.05	26
β-НСН	ne					
g-HCH	0.26	9.94	<0.001	-1.23	<0.05	27
d-HCH			>0.05		>0.05	
o,p´ -DDE	0.57	14.22	<0.001	-2.22	<0.05	15
p,p´-DDE	0.60	15.25	<0.001	-2.52	<0.001	41
p,p´-DDD	ne					
o,p´-DDT			<0.05		<0.05	
p,p´-DDT	0.55	12.68	<0.001	-1.84	<0.001	36

Table S6a. K_{OCA} regressed against altitude, a, b are the fitting parameters in the equation Log K_{OCA} =a +b(log altitude), p the level of significance, ne (not enough

data for statistic analysis) and N the number of samples considered

	R ²	Α	р	b	р	Ν
НСВ			>0.05		>0.05	
α-HCH			>0.05		>0.05	
β-НСН	Ne					
g-HCH			>0.05		>0.05	
d-HCH			>0.05		>0.05	
o,p´ -DDE	Ne					
p,p´-DDE	0.29	5.61	<0.001	2.81	<0.001	41
p,p´-DDD	Ne					
o,p´-DDT	0.31	2.73	<0.001	4.00	<0.05	20
p,p´-DDT	0.19	6.21	<0.001	1.61	<0.05	36

Table S6b. K_{OCA} regressed against $f_{OC}/f_{N;}$ a, b are the fitting parameters in the equation Log K_{OCA} =a +b(log f_{OC}/f_N), p the level of significance, ne (not enough data for statistic analysis) and N the number of samples considered.

	R ²	А	р	b	р	Ν
НСВ			>0.05		>0.05	
α-HCH			>0.05		>0.05	
β-НСН	Ne					
g-HCH	0.23	9.04	<0.05	-0.31	<0.05	27
d-HCH	0.30	20.86	<0.05	-2.45	<0.05	18
o,p´ -DDE	Ne					
p,p´-DDE	0.48	13.21	<0.001	-0.60	<0.001	41
p,p´-DDD	Ne					
o,p´-DDT			>0.05		>0.05	
p,p´-DDT	0.26	10.27	<0.001	-0.30	<0.05	36

Table S6c. K_{OC} regressed against soil pH; a, b are the fitting parameters in the equation Log K_{OC} =a +b (pH), p the level of significance, ne (not enough data for statistic analysis) and N the number of samples considered.