1	A Case Study of Aerosol Processing and Evolution in Summer in New York City
2	
3	Y. L. Sun ¹ , Q. Zhang ² , J. J. Schwab ³ , W. N. Chen ⁴ , M. S. Bae ⁵ , Y. C. Lin ⁴ , H. M. Hung ⁶ , K. L.
4	Demerjian ³
5	
6	¹ State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,
7	Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
8	² Department of Environmental Toxicology, University of California, Davis, California, USA
9	³ Atmospheric Sciences Research Center, State University of New York, Albany, New York,
10	USA
11	⁴ Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
12	⁵ Environmental Engineering Department, Mokpo National University, South of Korea
13	⁶ Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
14	
15	Correspondence to: Y. L. Sun (sunyele@mail.iap.ac.cn)
16	

17

18 Fig. S1. (a) Mass spectra of HOA and OOA for different size ranges, (b) and (c) show the mass

19 spectral correlations between HOA / OOA and those identified from 2-component PMF analysis

20 of bulk mass spectra of OA during this campaign (Ng et al., 2011) as a function of size.

21

25

- 23 with tracer-based method during (a) 14:00 18:00, 22 July (OOA: 85%; HOA: 15%), and (b)
- 24 5:00 9:00, 22 July (OOA: 19%; HOA: 81%).

Fig. S3. 24-hour back trajectories arriving at QC on 22 July. The average aerosol optical depth

- 27 (AOD) on 22 July is shown for a reference. The gray solid circles indicate the intensity of SO_2
- emissions in U.S. The inset plot presents the straight distance of trajectories from the south. (b)
- 29 shows the MODIS image from Aqua satellite (afternoon) on 22 July
- 30 (<u>http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=USA4</u>).

- 33 Fig. S4. Variations of PM_{2.5} from TEOM measurements in different regions in New York City
- from 21-22 July, 2009. The multiple lines in (b) represent the data from various air monitoring
- 35 stations in each region. The map and the data are obtained from <u>http://www.dec.ny.gov</u>.

Fig. S5. Variations of (a) OA/ Δ CO₂ and O/C ratio, and (b) C/ Δ CO₂ and O/ Δ CO₂ on 22 July.

38

Fig. S6. (a) Relationship between fCO_2^+ (fraction of CO_2^+ to total organic signal) and $fC_2H_3O^+$

- 40 (fraction of $C_2H_3O^+$ to total organic signal) from 21 22 July. The f CO_2^+ vs f $C_2H_3O^+$ for five OA
- 41 components are also shown. The dash lines represent the triangle region from Ng et al., (2010).

42 43

Fig. S7. Correlation plots of (a) LV-OOA+SV-OOA vs. O_3 and (b) LV-OOA vs. SO_4^{2-} . (c) shows the variation of LV-OOA/ SO_4^{2-} ratio on 22 July. The correlations between 8:00 – 18:00 on 22 July are colored by the time.

47

48

49 **References:**

Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B., Sueper, D.,
Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne, J. T.: An Aerosol Chemical Speciation
Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of
Ambient Aerosol, Aerosol Sci. Tech., 45, 770 - 784, 2011.