Atmos. Chem. Phys. Discuss., 11, 24813–24855, 2011 www.atmos-chem-phys-discuss.net/11/24813/2011/ doi:10.5194/acpd-11-24813-2011 © Author(s) 2011. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Aerosol hygroscopic growth parameterization based on a solute specific coefficient

S. Metzger¹, B. Steil¹, L. Xu², J. E. Penner², and J. Lelieveld^{1,3}

¹Max Planck Institute for Chemistry, Mainz, Germany ²University of Michigan, Ann Arbor, Michigan, USA ³The Cyprus Institute, Nicosia, Cyprus

Received: 8 July 2011 - Accepted: 2 September 2011 - Published: 5 September 2011

Correspondence to: S. Metzger (swen.metzger@mpic.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

	AC 11, 24813–2	ACPD 11, 24813–24855, 2011					
-	Hygroscopic growth parameterizations						
	S. Metzę	ger et al.					
5	Title	Page					
5	Abstract	Introduction					
-	Conclusions	References					
7	Tables	Figures					
	14	۶I					
	•	×.					
5	Back	Close					
-	Full Scre	en / Esc					
	Printer-frier	dly Version					
5	Interactive	Discussion					
2	œ	() BY					

Abstract

Water is a main component of atmospheric aerosols and its amount depends on the particle chemical composition. We introduce a new parameterization for the aerosol hygroscopic growth factor (HGF), based on an empirical relation between water activ-⁵ ity (a_w) and solute molality (μ_s) through a single solute specific coefficient v_i . Three main advantages are: (1) wide applicability, (2) simplicity and (3) analytical nature. (1) Our approach considers the Kelvin effect and covers ideal solutions at large relative humidity (RH), including CCN activation, as well as concentrated solutions with high ionic strength at low RH such as the relative humidity of deliquescence (RHD). (2) A single v_i coefficient suffices to parameterize the HGF for a wide range of particle sizes, from nanometer nucleation mode to micrometer coarse mode particles. (3) In contrast to previous methods, our analytical a_w parameterization depends not only on a linear correction factor for the solute molality, instead v_i also appears in the exponent in form $x \cdot a^x$. According to our findings, v_i can be assumed constant for the entire a_w range

¹⁵ (0–1). Thus, the v_i based method is computationally efficient. In this work we focus on single solute solutions, where v_i is pre-determined with the bisection method from our analytical equations using RHD measurements and the saturation molality μ_s^{sat} . The computed aerosol HGF and supersaturation (Köhler-theory) compare well with the results of the thermodynamic reference model E-AIM for the key compounds NaCl and (NH₄)₂SO₄ relevant for CCN modeling and calibration studies. The equations introduced here provide the basis of our revised gas-liquid-solid partitioning model, i.e. version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), described in a companion paper.

1 Introduction

²⁵ The gas-liquid-solid partitioning of atmospheric particles and precursor gases to large degree determines the composition and water uptake of atmospheric aerosol particles, which affect human and ecosystem health, clouds and climate (e.g. Künzli et al.,

2000; IPCC, 2007). The most abundant aerosol species is water. The aerosol liquid water content (AWC) governs the size distribution, the atmospheric lifetime of both particles and interacting gases, and particle optical properties. Considering thermodynamic equilibrium, the AWC depends primarily on the available water vapor, ambi-

- ⁵ ent temperature (*T*) and relative humidity (RH). The AWC also depends on the particle hygroscopicity, which is the ability to absorb (release) water vapor from (to) the surrounding atmosphere. In particular the ability of salt solutes to dissolve causes hygroscopic growth (HG) of aerosol particles at subsaturated atmospheric conditions (RH < 100 [%]), where the equilibrium water uptake of atmospheric aerosols is gener-</p>
- ally limited by the available water vapor. For instance, sea salt particles can deliquesce at a very low RH of deliquescence (RHD) below 40 [%], because they contain a small amount of the very hygroscopic salt magnesium chloride (MgCl₂). Therefore, marine air is often much hazier than continental air at the same *T* and RH. The HG of atmospheric aerosol particles influences heterogeneous reactions, light extinction and
- ¹⁵ visibility, and is important for the aerosol radiative forcing of climate (e.g. Pilinis et al., 1995). The HG and the associated AWC depends on the ionic composition of the particles, which in turn depends on the total AWC. Consequently, the HG and AWC involving gas/liquid/solid aerosol partitioning is difficult to measure or predict numerically, even though the complex thermodynamic system may be simplified by assuming phase equilibrium (e.g. Wexler and Potukuchi, 1998; Seinfeld and Pandis, 2006).

At the microscopic level two mechanisms of water uptake are important: (i) Adsorption of water on insoluble surfaces, whereby the fraction of surface area covered by adsorbed water is proposed as criterion for hydrophilicity (e.g. Naono and Nakuman, 1991). (ii) Absorption of water by soluble particulates, which are per definition ²⁵ hydrophilic. For atmospheric aerosols the absorption of water by soluble compounds is most important, and adsorption does not contribute much to the total AWC. Soluble and in particular hygroscopic particles take up water from the atmosphere for solute hydration. An increase in solute concentration (e.g. due to condensation of volatile compounds, coagulation, or chemical reactions) therefore either leads to additional

water uptake, or to solute precipitation (causing a solid phase to co-exist with the aqueous phase), while a decrease of the solute concentration (e.g. due to evaporative loss or chemical reactions) is associated with the evaporation of aerosol water, so that ultimately at equilibrium the aerosol molality of a given aerosol composition remains constant at given T, RH and water activity (a_w).

5

The aerosol HG can be determined for certain solutes from laboratory a_w measurements (e.g. Tang and Munkelwitz, 1994), or calculated by considering the vapor pressure reduction that occurs by dissolving a salt solute in water – known as Raoult's law (Raoult, 1888) – if non-idealities of solution are taken into account (e.g. Warneck, 1988; Pruppacher and Klett, 2007). According to Köhler-theory (Köhler, 1936) and

- 10 1988; Pruppacher and Klett, 2007). According to Kohler-theory (Kohler, 1936) and Raoult's law, the so-called Raoult-term, which considers the lowering of the equilibrium vapor pressure with increasing solute concentration at a given RH, is complemented by the so-called Kelvin-term, which accounts for the increase in the water vapor pressure due to the curvature of the particle surface. The modern Köhler equations allow to
- determine the equilibrium size of an aerosol droplet for a given dry size, chemical composition, RH and *T*, by accounting for the dissolution of gases into droplets, changes in surface tension, ion charges, or density of the droplet solutions (e.g. Reiss, 1950; Young and Warren, 1992; Konopka, 1996; Shulman et al., 1996; Laaksonen et al., 1998; Charlson et al., 2001; Russell and Ming, 2002; Mikhailov et al., 2004; Biskos et al., 2006a, b; Seinfeld and Pandis, 2006; McFiggans et al., 2006; Pruppacher and
- et al., 2006a, b; Seinfeld and Pandis, 2006; McFiggans et al., 2006; Pruppacher an Klett, 2007; Rose et al., 2008; Mikhailov et al., 2009; Ruehl et al., 2010).

Three types of methods have been used to account for hygroscopic growth of atmospheric aerosols in general circulation models (GCMs): (i) the f(RH) method, (ii) Köhler-theory and (iii) thermodynamic equilibrium models. The f(RH) method (Charl-

²⁵ son et al., 1992) scales particle optical properties as a function of RH. In a simplified manner, this method accounts for the hygroscopic nature of water-soluble aerosol particles and, hence, has been used for first-order estimates of aerosol HG and the corresponding radiative forcing of climate. The second method explicitly accounts for the hygroscopic nature, since the Köhler equation is based on the Raoult-term. However,

both methods do not account for gas-liquid-solid partitioning and deliquescence that accompanies aerosol hygroscopic growth. Only models that also account for the gas-liquid-solid partitioning of single and mixed solute solutions are sufficiently comprehensive to calculate the RHD based HG factor (HGF) of single and mixed solutions, which usually includes various inorganic, organic and non-soluble compounds.

Here we first introduce new single solute solutions parameterizations for the aerosol HGF, which are based on a new representation of water activity, presented in Sect. 2. The equations provide the basis of our revised gas-liquid-solid equilibrium partitioning model, i.e. version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), which considers mixed solutions of various compounds important for atmospheric modeling. EQSAM4 is described in the companion paper. Our HGF parameterizations require for a given temperature only one solute specific coefficient, v_i , to approximate a_w for the entire range of water activity (0–1). v_i is pre-determined in Sect. 3 from our analytical equations with the bisection method using RHD measurements and applied to

- three cases: (a) flat surface, i.e. without Kelvin-term and sub-saturation (RH < 100 [%]), (b) curved surface, i.e. including Kelvin-term and subsaturation, and (c) supersaturation with Kelvin-term, i.e. RH ≥ 100 [%]. The derived HGF and supersaturation results are compared with those derived from the thermodynamic reference model E-AIM (Wexler and Clegg, 2002; Clegg and Wexler, 2007) for two key compounds NaCl and (NH₄)₂SO₄, which are important for modeling of cloud condensation nuclei (CCN) and central for CCN calibrations (Frank et al., 2006, 2007) and CCN studies (Dusek et al., 2006; Rose et al., 2008). A comprehensive box model inter-comparison of major inorganic aerosol thermodynamic properties of mixed solutions predicted by EQSAM4 and EQUISOLV II (Jacobson et al., 1996, 1999) is subject of the revised publication of
- 25 Xu et al. (2009).

Discussion Par	AC 11, 24813–	ACPD 11, 24813–24855, 2011				
per	Hygrosco paramete	pic growth erizations				
Discus	S. Metz	ger et al.				
ssion P	Title	Page				
aper	Abstract	Introduction				
	Conclusions	References				
Discu	Tables	Figures				
oissr	14	►I				
n Pa	•	•				
oer	Back	Close				
	Full Scre	een / Esc				
Discuse	Printer-frie	ndly Version				
sion F	Interactive	Discussion				
Daper	C	O BY				

2 Aerosol hygroscopic growth parameterizations of single solutes

2.1 Köhler theory and models

Köhler theory relates the particle growth of a spherical droplet formed on a soluble particle to the ambient relative humidity (RH), which can be expressed as (e.g. Pruppacher and Klett, 2007; Seinfeld and Pandis, 2006; Mikhailov et al., 2004, 2009; Rose et al., 2008):

$$\mathsf{RH} = \frac{\rho_{\mathsf{w}(g)}}{\rho_{\mathsf{w}(g)}^{\mathsf{sat}}}$$

10

$$= a_{w} \cdot K_{e}$$

$$= a_{\mathsf{w}} \cdot \exp\left(\frac{4 \cdot M_{\mathsf{w}} \cdot \sigma_{\mathsf{sol}}}{R \cdot T \cdot \rho_{\mathsf{w}} \cdot D_{\mathsf{wet}}}\right)$$

$$= a_{\mathsf{w}} \cdot \exp\left(\frac{4 \cdot M_{\mathsf{w}} \cdot \sigma_{\mathsf{sol}}}{R \cdot T \cdot \rho_{\mathsf{w}} \cdot g_{\mathsf{s}} \cdot D_{\mathsf{s}}}\right)$$

 $p_{w(g)}$ [Pa] and $p_{w(g)}^{sat}$ [Pa] denote the partial pressures of water vapor of the ambient air at temperature *T* [K] and at saturation at the same *T*. It is common to express the dimensionless fractional relative humidity RH [–] as the saturation ratio *s* = RH [–], with RH (not in italics) in [%]. In case of supersaturation, RH > 100 [%], it is customary to use the supersaturation *S*, which is defined as *S* = (*s* – 1) · 100 [%].

The dimensionless term a_w [-] is the water activity of the solution (droplet) and is referred to as the Raoult term (or volume contribution), since it accounts for an ¹⁵ increase of the droplet volume (D_{wet}^3) with increasing RH with a $1/D_{wet}^3$ proportionality. K_e [-] is the Kelvin (or surface) term, which accounts for a compensating effect with a $1/D_{wet}$ proportionality and the RH dependent surface tension σ_{sol} [J m⁻²] of the solution droplet; R [J mol⁻¹ K⁻¹] is the ideal gas constant and T [K] the droplet temperature, D_{wet} [m] is the ambient droplet diameter (geometric diameter = mass equivalent diameter

Discussion Paper ACPD 11, 24813-24855, 2011 Hygroscopic growth parameterizations **Discussion** Paper S. Metzger et al. **Title Page** (1) Abstract Introduction Conclusions References **Discussion** Paper **Figures** Back Full Screen / Esc **Discussion Paper Printer-friendly Version** Interactive Discussion

of a compact spherical droplet). With the assumption of "volume-additivity", i.e. the volume of the solution droplet is given by the sum of the volumes of the dry solute and of the pure water contained in the droplet, D_{wet} can be expressed in terms of the dry mass equivalent diameter D_s [m] and the RH dependent mass equivalent growth factor g_s [–] of the droplet. g_s is defined as the ratio of wet to dry droplet diameter, and can be expressed in terms of the solute molality $\mu_s = n_s/m_w$ [mol(solute) kg⁻¹(H₂O)]:

$$g_{s} = \frac{D_{we}}{D_{s}}$$

10

20

$$= \left(\frac{V_{\text{wet}}}{V_{\text{s}}}\right)^{1/3} = \left(\frac{V_{\text{w}} + V_{\text{s}}}{V_{\text{s}}}\right)^{1/3} = \left(\frac{V_{\text{w}}}{V_{\text{s}}} + 1\right)^{1/3} = \left(\frac{\rho_{\text{s}} \cdot m_{\text{w}}}{\rho_{\text{w}} \cdot m_{\text{s}}} + 1\right)^{1/3}$$

$$= \left(\frac{\rho_{\text{s}}}{M_{\text{s}} \cdot \rho_{\text{w}} \cdot \mu_{\text{s}}} + 1\right)^{1/3}$$
(2)

 $V_{\text{wet}} = V_{\text{w}} + V_{\text{s}} [\text{m}^3]$ is the total volume of the wet droplet with $V_{\text{s}} = m_{\text{s}}/\rho_{\text{s}} = n_{\text{s}} M_{\text{s}}/\rho_{\text{s}}$ and $V_{\text{w}} = m_{\text{w}}/\rho_{\text{w}} = n_{\text{w}} M_{\text{w}}/\rho_{\text{w}} [\text{m}^3]$, i.e. the volumes of the initially dry solute and the associated pure water, respectively. m_{s} and m_{w} [kg] denote the corresponding solute and water masses, M_{s} and M_{w} [kg mol⁻¹] the molar masses, n_{s} and n_{w} [mol] the number of moles, and ρ_{s} and ρ_{w} [kg m⁻³] the densities, respectively. In the following g_{s} will be referred to as the hygroscopic growth factor (HGF) and applied to atmospheric aerosols.

15 2.1.1 Water activity representations – concepts

To clarify similarities and differences with previous work, we follow Rose et al. (2008) – in the following abbreviated as Rose08 (available at http://www.atmos-chem-phys. net/8/1153/2008/) – as they present a comprehensive overview of water activity representations on which the various present-day Köhler models are based. Rose08 have subdivided the water activity representations into 5 categories (see their Table 3), i.e.

1. Activity parameterization (AP) models, e.g. Tang and Munkelwitz (1994), Tang (1996), Kreidenweis et al. (2005), which are of the type:

$$a_{\rm w}=1+\sum_q a_q\cdot (100\cdot\chi_{\rm s})^q$$

5

15

20

Tang and Munkelwitz (1994) and Tang (1996) have presented parameterizations for the activity of water in aqueous solutions derived from electrodynamic balance (EDB) single particle experiments as polynomial fit functions of RH dependent solute mass percentage ($100 \cdot \chi_s$). The solute mass fraction χ_s and the polynomial coefficients a_q [–] are listed e.g. in Table A2 of Rose08 to which we refer for a further discussion (also for 2–5).

¹⁰ 2. Osmotic coefficient (OS) models, e.g. Robinson and Stokes (1959, 1965), Pitzer and Mayorga (1973), Brechtel and Kreidenweis (2000), which are of the type:

$$a_{\rm w} = \exp\left(-M_{\rm w} \cdot \Phi_{\rm w} \cdot \sum_{i} \mu_{i}\right) = \exp(-M_{\rm w} \cdot \Phi_{\rm s} \cdot \nu_{\rm s} \cdot \mu_{\rm s}) \tag{4}$$

According to Robinson and Stokes (1959) (the book pages are online freely accessable at http://books.google.de/books?id=6ZVkqm-J9GkC&printsec= frontcover) the water activity a_w is related to the total molality of all solute species $\sum_i \mu_i$ by the dimensionless molal osmotic coefficient of the aqueous phase Φ_w [-], where $\sum_i \mu_i$ can be expressed as $v_s \cdot \mu_s$ if the molal osmotic coefficient of the solute Φ_s is used in conjunction with the solute molality μ_s [mol kg⁻¹(H₂O)]

and the solute's stoichiometric coefficient v_s . M_w is the molar mass of water in SI-units [kg mol⁻¹]. Φ_w deviates from unity as the solution becomes non-ideal.

Discussion Paper ACPD 11, 24813-24855, 2011 Hygroscopic growth parameterizations **Discussion** Paper S. Metzger et al. **Title Page** Abstract Introduction Conclusions References **Discussion** Paper **Figures** Back Full Screen / Esc **Discussion Paper Printer-friendly Version** Interactive Discussion

(3)

3. Van't Hoff factor (VH) models, e.g. van't Hoff (1887), Low (1969), Young and Warren (1992), which are of the type:

$$a_{\rm w} = \frac{1}{1 + i_{\rm s} \cdot n_{\rm s}/n_{\rm w}} = (1 + M_{\rm w} \cdot i_{\rm s} \cdot \mu_{\rm s})^{-1}$$

The van't Hoff factor i_s [-] is a constant, and similar to the stoichiometric coefficient (dissociation number) v_s . deviations of i_s from v_s can be attributed to solution non-idealities. The relation between i_s , v_s and Φ_s can be approximated by a series expansion of the exponential term in Eq. (4) and can be approximated as (Kreidenweis et al., 2005):

 $i_{\rm s} \approx v_{\rm s} \cdot \Phi_{\rm s}$

5

10

15

20

4. Effective hygrosocopicity parameter (EH) model of Petters and Kreidenweis (2007), which is of the type:

$$a_{\rm w} = \left(1 + \kappa \frac{V_{\rm s}}{V_{\rm w}}\right)^{-1} \tag{7}$$

 $V_{\rm s} = n_{\rm s} M_{\rm s}/\rho_{\rm s}$ and $V_{\rm w} = n_{\rm w} M_{\rm w}/\rho_{\rm w}$ are the volumes [m³] of the initially dry solute and pure water, respectively, with $M_{\rm s}$ and $M_{\rm w}$ [kg mol⁻¹] the molar masses of solute and water, respectively, and $\rho_{\rm s}$ and $\rho_{\rm w}$ [kg m⁻³] the densities of the initially dry solute and pure water, respectively. The dimensionless hygroscopicity parameter κ [–] parameterizes the composition dependent water activity of a solution droplet in analogy to the van't Hoff factor. κ and the van't Hoff factor $i_{\rm s}$ are related by:

 $M_{\rm w}$

24821

$$\kappa = i_{s} \cdot \frac{n_{s} \cdot V_{w}}{n_{w} \cdot V_{s}} = i_{s} \cdot \frac{v_{w}}{v_{s}} = i_{s} \cdot \frac{\rho_{s}}{\rho_{w}}$$

Discussion Paper **ACPD** 11, 24813-24855, 2011 Hygroscopic growth parameterizations **Discussion** Paper S. Metzger et al. **Title Page** Abstract Introduction Conclusions References **Figures Discussion** Paper Back Full Screen / Esc **Discussion** Paper **Printer-friendly Version** Interactive Discussion

(5)

(6)

(8)

with v_s and v_w [mol m⁻³] the molar volumes of the solute and of water, respectively.

Rose08 have used the Pitzer-Simonson-Clegg mole fraction based model AIM of Clegg et al. (1998a, b), Wexler and Clegg (2002) as a reference model (Clegg and Wexler, 2007), which is also based on osmotic coefficients, i.e. on Eq. (4), but combines the OS model with the universal functional group activity coefficient model (UNIFAC, Fredenslund et al., 1975).

The activity coefficient model describes the water activity by

$$a_{\rm w} = f_{\rm w} \cdot x_{\rm w} = f_{\rm w} \cdot (1 + M_{\rm w} \cdot \mu_{\rm s})^{-1}$$

 $f_{\rm w}$ [-] denotes the rational or mole fraction scale activity coefficient of water, which is included in this water activity representation model to account for non-ideal solutions and solutes that dissociate (partly or completely). $x_{\rm w}$ [-] is the mole fraction of water in the solution that at equilibrium contains the numbers of moles (amount-of-substance) $n_{\rm w}$ [mol] and $n_{\rm s}$ [mol] of water and solute, respectively. $x_{\rm w}$ can be mathematically described as:

15
$$X_{\rm w} = \frac{n_{\rm w}}{n_{\rm w} + n_{\rm s}} = \frac{1}{1 + n_{\rm s}/n_{\rm w}} = (1 + M_{\rm w} \cdot \mu_{\rm s})^{-1}$$
 (10a)

Analogously, the mole fraction of the solute x_s is given by

$$x_{\rm s} = 1 - x_{\rm w} = \frac{n_{\rm s}}{n_{\rm w} + n_{\rm s}} = \frac{1}{1 + n_{\rm w}/n_{\rm s}} = \left(1 + \frac{1}{M_{\rm w} \cdot \mu_{\rm s}}\right)^{-1}$$
 (10b)

i.e. satisfying the condition $x_s + x_w = 1$ for a binary solution (sone solute and water). x_w and x_s are related to the solute molality μ_s [mol(solute) kg⁻¹(H₂O)] by

$${}_{20} \quad \mu_{\rm s} = \frac{n_{\rm s}}{m_{\rm w}} = \frac{n_{\rm s}}{n_{\rm w}} \cdot \frac{1}{M_{\rm w}} = \frac{x_{\rm s}}{x_{\rm w}} \cdot \frac{1}{M_{\rm w}} = \left(M_{\rm w} \cdot \left[1/x_{\rm s} - 1\right]\right)^{-1} = \left(M_{\rm s} \cdot \left[1/\chi_{\rm s} - 1\right]\right)^{-1} \quad (11)$$

where $\chi_s = \frac{m_s}{(m_s + m_w)}$ [-] is the solute mass fraction, m_s and m_w [kg] the masses of solute and water, with M_s and M_w [kg mol⁻¹] the corresponding molar masses, respectively. 24822

(9)

To consider cases for which the solution contains more than one solute, Eqs. (10a, b) is expressed in a more general form:

$$x_i = n_i \, / \left(\sum_j \, n_j\right)$$

 n_i is the number of moles [mol] of component *i*, where i = w for the solvent, or i = s for the solute; $j = s_1, s_2, s_3, ..., s_n, w$ is the summation over all n + 1 components in solution, so that $\sum x_j = 1$.

Equation (9) expressed in the general form yields the activity and the activity coefficient of solutes (i = s) or the solvent water (i = w), i.e.:

 $a_i = f_i \cdot x_i \tag{13}$

¹⁰ f_i [-] is the rational activity coefficients and is defined on a reference state for which f_i is unity for infinite dilution (pure water), so that $f_i \rightarrow 1$ as $x_i \rightarrow 0$. f_i of the solute *s* is related to the molal-based activity coefficients γ_i by (Robinson and Stokes, 1959):

$$f_i = \gamma_i \left(1 + M_{\rm w} \cdot \sum_i \mu_i \right) \tag{14}$$

with the summation in Eq. (14) over all solute molalities. M_w is the molar mass of water [kg mol⁻¹)], μ_i the solute molality [mol kg⁻¹(H₂O)] given by Eq. (11).

The activity coefficients have been introduced to correct the solution molalities for non-ideality and to substitute earlier correction coefficients used in other a_w representations. Following Rose08, we will use the E-AIM model version III as a reference, which is available online (http://www.aim.env.uea.ac.uk/aim/model3/mod3rhw.php) (Wexler and Clegg, 2002; Clegg and Wexler, 2007), to be consistent with the reference (AP3)

²⁰ and Clegg, 2002; Clegg and Wexler, 2007), to be consistent with the reference (*A* of Rose08 (see their Table 3).

(12)

2.1.2 Water activity parameterization as a function of v_i

To parameterize the aerosol hygroscopic growth we introduce a new parameterization for the water activity, i.e. adding to the definitions summarized above. Since the computation of all the a_w representations is to some degree problematic – mainly since for ⁵ all successful water activity parameterizations the correction coefficients are not independent of $a_{\rm w}$ –, we suggest here a new relation of $a_{\rm w}$ and the solute molality, $\mu_{\rm s}$, as

a central aspect of our formulations. a_w and μ_s are related by a single solute specific coefficient v_i :

$$a_{\rm w} = \left(A + \mu_{\rm s}^{\rm o} \cdot M_{\rm w} \cdot v_i \cdot \left[\frac{1}{\mu_{\rm s}^{\rm o}} \cdot \mu_{\rm s} + B\right]^{v_i}\right)^{-1}$$

$$= \left(A + \mu_{\rm S}^{\rm o} \cdot M_{\rm w} \cdot v_{i} \cdot \left[\frac{1}{\mu_{\rm S}^{\rm o}} \cdot \frac{1}{M_{\rm s} \cdot (1/\chi_{\rm s} - 1)} + B\right]^{v_{i}}\right)^{-1}$$

10

20

The terms v_i , A and B are dimensionless [-], while μ_s is the solute molality [mol(solute) kg⁻¹(H₂O)] defined by Eq. (11). A and B also depend only on μ_s and v_i , but for certain applications they can be neglected, i.e. A = 1 and B = 0, as demonstrated in Sect. 3. To match units with μ_s , we multiply μ_s on the rhs of Eq. (15) with an initial concentration of 1 mole of pure solute that dissolves in 1 kg of initially pure water, considering stoichiometry and molality scale, i.e. $\mu_s^o = 1 \text{ [mol kg}^{-1}\text{]}$. M_w is the 15 molar mass of water $[kg mol^{-1})]$.

Similar to the VH concept, i.e. Eq. (5), and the activity coefficient concept, i.e. Eq. (9), we express the water activity a_w in terms of the solute molality μ_s and a solute specific correction coefficient. However, v_i introduced here is not only a linear correction factor, which is the case in other water activity representations, but appears also as a constant in the exponent of Eq. (15) in the form of $x \cdot a^x$. According to our findings v_i can be assumed constant for the entire a_{w} range (0-1). Hence, it suffices to determine v_i , e.g. with the bisection method, using any a_w value if the corresponding μ_s is known,

(15)

e.g. at saturation. In case of saturation, a_w equals the RH of deliquescence (RHD) and μ_s is given through the relation Eq. (11) by the mass fraction χ_s^{sat} . Solubility values and the corresponding thermodynamic data are available for many compounds, e.g. in the CRC Handbook of Chemistry and Physics (2006).

5 2.1.3 RH of deliquescence (RHD) as a function of v_i

15

Here, we determine v_i from the compound's RH of deliquescence (RHD), since temperature dependent values are available for major compounds, which are relevant for atmospheric aerosol modeling. The RHD can be obtained as a function of v_i from Eq. (15) and Eq. (1), i.e. substitution of $a_w = \frac{RH}{K_c}$ yields:

$$RH = \frac{\kappa_{e}}{\left(A + \mu_{s}^{o} \cdot M_{w} \cdot v_{i} \cdot \left[\frac{1}{\mu_{s}^{o}} \cdot \mu_{s} + B\right]^{v_{i}}\right)}$$
(16a)

and at saturation, where RH = RHD and $w_s = \chi_s^{sat}$, Eq. (16a) can be expressed as:

$$\mathsf{RHD} = \frac{K_{\mathsf{e}}}{\left(A + \mu_{\mathsf{s}}^{\mathsf{o}} \cdot M_{\mathsf{w}} \cdot v_{i} \cdot \left[\frac{1}{\mu_{\mathsf{s}}^{\mathsf{o}}} \cdot \frac{1}{M_{\mathsf{s}} \cdot (1/w_{\mathsf{s}} - 1)} + B\right]^{v_{i}}\right)}$$
(16b)

Thus, RHD values can be obtained with Eq. (16b) if w_s , v_i , *A* and *B* are known. In Sect. 3 we derive these yet unknown terms first from RHD measurements, by solving Eq. (16b) once, for example with the bisection method. The temperature dependency of the RHDs is obtained by (e.g. Wexler and Potukuchi, 1998):

$$\mathsf{RHD}(T) = \mathsf{RHD}(T_{o}) \cdot \exp\left[T_{coef} \cdot \left(\frac{1}{T} - \frac{1}{T_{o}}\right)\right]$$
(16c)

The *T*-dependent RHD values (with w_s at *T*) can be used to determine v_i by solving Eq. (16b) e.g. with the bisection method for the compounds for which RHD and w_s data are available. The procedure is described in Sect. 3.

2.1.4 Solute molality (μ_s) as a function of v_i

According to our parameterization of water activity (a_w) the solute molality (μ_s) is also parameterized as a function of v_i and directly given by re-arranging Eq. (15):

$$\mu_{\rm s} = \mu_{\rm s}^{\rm o} \cdot \left(\left[\frac{1}{v_i \cdot \mu_{\rm s}^{\rm o} \cdot M_{\rm w}} \cdot \left(\frac{1}{a_{\rm w}} - A \right) \right]^{\frac{1}{v_i}} - B \right)$$
(17a)

⁵ Using the relation of a_w and RH, Eq. (1), Eq. (17a) can be expressed in terms of RH, v_i and K_e , whereby K_e also depends on μ_s according to Eqs. (1–2). Thus, with $a_w = \frac{RH}{K_e}$ i.e.:

$$\mu_{\rm s} = \mu_{\rm s}^{\rm o} \cdot \left(\left[\frac{1}{v_i \cdot \mu_{\rm s}^{\rm o} \cdot M_{\rm w}} \cdot \left(\frac{K_{\rm e}}{\rm RH} - A \right) \right]^{\frac{1}{v_i}} - B \right)$$
(17b)

Equation (17b) can be directly solved, e.g. with the bisection method, while Eq. (17a) can also be analytically solved, since the K_e term is not relevant for flat surfaces. However, this also depends on the choice of the *A* and *B* terms. In case of a flat surface and subsaturation (RH ≤95 [%]), K_e , *A* and *B* are neglected, i.e. $K_e = 1$, A = 1 and B = 0, and Eq. (17b) reduces to:

$$\mu_{\rm s} = \mu_{\rm s}^{\rm o} \cdot \left(\left[\frac{1}{v_j \cdot \mu_{\rm s}^{\rm o} \cdot M_{\rm w}} \cdot \left(\frac{1}{\rm RH} - 1 \right) \right]^{\frac{1}{v_j}} \right) \tag{17c}$$

¹⁵ For applications up to RH \leq 98 [%], a slightly different representation of Eq. (17c) can be used, which only differs by a term B_{98} , i.e.

$$\mu_{s} = \mu_{s}^{o} \cdot \left(\left[\frac{1}{v_{i} \cdot \mu_{s}^{o} \cdot M_{w}} \cdot \left(\frac{1}{\text{RH}} - 1 \right) \right]^{\frac{1}{v_{i}}} - B_{98} \right)$$

$$24826$$
(17d)

Equations (17a–d) relate the solute molality μ_s to a_w and RH, depending only on the solute specific coefficient v_j . Note that *B*-terms are needed only for high RH > 95 [%]. The A and B-terms are defined in Sect. 3. Whether Eqs. (17a), (17b), (17c), or (17d) should be used depends on the desired level of complexity and the scientific questions, which determine the RH regime, i.e. only Eq. (17b) accounts for the particle size. Equations (17a–d) can be applied in EQSAM4, while Eq. (17c) is equivalent to the one of EQSAM3, introduced by Metzger and Lelieveld (2007) by their Eq. (20), but limited w.r.t. Köhler theory to the subsaturated RH regime, with RH ≤ 95 [%]. For these cases, the results of the four different representations of Eq. (17) are, however, rather similar.

3 Parameter determination

15

To solve our water activity parameterization, i.e. Eq. (15), the dimensionless terms v_i , *A* and *B* are required. Here, *A* and *B* have been empirically determined to best match the reference results of E-AIM – the explicit derivation is beyond the scope of this work and will be presented separately. *A* and *B* are defined to only depend on the solute specific coefficient, v_i , and on the solute molality μ_s , i.e.:

$$A = (1 + v_i \cdot \mu_{\rm s} \cdot M_{\rm w}) \cdot \exp\left(-M_{\rm w} \cdot \mu_{\rm s}^{\rm o} \cdot v_i \cdot (\frac{\mu_{\rm s}}{\mu_{\rm s}^{\rm o}})^{v_i}\right)$$
(18)

$$B = \left(1 + \frac{1}{v_i \cdot \mu_{\rm s} \cdot M_{\rm s}}\right)^{-1} \cdot \left(v_i \cdot \frac{\mu_{\rm s}}{\mu_{\rm s}^{\rm o}}\right)^{-\frac{1}{v_i}}$$
(19)

As *A* and *B* depends on μ_s and v_i , we additionally define an alternative *B*-term for Eq. (17d) with RH \leq 98 [%], which only depends on v_i :

 $B_{98} = 10^{\left[\frac{2}{\nu_i} - 2\right]}$

(20)

To solve Eqs. (15–20), v_i must be known. If v_i can be assumed constant for the entire range of water activity a_w (0–1), it should be possible when Eq. (1) is used to determine v_i for any particle dry diameter (D_s) at given temperature (T) from the saturation point, i.e. also for the case where a_w equals the RH of deliquescence (RHD). In this case, we can solve Eq. (16b) directly with a root finding algorithm, notably the bisection method; see e.g. Numerical Recipes (http://www.nr.com/) in Fortran 90, Second Edition (1996), page 1185 (an online version is freely available at: http://apps.nrbook.com/fortran/index.html). To constrain the bisection method when solving Eq. (16b) we use the T-dependent RHD and w_s values, i.e. for the left hand-side at $T_o = 298.15$ [K] RHD = 0.7528 [–] for NaCl_(cr) and RHD = 0.7997 [–] for (NH₄)₂SO_{4(cr)}, and calculate v_i as follows:

1. Given $w_s = \chi_s$, we first calculate μ_s^{sat} from Eq. (11);

- 2. *A* is a function of v_i and calculated from $\mu_s = \mu_s^{sat}$ and M_w using Eq. (18);
- 3. *B* is a function of v_i and calculated from $\mu_s = \mu_s^{sat}$ and M_s using Eqs. (19) or (20);
- 4. We finally determine v_i by solving Eq. (16b) with the bisection method by using μ_s^{sat} from step 1, *A* and *B* from step 2 and 3 and assuming $K_e = 1$. Given v_i and μ_s , Eqs. (17a–d) can be solved for a_w and RH, if at step 1 the HGF is additionally calculated from Eq. (2). Apart from this, the procedure of solving Eqs. (17a–d) is the same as to determine v_i .
- ²⁰ Note that the choice of *A* and *B* in Eqs. (18–20) depends on the application. At $T_{\rm o}$ the following values for NaCl_(cr) and (NH₄)₂SO_{4(cr)} are: mass fraction solubility $w_{\rm s} = 0.2647$ [-] and $w_{\rm s} = 0.4331$ [-], molar masses $M_{\rm s} = 0.05844$ [kg mol⁻¹] and $M_{\rm s} = 0.1321$ [kg mol⁻¹], and densities $\rho_{\rm s} = 2170$ [kg m⁻³] and $\rho_{\rm s} = 1770$ [kg m⁻³], respectively.
- ²⁵ Once v_i has been determined, Eqs. (17a–d) can be either solved for RH for a given solute molality μ_s , e.g. from Eq. (11) or reference model calculations, or vise versa

as done in the companion paper (i.e. GCM application where the RH is usually prescribed). The hygroscopic growth factor (HGF), the saturation (*s*) and supersaturation (*S*) can then be obtained from μ_s with Eq. (2) and Eq. (1), respectively, by using Eq. (15) to solve the associated a_w of Eq. (1). Note that this combination of Eq. (15) and Eq. (1) yields Eq. (16a), and if the RHD is substituted by the RH it yields Eq. (16b).

For consistency with Rose08, we also compare our results with the parametric calculations of E-AIM. Rose08 provided in their electronic supplement $a_w - \mu_s$ values in the a_w range 0.97–1, which we have connected with the E-AIM web-output, with a_w and μ_s obtained by running the E-AIM model version III (http://www.aim.env.uea.ac.uk/ im/model3/mod3rhw.php), to cover the remaining a_w range from the RHD to 0.97 by keeping the large number of the Rose08 AIM data points above 0.97. We have then calculated from these E-AIM $a_w - \mu_s$ values our reference HGF from Eq. (2), and reference RH from Eq. (1), by assuming (for the sake of simplicity) volume additivity, and a constant pure water surface tension of the solution, $\sigma_{sol} = 0.076 [N m^{-2}]$, and the pure water density $\rho_w = 997.1 [kg m^{-3}]$. For a discussion of σ_{sol} and the volume additivity of Eq. (1) we refer to Rose08, who provide a comprehensive sensitivity analysis to various parameters affecting Eq. (1).

3.1 Bulk particles – flat surface

To compare our water activity parameterization with the E-AIM reference data and to test the sensitivity w.r.t. different combinations of *A* and *B*, we solve Eqs. (17a–d) for two key compounds, $NaCl_{(cr)}$ and $(NH_4)_2SO_{4(cr)}$, considering four cases:

1. Equation (17a): using the A-and B-terms, but no K_e -term.

- 2. Equation (17b): same as (1) but considering the K_e -term as our best a_w estimate.
- 3. Equation (17c): same as (1) but without the *A* and *B*-terms as our simplest a_w estimate.
- 4. Equation (17d): same as (3) but with a different *B*-term than (1) and (2).

25

5

Table 1 gives an overview of the equations applied for the four different cases, i.e. solute molality, μ_s -models. Note that Eqs. (17a–d) can be used to calculate either a_w , RH or μ_s . Here we prescribe μ_s and calculate a_w and RH, while in the companion paper we prescribe RH and calculate μ_s from Eqs. (17a–d). The RHD and the derived v_i values are listed in Table 2 for the four cases listed in Table 1. These data, together 5 with a Fortran 90 program to reproduce our results are provided in the Supplement. Figures 1 and 2 firstly compare our four RH calculations as a function of HGF for the simplest case of flat surface, i.e. particles with a sufficiently large dry diameter in the subsaturated RH regime, so that the Kelvin-term can be neglected for the aerosol HGF calculations. Then, the four cases shown in Table 1 should yield similar results 10 if the corresponding v_i values listed in Table 2 are used to solve Eqs. (17a–d). For each case (equation), we calculate the RH by prescribing the E-AIM μ_s values of two single solute solutions: (1) pure sodium chloride, NaCl_(cr), and (2) pure ammonium sulfate, (NH₄)₂SO_{4(cr)}, assuming a sufficiently large dry particle diameter (geometric diameter = mass equivalent diameter for a compact spherical droplet), i.e. $D_s = 1 [\mu m]$, 15

- so that the Kelvin term is negligible. The HGF is shown for the deliquescence branch of the hysteresis curves, i.e. considering an initially dry solute that entirely deliquesce when the RH exceeds the solute's RHD. Figure 1 shows the HGF for the RH range, $RHD \le RH \le 97$ [%], while Fig. 2 shows the complementing results for the RH range, $97 \le RH \le 100$ [%], to highlight possible differences in the "quasi" ideal solution range
- close to RH 100 [%], where the water activity approaches unity.

According to Figs. 1 and 2, the results based on Eq. (17a) and Eq. (17b) are almost identical for the entire RH-range, which indicates that for this case the Kelvin-effect is indeed negligible. And for RH < 95 [%], all four cases, i.e. Eqs. (17a–d), agree well with

the reference. In the RH range, 95 < RH ≤ 98 [%] the results of Eq. (17d) (using the simplified *B*-term) are still close to those of Eq. (17a–b) and E-AIM, while the results of Eq. (17c) without the *A*- and *B*-terms deviate noticeably. But when the RH exceeds 98 [%] the results of Eq. (17d) also start to deviate from our reference. Only the results of Eq. (17a–b) agree well with the E-AIM results close to RH 100 [%]. But for these high

RH values, and for submicron arerosol particles in general, the Kelvin-term becomes important anyhow, so that only our most complete parameterization Eq. (17b) can be used for further evaluation.

3.2 Submicron sized particles – curved surface

- In the case of submicron sized particles (*D*_s < 1 [μm]), surface curvature becomes important for the aerosol hygroscopic growth calculations. Equation (17b) includes the Kelvin-term and will be used to calculate the HGF of submicron sized particles with Eq. (2) using the above *v_i* values listed in Table 2 for Eq. (17b). Figure 3 compares the HGF obtained with Eq. (17b) with E-AIM for RH ≤ 97 [%] and the four different dry particle diameters *D*_s = 0.05, *D*_s = 0.1, *D*_s = 0.5 and *D*_s = 1 [μm]. Figure 4 complements Fig. 3 for the high values within the subsaturated regime, i.e. 97 ≤ RH ≤ 100 [%]. Note that *a*_w, and the derived HGF results of E-AIM, do not directly depend on the Kelvinterm *K*_e. We plot the HGF versus RH = *a*_w·*K*_e following Rose et al. (2008), which yields a dependency of the E-AIM results on *K*_e, but also shifts the RHD (of E-AIM) to a higher
- ¹⁵ water activity (due to $a_w \cdot K_e$). We can reproduce this shift in RHD if the Kelvin-term is considered in the RHD calculations using the v_i determined from the flat surface case. The estimated size dependent RHD values are obtained by calculating the RHD with Eq. (16b) using the v_i values listed in Table 2 for Eq. (17b), which is the only equation of Eq. (17a–d) that accounts for a size dependency by including the K_e -term. The size dependent RHD estimates are shown in Table 3 for the different dry particle diameters.

According to Figs. 3 and 4 the results of Eq. (17b) agree well for different particle sizes in the subsaturated RH regime. It also appears that the results capture the decrease of the HGF for nanometer size particles reported by measurements provided by Biskos et al. (2006a, b). Note that we have not applied a shape correction factor, and used for simplicity a constant surface tension of pure water (as mentioned above) for the K_e -term calculation for both Eq. (17b) and E-AIM. For a discussion of these parameters we refer to Biskos et al. (2006a, b), Rose08, Harmon et al. (2010) and Wang et al. (2010) (and references therein). In the next section we focus on the remaining RH regime of water vapor saturation and supersaturation, i.e. RH \geq 100[%].

3.3 Supersaturation – Köhler curves

To evaluate the upper RH limit where the parameterizations may still be valid, we compare the results obtained from Eq. (17b) with E-AIM for the case of water vapor saturation and supersaturation, i.e. $RH \ge 100$ [%]. The supersaturation S [%] is defined s as $S = (s-1) \cdot 100$, with s obtained by solving Eq. (1) as a function of wet diameter, D_{wet} , using Eq. (17b). For E-AIM we again use RH = $a_w \cdot K_e$, following Rose08. Figure 5 completes the RH range shown in Figs. 3 and 4, and shows that the results of Eq. (17b) are comparable to E-AIM from the RHD to supersaturation for pure NaCl_(cr) and $(NH_4)_2SO_{4(cr)}$ particles and different dry particle diameters, i.e. $D_s = 0.05$, $D_s = 0.1$, $D_s = 0.5$ and $D_s = 1$ [µm]. These results are also comparable to Fig. 15.5 of Pandis and Seinfeld (1998), which describe their approximation for ideal solutions. Figure 6 shows the critical supersaturation S_{c_1} which complements Fig. 5. S_{c_2} is given by the maximum S. The results are comparable to Fig. 15.6 of Pandis and Seinfeld (1998) and Fig. 10 of Rose08. Note that Fig. 6 covers a diameter range 5-500 [nm], which is extended compared to Rose08 (their Fig. 10 shows 20-200 [nm]), so that our maximum criti-15 cal supersaturation is about 10 [%] for 5 [nm] NaCl_(cr) particles. Note that these high critical supersaturations are merely shown to evaluate the Eq. (17b) method. To bring the results closer to our artificial help lines in the log-log diagram, it was necessary to assume for the 5 [nm] particles (and only for 5 [nm]) for NaCl_(cr) and (NH₄)₂SO_{4(cr)} a shape factor of 1.15 and 1.14, respectively, which was used to calculate the Kelvin-20

term with Eq. (1) for E-AIM, Kappa and the Eq. (17b) method. For all other particle sizes no shape factor was applied.

4 Discussion

We presented aerosol hygroscopic growth parameterizations that provide the core of our revised gas-liquid-solid partitioning model, i.e. version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), which is described in greater detail in the companion

paper. EQSAM4 is part of our aerosol chemistry-microphysics module (GMXe), the latter being coupled to the EMAC atmospheric chemistry-climate model (Pringle et al., 2010), and will be used to study the aerosol hygroscopic growth of single and mixed solutes. Thus, a requirement is that the parameterizations are both sufficiently accu-⁵ rate and computationally efficient, so that large-scale, long-term and high-resolution atmospheric chemistry-climate simulations are feasible.

1. Simplified HGF calculations:

10

15

20

25

as demonstrated in Sect. 3, our empirical representation of water activity, a_w , by Eq. (15), and the derived equations for the solute molality μ_{s} , Eqs. (17a–d), can help estimate the HGF of atmospheric aerosols. Our results compare well with the reference calculations of E-AIM for typical RH (a_w) values, relevant to conditions in the atmosphere. HGF estimates, as calculated from Eq. (2) and based on the complete $a_{\rm w}$ representation, Eq. (17b), which includes the Kelvin-effect, also applies to submicron sized particles (e.g. Russell and Ming, 2002; Biskos et al., 2006a, b), i.e. with a dry diameter D_s below 0.5 [µm]. The results agree well with the κ -method of Petters and Kreidenweis (2007) for the ideal solution cases, but agree more closely with E-AIM for concentrated solutions. Both, the κ and v_i method only require one coefficient per compound, and agree relatively well w.r.t. the CCN activation of the aerosols according to Köhler theory (e.g. Charlson et al., 2001; McFiggans et al., 2006) down to dry diameters D_s below 0.05 [µm]. Only for $(NH_4)_2SO_4$ particles the S_c obtained from the κ -method agrees more closely with E-AIM, but the steep increase in supersaturation agrees less w.r.t. E-AIM and at 0.005 [μ m] also the S_c obtained by the v_i method appears closer to E-AIM when the same κ and v_i values are assumed for all particles sizes. For simplicity and clarity, we have neglected here potential effects of surface tension and other size effects, though they can be included when needed. For a discussion we refer to e.g. Rose08 and references therein.

2. The advantage of Eqs. (17a–b):

5

10

15

20

25

compared to most other representations of water activity (briefly summarized in Sect. 2) our approach requires only one empirical coefficient v_i to cover a wide range of a_w from concentrated solutions at low RH, around the compound's RHD, up to ideal solutions at large RH and CCN activation. The κ -method of Petters and Kreidenweis (2007), which also requires only a single parameter, is limited to ideal solutions and not optimally valid for concentrated solutions as confirmed by Figs. 3 and 4. The advantage of our parameterizations Eqs. (17a–b), compared to our Eqs. (17c–d), is that they can be applied to concentrated and ideal solutions, since they include the additional *A*- and *B*-terms. Equation (17b) can be further applied to the supersaturated RH regime, because it includes the Kelvin term. However, the *A*-, *B*- and K_e -terms depend on μ_s , which makes Eqs. (17a–b) more complex to solve in case RH or a_w is prescribed. Nevertheless, despite this selfdependency, also Eq. (17a–b) can be directly solved when using v_i by a rootfinding method, such as the bisection method used in this study.

3. The advantage of Eqs. (17c-d):

compared to our more comprehensive parameterizations Eqs. (17a–b), our simpler parameterizations Eqs. (17c–d) are limited to the subsaturated RH regime; Eq. (17c) to approximately RH ≤95 [%]; Eq. (17d), which includes a simplified *B*-term defined by Eq. (20), to approximately RH ≤ 98 [%]. This actually covers the most important RH range for atmospheric aerosols, useful for many applications especially in GCMs. And for CCN activation, Eq. (17b) can be used. The advantage of using Eqs. (17c–d) is that the HGF of single or mixed compound solutions can be analytically and non-iteratively obtained for a given RH, by using a single constant v_i value per compound and various particles dry sizes, since our calculations do not depend on the aerosol liquid water content.

4. Determining v_i :

5

10

15

20

25

to determine v_i , any of the v_i -based equations, i.e. Eqs. (15–17d), could be solved with a root finding method, e.g. bisection, by prescribing a pair of water activity (a_w) and solute molality (μ_s) values of an $a_w - \mu_s$ diagram. Such a data pair can be either obtained from detailed calculations or measurements. Using for instance RHD and solubility (w_s) measurements, both values are directly known and related by v_i through Eqs. (16a–b), i.e.: a_w by RHD = RH = $a_w \cdot K_e$ through Eq. (1), and μ_s by w_s through Eq. (11). Hence, in this work we have determined v_i by solving Eq. (16b) using a measured RHD for NaCl_(cr) and (NH₄)₂SO_{4(cr)} and assuming a flat surface, i.e. $K_e = 1$, as described in Sect. 3.

5. Constant v_i :

in all cases we have used a solute specific coefficient, i.e. v_i , determined from the solute's RHD. According to the comparison with the E-AIM reference calculations, it appears that a constant v_i suffices to estimate the compound's HGF with Eqs. (17a-d) for a wide RH range and various particle sizes. Note that we express the water activity a_w in terms of the solute molality μ_s and a solute specific correction coefficient, similar to the VH concept, i.e. Eq. (5), and the activity coefficient concept, i.e. Eq. (9). However, v_i introduced here is not only a linear correction factor, which is the case in other water activity representations, but is also used in the exponent of Eq. (15) in form of $x \cdot a^{x}$. Apparently, even our simplest a_w estimate based on Eq. (17c) yields reasonably accurate results for the subsaturated regime, $RH \leq 95$ [%], but the Kelvin-term must be neglected. The advantage of using v_i is that it allows to directly solve Eqs. (17a–d), i.e. either Eqs. (17a-b) with e.g. the bisection method, or Eqs. (17c-d) analytically without iterations. In all cases, v_i allows to easily compute the HGF for a wide RH range with Eq. (2) when using Eqs. (17a-d). Thus, for our purpose, i.e. application in EQSAM4, the proposed v_i based equations suffice, and complicated calculations of solution densities, activity coefficients, or osmotic coefficients, as described in the overview article of Rose08, are not required here.

- 6. Uncertainty range for HGF and S_c calculations: an indication of the uncertainty of our best estimates based on Eq. (17b) is given by a comparison of Figs. 5 and 6 with the corresponding Fig. 10 of Rose08. According to our Fig. 5, a relatively large difference appears for the supersaturation estimate for $D_s = 0.05 (NH_4)_2SO_4$ particles. In the logarithmic plot of Fig. 6, these differences are less obvious, and the Fig. 10 of Rose08 even shows a larger deviation relative to the results of E-AIM for the various other a_w based S_c estimates. Thus, the comparison of our Fig. 6 and their Fig. 10 shows that our best estimate based on Eq. (17b) lies well within the uncertainty range given by the a_w representations discussed in Rose08.
- 7. From single to mixed solute solutions:

5

10

15

20

25

our example calculations are shown for single solute solutions. But the v_i based equations are also applicable for mixed solutions, if e.g. the widely used additive approach of partial water masses of single solutes in mixed solutions (ZSRrelation; Zdanovskii, 1948; Stokes and Robinson, 1966), or other approaches, e.g. CSB (Hanford et al., 2008) are used to obtain the mixed solution water content. Our v_i approach even simplifies the calculation for the mixed solution molality and water content, since our Eqs. (17a-d) do not depend on the water content. Thus, the mixed solution water content and the corresponding HGF can be more easily calculated with Eqs. (11) and (2). Especially by considering the Kelvin term, our v_i based equations can substantially simplify the calculations, since in this case (multidimensional) iterations would be required otherwise. The mixed solution RHD, often referred to as mutual deliquescence relative humidity, MDRH, (Wexler and Seinfeld, 1991), for which all salts are simultaneously saturated with respect to all components, will be considered in our revised gasliquid-solid partitioning model, i.e. version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), described in the companion paper.

8. Relation to other concepts through a_w :

the relationship of our v_i -based a_w parameterizations to the various other concepts and a_w representations is given by a_w itself. The water activity is the central thermodynamic property from which all other properties can be derived – the various relations, which are most important for atmospheric aerosol research, are briefly summarized in Sect. 2. The relation of v_i to the EQSAM3 concept introduced by Metzger and Lelieveld (2007) is given by our Eq. (17c) for the solute molality μ_s , which equals their corresponding equation Eq. (20), with $v_i = v_e/v_w$. Both equations are limited w.r.t. to Köhler theory to RH \leq 95[%] though only depend on solute specific constants. Thus, in the EQSAM3 context, v_i may be also directly related to an effective dissociation and the solute solutility.

5 Conclusions

5

10

We have introduced a new parameterization of the water activity (a_w) of single solute solutions, which only requires an empirical solute specific coefficient, v_i . v_j can for ¹⁵ instance be determined from RHD measurements or reference calculations through the various relations presented. One advantage of the v_i concept is that it requires only a single coefficient to parameterize the solute molality for a wide range of water activities, while other concepts require solution dependent coefficients. The derived HGF parameterizations can be used up to high relative humidity and size ranges, from

- ²⁰ nanometer sized particles to cloud condensation nuclei (CCN). Another advantage is that the water uptake for mixed solutions can be more easily obtained from our v_i based equations, since the solute molality calculated with Eqs. (17a–d) does not depend on the water content of the solution, so that the mixed solution water content can be more easily obtained with e.g. the ZSR-relation. This work provides the equations on which the revised EQSAM4 model builds, which considers mixed solutions of various
- ²⁵ which the revised EQSAM4 model builds, which considers mixed solutions of various compounds important for atmospheric modeling described in a companion paper and evaluated for various mixed solution cases in the revised publication of Xu et al. (2009).

Supplementary material related to this article is available online at: http://www.atmos-chem-phys-discuss.net/11/24813/2011/ acpd-11-24813-2011-supplement.zip.

Acknowledgements. This work was supported by the CIRCE Integrated Project – Climate
⁵ Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu/) and supported by the European Commission's Sixth Framework Program, Sustainable Development, Global Change and Ecosystems, Project No. 036961. We also thank the ERC for support of the C8 project, and all contributors to discussions of this work, including those of Metzger and Lelieveld (2007) (http://www.atmos-chem-phys.net/7/3163/2007/acp-7-3163-2007.html), Metzger et al. (2010) (http://www.atmos-chem-phys-discuss.net/9/9551/2009/acpd-9-9551-2009-discussion.html). The service charges for this open access publication have been covered by the Max Planck Society.

15

The service charges for this open access publication have been covered by the Max Planck Society.

References

Biskos, G., Paulsen, D., Russell, L. M., Buseck, P. R., and Martin, S. T.: Prompt deliques-

- cence and efflorescence of aerosol nanoparticles, Atmos. Chem. Phys., 6, 4633–4642, doi:10.5194/acp-6-4633-2006, 2006a.
 - Biskos, G., Russell, L. M., Buseck, P. R., and Martin, S. T.: Nano-size effect on the hygroscopic growth factor of aerosol particles, Geophys. Res. Lett., 33, L07801, doi:10.1029/2005GL025199, 2006b.
- ²⁵ Brechtel, F. J. and Kreidenweis, S. M.: Predicting Particle Critical Supersaturation from Hygroscopic Growth Measurements in the Humidified TDMA. Part I: Theory and Sensitivity Studies, J. Atmos. Sci., 57, 1854–1871, 2000.
 - Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Jr., Hansen, J. E., and Hofmann D. J.: Climate forcing of anthropogenic aerosols, Science, 255, 423–430, 1992.

- Charlson, R. J., Seinfeld, J. H., Nenes, A., Kulmala, M., Laaksonen, A., and Facchini, M. C.: Reshaping the theory of cloud formation, Science, 292, 2025–2026, 2001.
- Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: A thermody- namic model of the system $H^+-NH_4^+-SO_4^{2-}-NO_3^--H_2O$ at tropospheric temperatures, J. Phys. Chem. A, 102, 2137–2154, 1998a.
- Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: A thermody- namic model of the system $H^+-NH_4^+-Na^+-SO_4^{2-}-NO3^--CI^--H_2O$ at 298.15 K, J. Phys. Chem. A, 102, 2155–2171,1998b.
- Clegg, S. L. and Wexler, A. S.: Interactive comment on "Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment" by Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl,

Atmos. Chem. Phys. Discuss., 7, S4180–S4183, 2007. Chemical Rubber Company (CRC): Handbook of Chemistry and Physics, 86th Edition, Taylor

and Francis Group LLC, 2004–2005, CD-ROM version, 2006.

5

10

25

- Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles, Science, 312, 1375–1378, 2006.
- Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K⁺Ca²⁺Mg²⁺NH₄⁺Na⁺SO₄²⁻NO₃⁻Cl⁻H₂O aerosols, Atmos. Chem. Phys., 7, 4639–4659, doi:10.5194/acp-7-4639-2007, 2007.

Frank, G. P., Dusek, U., and Andreae, M. O.: Technical note: A method for measuring size-resolved CCN in the atmosphere, Atmos. Chem. Phys. Discuss., 6, 4879–4895, doi:10.5194/acpd-6-4879-2006, 2006.

Frank, G. P., Dusek, U., and Andreae, M. O.: Technical Note: Characterization of a static thermal-gradient CCN counter, Atmos. Chem. Phys., 7, 3071–3080, doi:10.5194/acp-7-3071-2007, 2007.

Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group contribution estimation of activity

- 30 coefficients in non-ideal liquid mixtures (UNIFAC), American Institute of Chemical Engineers Journal (AIChE. J.), 21, 1086–1099, 1975.
 - Hanford, K. L., Mitchem, L. Reid, J. P., Clegg, S. L., Topping, D. O., and McFiggans, G. B., Comparative Thermodynamic Studies of Aqueous Glutaric Acid, Ammonium Sulfate and

Sodium Chloride Aerosol at High Humidity, J. Phys. Chem., 112, 9413–9422, 2008.

- Harmon, C. W., Ronald L. Grimm, T. M. McIntire, M. D. Peterson, B. Njegic, V. M. Angel, A. Alshawa, J. S. Underwood, D. J. Tobias, R. B. Gerber, M. S. Gordon, J. C. Hemminger, and S. A. Nizkorodov, Hygroscopic Growth and Deliquescence of NaCl Nanoparticles Mixed with Surfactant SD, J. Phys. Chem. B, 114, 2435–2449, 2010.
- Surfactant SD, J. Phys. Chem. B, 114, 2435–2449, 2010.
 IPCC: Climate Change 2007: The Physical Science Basis: Sum- mary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007.

Jacobson, M. Z.: Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II, Atmos. Environ., 33, 3635–3649, 1999.

Jacobson, M. Z., Tabazadeh, A., and Turco, R.: Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols, J. Geophys. Res., 101(D4), 9079–9091. 1996.

Konopka, P.: A re-examination of the derivation of the equilibrium supersaturation curve for soluble particles, J. Atmos. Sci., 53, 3157–3163, 1996.

- ¹⁵ Köhler, H.: The nucleus in and the growth of hygroscopic droplets, Trans. Faraday Soc., 32, 1152–1161, 1936.
 - Kreidenweis, S. M., Koehler, K., DeMott, P. J., Prenni, A. J., Carrico, C., and Ervens, B.: Water activity and activation diameters from hygroscopicity data Part I: Theory and application to inorganic salts, Atmos. Chem. Phys., 5, 1357–1370, doi:10.5194/acp-5-1357-2005, 2005.
- Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M., Horak Jr., F., Puybonnieux-Texier, V., Qunel, P., Schneider, J., Seethaler, R., Vergnaud, J.-C., and Sommer, H.: Public-health impact of outdoor and traffic-related air pollution: a European assessment, The Lancet, 356, 795–801, 2000.

Laaksonen, A., Korhonen, P., Kulmala, M., and Charlson, R. J., Modification of the Köhler equation to include soluble trace gases and slightly soluble substances, J. Atmos. Sci., 55,

- equation to include soluble trace gases and slightly soluble substances, J. Atmos. Sci., 55, 853–862, 1998.
 - Low, R. D. H.: A generalized equation for the solution effect in droplet growth, Atmos. Sci., 26, 608–611, 1969.

30

McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S.,

Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, doi:10.5194/acp-6-2593-2006, 2006.

Metzger, S. and Lelieveld, J.: Reformulating atmospheric aerosol thermodynamics and hygroscopic growth into fog, haze and clouds, Atmos. Chem. Phys., 7, 3163–3193, doi:10.5194/acp-7-3163-2007, 2007.

Metzger, S., Steil, B., Penner, J. E., Xu, L., and Lelieveld, J.: Derivation of the stoichiometric

- ⁵ coefficient of water (v_w) to account for water uptake by atmospheric aerosols, Atmos. Chem. Phys. Discuss., 10, 8165–8188, doi:10.5194/acpd-10-8165-2010, 2010.
 - Mikhailov, E., Vlasenko, S., Niessner, R., and Pöschl, U.: Interaction of aerosol particles composed of protein and saltswith water vapor: hygroscopic growth and microstructural rearrangement, Atmos. Chem. Phys., 4, 323–350, doi:10.5194/acp-4-323-2004, 2004.
- Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., and Pöschl, U.: Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations, Atmos. Chem. Phys., 9, 9491–9522, doi:10.5194/acp-9-9491-2009, 2009.

Naono M. and Nakuman C.: Analysis of adsorption isotherms of water vapor for nonporous and porous adsorbents. J. Colloid Interface Sci., 145, 405–412, 1991.

Numerical Recipes (http://www.nr.com/) in Fortran 90, Second Edition, 1996.

Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, doi:10.5194/acp-7-1961-2007, 2007.

Pilinis, C., Pandis, S. N., and Seinfeld, J. H.: Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition, J. Geophys. Res., 100, 18739–18754, 1995.

Pitzer, K. S. and Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, J. Phys. Chem., 77, 2300–2308, 1973.

Pringle, K. J., Tost, H., Message, S., Steil, B., Giannadaki, D., Nenes, A., Fountoukis, C., Stier, P., Vignati, E., and Lelieveld, J.: Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1), Geosci. Model Dev., 3, 391–412, doi:10.5194/gmd-3-391-2010, 2010.

Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and precipitation, Dordrecht, Kluwer Academic Publishers, 1997.

Raoult, F. M.: Z. Phys. Chem., 2, 353, 1888.

15

30

Reiss, H.: The kinetics of phase transitions in binary systems, J. Chem. Phys., 18, 840–848, 1950.

Robinson, R. A. and Stokes, R. H.: Electrolyte Solutions, (revised), London: Butterworth, 1959.Robinson, R. A. and Stokes, R. H.: Electrolyte Solutions, 2nd ed. (revised); Butterworths: London, 1965.

Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.:

Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, Atmos. Chem. Phys., 8, 1153–1179, doi:10.5194/acp-8-1153-2008, 2008.

Ruehl, C. R., Chuang, P. Y., and Nenes, A.: Aerosol hygroscopicity at high (99 to 100%) relative

humidities, Atmos. Chem. Phys., 10, 1329–1344, doi:10.5194/acp-10-1329-2010, 2010.
 Russell, L. M. and Ming, Y.: Deliquescence of small particles, J. Chem. Phys., 116(1), 311–321, 2002.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics, J. Wiley and Sons, Inc., New York, 1998.

- ¹⁵ Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics, J. Wiley and Sons, Inc., New York, 2006.
 - Stokes, R. H. and Robinson, R. A.: Interactions in aqueous non-electrolyte solutions, I. Solutesolvent equilibria, J. Phys. Chem., 70, 2126–2130, 1966.

Shulman, M. L., Jacobson, M. C., Carlson, R. J., Synovec, R. E., and Young, T. E.: Dissolution

- ²⁰ behavior and surface tension ef-fects of organic compounds in nucleating cloud droplets, Geophys. Res. Lett., 23, 277–280, 1996.
 - Tang, I. N.: Chemical and size effects of hygroscopic aerosols on light scattering coefficients, J. Geophys. Res., 101, 19245–19250, 1996.

Tang, I. N. and Munkelwitz, H. R.: Water activities, densities, and refractive indices of aque-

- ous sulfates and sodium nitrate droplets of atmospheric importance, J. Geophys. Res., 99, 18801–18808, 1994.
 - van't Hoff, J. H.: Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen, Z. Phys. Chem., 1, 481, 1887.

Wang, Z., King, S. M., Freney, E., Rosenoern, T., Smith, M. L., Chen, Q., Kuwata, M., Lewis,

E. R., Pöschl, U., Wang, W., Buseck, P. R., and Martin S. T.: The Dynamic Shape Factor of Sodium Chloride Nanoparticles as Regulated by Drying Rate, Aerosol Sci. Technol., 44, 939–953, 2010.

Warneck, P.: Chemistry of the Natural Atmosphere, Internat, Geophys. Series, 41, Academic

Press. Inc., 1988.

- Wexler, A. S. and Clegg, S. L.: Atmospheric aerosol models for systems including the ions H^+ , NH_4^+ , Na^+ , SO_4^{2-} , NO_3^- , CI^- , Br^- and H_2O , J. Geophys. Res., 107(14), 4207, doi:10.1029/2001JD000451, 2002.
- ⁵ Wexler, A. S. and Potukuchi, S.: Kinetics and Thermodynamics of Tropospheric Aerosols, Atmospheric Particles, John Wiley & Sons Ltd., 1998.
 - Wexler, A. S. and Seinfeld, J. H.: Second-generation inorganic aerosol model, Atmos. Environ., 25A, 2731–2748, 1991.

Xu, L., Penner, J. E., Metzger, S., and Lelieveld, J.: A comparison of water uptake by

- aerosols using two thermodynamic models, Atmos. Chem. Phys. Discuss., 9, 9551–9595, doi:10.5194/acpd-9-9551-2009, 2009.
 - Xu, L., Penner, J. E., Metzger, S., and Lelieveld, J.: A comparison of inorganic aerosol thermodynamic properties predicted by EQSAM4 and EQUISOLV II, Atmos. Chem. Phys., submitted, 2011.
- ¹⁵ Young, K. C. and Warren, A. J.: A reexamination of the derivation of the equilibrium supersaturation curve for soluble particles, J. Atmos. Sci., 49, 1138–1143, 1992.
 - Zdanovskii, A. B.: New methods of calculating solubilities of electrolytes in multicomponent systems, Zhu. Fiz. Khim., 22, 1475–1485, 1948.

	AC	PD
	11, 24813–2	24855, 2011
)		
-	Hygroscoj paramete	oic growth prizations
2	S. Metzę	ger et al.
	Title	Page
]	Abstract	Introduction
	Conclusions	References
2	Tables	Figures
	14	►I.
J	•	Þ
	Back	Close
	Full Scre	en / Esc
	Printer-frier	dly Version
	Interactive	Discussion
	C	BY

viscussion Paper

Jiscussion Pape

Discussion Pape

Jiscussion Paper

	ssion Pa	11, 24813–24855, 2011		
	iper	Hygroscop paramete	oic growth rizations	
	Discu	S. Metzg	jer et al.	
dels	ISS!			
	on F	Title F	Page	
-	Daper	Abstract	Introduction	
		Conclusions	References	
	Disc	Tables	Figures	
_	ussion	14	۶I	
	n Pap	•	Þ	
	ber	Back	Close	
	—	Full Scre	en / Esc	
	Discuss	Printer-frien	dly Version	
	ion	Interactive I	Discussion	
	Paper		Ð BY	

Discu

ACPD

Table 1. Overview of the applied cases using four different solute molality, $\mu_{\rm s}$ -mod

$\mu_{\rm s}$ -model	a _w	<i>K</i> _(e) -term ^a	A-term	B-term	v_i from
Eq. (17a)	Eq. (15)	no	Eq. (18)	Eq. (19)	Eq. (16b)
Eq. (17b)	Eq. (15)	yes	Eq. (18)	Eq. (19)	Eq. (16b)
Eq. (17c)	Eq. (15)	no	<i>A</i> = 1	<i>B</i> = 0	Eq. (16b)
Eq. (17d)	Eq. (15)	no	<i>A</i> = 1	Eq. (20)	Eq. (16b)
Eq. (2)	E-AIM ^b	yes	_	_	_

 $^{\rm a}$ Through Eq. (1), $^{\rm b}$ similar as AP3 of Rose08 (see their Table 3).

Solute	<i>v_i</i> -Eq. (17a)	<i>v_i</i> -Eq. (17b)	<i>v_i</i> -Eq. (17c)	<i>v_i</i> -Eq. (17d)	RHD ^a
NaCl _(cr)	1.737506	1.737506	1.408369	1.384214	0.7528
$(NH_4)_2 SO_{4(cr)}$	1.001410	1.661410	1.335281	1.305553	0.7997

^a RHD measurements (values of Fountoukis and Nenes, 2007).

Discussion Pa	AC 11, 24813–	ACPD 11, 24813–24855, 2011					
ber	Hygrosco paramete	Hygroscopic growth parameterizations					
Discu	S. Metz	ger et al.					
ssion F	Title	Page					
aper	Abstract	Introduction					
_	Conclusions	References					
Discu	Tables	Figures					
Issio	۱۹	►I					
n Par	•	•					
Der	Back	Close					
_	Full Scr	een / Esc					
Discuss	Printer-frie	ndly Version					
sion	Interactive	Discussion					
Daper		O BY					

)iscussion Pa	ACPD 11, 24813–24855, 2011					
DPr	Hygrosco paramete	Hygroscopic growth parameterizations				
	S. Metz	ger et al.				
	Title	Page				
חסמע	Abstract	Introduction				
_	Conclusions	References				
	Tables	Figures				
	I	۰I				
ס	•	•				
DDr	Back	Close				
	Full Scre	een / Esc				
	Printer-frie	ndly Version				
	Interactive	Discussion				
nouc		BY				

Table 3. Estimated^a RHD values for different D_s with v_i from Table 2 using Eq. (17b) of Table 1.

<i>D</i> _s [μm]	0.05	0.1	0.5	1	flat surface ^b
NaCl _(cr)	0.7704	0.7616	0.7545	0.7537	0.7528
(NH ₄) ₂ SO _{4(cr)}	0.8238	0.8117	0.8021	0.8009	0.7997

^a Using Eq. (16b) with the K_{e} -term from Eqs. (1–2) and the *A* and *B*-terms from Eqs. (18–19); ^b Reference RHD that have been used to determine the v_{i} values for Eq. (17b) (shown in Table 2).

Table 4. List of greek symbols.

Greek Symbol	Name	Unit
Vi	solute specific coefficient, Eq. (15) (introduced by this work)	[-]
Vs	stoichiometric coefficient of solute (± ion-pair)	[-]
γ_i	molal-based coefficients	[kg(H ₂ O)]mol ⁻⁺
μ_{s}	molality of solute	$[mol kg^{-1}(H_2O)]$
μ_{s}^{o}	reference molality of 1 mole of solute (considering stoichiometry)	$[\text{mol}\text{kg}^{-1}(\text{H}_2\text{O})]$
μ_{s}^{sat}	saturation molality of solute	$[mol kg^{-1}(H_2O)]$
$\sum_{i} \mu_{i}$	summation over all solute molalities	$[\mathrm{mol}\mathrm{kg}^{-1}(\mathrm{H}_2\mathrm{O})]$
φ _s	molal or practical osmotic coefficient of solute	[-]
Φ _w	molal or practical osmotic coefficient of water	[-]
$ ho_{s}$	density of solute	[kg m ⁻³]
$ ho_{w}$	density of water	[kg m ⁻³]
σ_{sol}	surface tension of the solution droplet	[J m ⁻²]
χs	solute mass fraction, referring to the solute's dry mass	[-]
$\chi_{\rm s}^{\rm sat}$	solute mass fraction, referring to the solute's dry mass at saturation	[-]

ACPD 11, 24813-24855, 2011 Hygroscopic growth parameterizations S. Metzger et al. **Title Page** Abstract Introduction References Conclusions Tables Figures 14 ١ ◀ ► Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion $(\mathbf{\hat{t}})$ (cc)

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table 5. List of symbols.

Symbol	Name	Unit
A	A-term, Eq. (18) and introduced with Eq. (15)	[-]
В	B-term, Eq. (19–20) and introduced with Eq. (15)	[-]
a _w	water activity (Raoult-term)	[-]
Ds	dry droplet diameter of the solute	[m]
D_{wet}	wet droplet diameter of the solution	[m]
f _w	rational or mole fraction scale activity coefficient of water	[—]
g_{s}	hygroscopic mass equivalent (diameter) growth factor	[-]
i _s	van't Hoff factor of solute	[-]
K _e	surface or Kelvin-term of the solution	[-]
m _s	crystalline mass of solute	[kg]
m _w	aqueous mass of water (solvent)	[kg]
Ms	molar mass of solute	[kg mol ⁻ ']
M _w	molar mass of water	[kg mol ⁻¹]
n _s	moles of solute	[mol]
$\sum_{i} n_{s,i}$	summation over all moles of solutes	[mol]
'n _w	moles of water	[mol]
$p_{w(g)}$	water vapor	[Pa]
$p_{w(q)}^{saf}$	vapor pressure at saturation (at given T)	[Pa]
RH	relative humidity in percent (as used in text)	[%]
RH	fractional relative humidity (as used in equations)	[-]
S	saturation ratio	[-]
S	supersaturation	[-]
S_{c}	critical supersaturation in percent	[%]
T _{coef}	dimensionless temperature coefficients for the RHD	[-]
To	reference temperature in Kelvin	[298.15K]
<u>T</u>	temperature in Kelvin	[K]
ľ	temperature in degree Celsius	[°C]
Ws	mass fraction solubility, referring to the solute's dry mass required for saturation	[-]
Xs	mole fraction of solute	[-]
Xw	mole traction of water	[-]

ACPD 11, 24813-24855, 2011 Hygroscopic growth parameterizations S. Metzger et al. **Title Page** Abstract Introduction Conclusions References Tables Figures 14 ١ ◀ ► Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion ٢ (cc)

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

24848

Table 6. List of names and abbreviations.

Abbreviation	Name
sat (cr)	superscript, indicator for saturation subscript, phase indicator for anhydrous (solid=crystalline=cr) phase subscript, phase indicator for aqueous phase
(aq) (g)	subscript, phase indicator for gas phase
AWC EQSAM4 EMAC f(RH) GCMs HG HGF H-TDMA IPCC log ₁₀ log RH RHD	Aerosol liquid Water Content EQuilibrium Simplified Aerosol Model, version 4 ECHAM MESSy Atmospheric Chemistry-climate model f(RH) method (Charlson et al., 1992) General Circulation Models Hygroscopic Growth hygroscopic Growth Factor Hygroscopicity tandem differential mobility analyzer Intergovernmental Panel on Climate Change decadal logarithm natural logarithm Relative Humidity Relative Humidity of Deliguescence
UNIFAC ZSR-relation	Universal functional group activity coefficient model (Fredenslund et al., 1975) Zdanovskii-Stokes-Robinson mixing rule (Zdanovskii, 1948; Stokes and Robinson, 1966)

Discussion Paper **ACPD** 11, 24813-24855, 2011 Hygroscopic growth parameterizations S. Metzger et al. **Title Page** Introduction Abstract References Conclusions **Discussion** Paper Tables Figures 14 ١ ◀ ► Back Close Full Screen / Esc **Discussion Paper Printer-friendly Version** Interactive Discussion $(\mathbf{\hat{t}})$ (cc)

Discussion Paper

Fig. 2. Same data as Fig. 1 but for RH values within the subsaturated regime, i.e. $97 \le RH \le 100$ [%].

Fig. 3. Same as Fig. 1, but for dry particle diameter $D_s = 0.05$ (upper left), $D_s = 0.1$ (upper right), $D_s = 0.5$ (lower left) and $D_s = 1$ [µm] (lower right) comparing Eq. (17b) with E-AIM for RH \leq 97 [%]. For comparison, the results using the κ method of Petters and Kreidenweis (2007) are also included, obtained by solving Eq. A30 of Rose08 using $\kappa = 1.28$ for NaCl_(cr) and $\kappa = 0.61$ for (NH₄)₂SO_{4(cr)}. Note that it is not possible to obtain HGF results below to the RHD for NaCl_(cr) with the κ -method using $\kappa = 1.28$.

Fig. 5. Wet particle diameter, D_{wet} , as a function of supersaturation for pure NaCl and $(NH_4)_2SO_4$ aerosols with different dry diameters, i.e. $D_s = 0.05$, $D_s = 0.1$, $D_s = 0.5$ and $D_s = 1$ [µm] as shown in Figs. 3 and 4. *S* is defined as $S = (s - 1) \cdot 100$ [%] and *s* is obtained from Eq. (1) for both our results using Eq. (17b) and the reference calculations using the E-AIM data of Rose 08. For comparison, the results using the κ method of Petters and Kreidenweis (2007) are also included, which are obtained by solving Eq. A30 of Rose08 using $\kappa = 1.28$ for NaCl_(cr) and $\kappa = 0.61$ for (NH₄)₂SO_{4(cr)}.

Fig. 6. Critical supersaturation as a function of dry diameter, D_s , for pure NaCl and $(NH_4)_2SO_4$ particles with different diameters, i.e. $D_s = 0.005$, $D_s = 0.01$, $D_s = 0.05$, $D_s = 0.1$ and $D_s = 0.5$ [µm], complementing Fig. 5. Note, the black solid lines are artificial help lines; the lower line and points correspond to NaCl, the upper ones to $(NH_4)_2SO_4$.