
ACPD
11, 24813–24855, 2011

Hygroscopic growth
parameterizations

S. Metzger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Atmos. Chem. Phys. Discuss., 11, 24813–24855, 2011
www.atmos-chem-phys-discuss.net/11/24813/2011/
doi:10.5194/acpd-11-24813-2011
© Author(s) 2011. CC Attribution 3.0 License.

Atmospheric
Chemistry

and Physics
Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Aerosol hygroscopic growth
parameterization based on a solute
specific coefficient
S. Metzger1, B. Steil1, L. Xu2, J. E. Penner2, and J. Lelieveld1,3

1Max Planck Institute for Chemistry, Mainz, Germany
2University of Michigan, Ann Arbor, Michigan, USA
3The Cyprus Institute, Nicosia, Cyprus

Received: 8 July 2011 – Accepted: 2 September 2011 – Published: 5 September 2011

Correspondence to: S. Metzger (swen.metzger@mpic.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

24813

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/24813/2011/acpd-11-24813-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/24813/2011/acpd-11-24813-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 24813–24855, 2011

Hygroscopic growth
parameterizations

S. Metzger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

Water is a main component of atmospheric aerosols and its amount depends on the
particle chemical composition. We introduce a new parameterization for the aerosol
hygroscopic growth factor (HGF), based on an empirical relation between water activ-
ity (aw) and solute molality (µs) through a single solute specific coefficient νi . Three5

main advantages are: (1) wide applicability, (2) simplicity and (3) analytical nature. (1)
Our approach considers the Kelvin effect and covers ideal solutions at large relative
humidity (RH), including CCN activation, as well as concentrated solutions with high
ionic strength at low RH such as the relative humidity of deliquescence (RHD). (2) A
single νi coefficient suffices to parameterize the HGF for a wide range of particle sizes,10

from nanometer nucleation mode to micrometer coarse mode particles. (3) In contrast
to previous methods, our analytical aw parameterization depends not only on a linear
correction factor for the solute molality, instead νi also appears in the exponent in form
x · ax. According to our findings, νi can be assumed constant for the entire aw range
(0–1). Thus, the νi based method is computationally efficient. In this work we focus15

on single solute solutions, where νi is pre-determined with the bisection method from
our analytical equations using RHD measurements and the saturation molality µsat

s .
The computed aerosol HGF and supersaturation (Köhler-theory) compare well with
the results of the thermodynamic reference model E-AIM for the key compounds NaCl
and (NH4)2SO4 relevant for CCN modeling and calibration studies. The equations in-20

troduced here provide the basis of our revised gas-liquid-solid partitioning model, i.e.
version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), described in a com-
panion paper.

1 Introduction

The gas-liquid-solid partitioning of atmospheric particles and precursor gases to large25

degree determines the composition and water uptake of atmospheric aerosol parti-
cles, which affect human and ecosystem health, clouds and climate (e.g. Künzli et al.,
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2000; IPCC, 2007). The most abundant aerosol species is water. The aerosol liq-
uid water content (AWC) governs the size distribution, the atmospheric lifetime of both
particles and interacting gases, and particle optical properties. Considering thermo-
dynamic equilibrium, the AWC depends primarily on the available water vapor, ambi-
ent temperature (T ) and relative humidity (RH). The AWC also depends on the par-5

ticle hygroscopicity, which is the ability to absorb (release) water vapor from (to) the
surrounding atmosphere. In particular the ability of salt solutes to dissolve causes
hygroscopic growth (HG) of aerosol particles at subsaturated atmospheric conditions
(RH<100 [%]), where the equilibrium water uptake of atmospheric aerosols is gener-
ally limited by the available water vapor. For instance, sea salt particles can deliquesce10

at a very low RH of deliquescence (RHD) below 40 [%], because they contain a small
amount of the very hygroscopic salt magnesium chloride (MgCl2). Therefore, marine
air is often much hazier than continental air at the same T and RH. The HG of at-
mospheric aerosol particles influences heterogeneous reactions, light extinction and
visibility, and is important for the aerosol radiative forcing of climate (e.g. Pilinis et al.,15

1995). The HG and the associated AWC depends on the ionic composition of the
particles, which in turn depends on the total AWC. Consequently, the HG and AWC
involving gas/liquid/solid aerosol partitioning is difficult to measure or predict numeri-
cally, even though the complex thermodynamic system may be simplified by assuming
phase equilibrium (e.g. Wexler and Potukuchi, 1998; Seinfeld and Pandis, 2006).20

At the microscopic level two mechanisms of water uptake are important: (i)
Adsorption of water on insoluble surfaces, whereby the fraction of surface area covered
by adsorbed water is proposed as criterion for hydrophilicity (e.g. Naono and Naku-
man, 1991). (ii) Absorption of water by soluble particulates, which are per definition
hydrophilic. For atmospheric aerosols the absorption of water by soluble compounds25

is most important, and adsorption does not contribute much to the total AWC. Soluble
and in particular hygroscopic particles take up water from the atmosphere for solute
hydration. An increase in solute concentration (e.g. due to condensation of volatile
compounds, coagulation, or chemical reactions) therefore either leads to additional
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water uptake, or to solute precipitation (causing a solid phase to co-exist with the
aqueous phase), while a decrease of the solute concentration (e.g. due to evapora-
tive loss or chemical reactions) is associated with the evaporation of aerosol water,
so that ultimately at equilibrium the aerosol molality of a given aerosol composition
remains constant at given T , RH and water activity (aw).5

The aerosol HG can be determined for certain solutes from laboratory aw measure-
ments (e.g. Tang and Munkelwitz, 1994), or calculated by considering the vapor pres-
sure reduction that occurs by dissolving a salt solute in water – known as Raoult’s
law (Raoult, 1888) – if non-idealities of solution are taken into account (e.g. Warneck,
1988; Pruppacher and Klett, 2007). According to Köhler-theory (Köhler, 1936) and10

Raoult’s law, the so-called Raoult-term, which considers the lowering of the equilibrium
vapor pressure with increasing solute concentration at a given RH, is complemented
by the so-called Kelvin-term, which accounts for the increase in the water vapor pres-
sure due to the curvature of the particle surface. The modern Köhler equations allow to
determine the equilibrium size of an aerosol droplet for a given dry size, chemical com-15

position, RH and T , by accounting for the dissolution of gases into droplets, changes
in surface tension, ion charges, or density of the droplet solutions (e.g. Reiss, 1950;
Young and Warren, 1992; Konopka, 1996; Shulman et al., 1996; Laaksonen et al.,
1998; Charlson et al., 2001; Russell and Ming, 2002; Mikhailov et al., 2004; Biskos
et al., 2006a, b; Seinfeld and Pandis, 2006; McFiggans et al., 2006; Pruppacher and20

Klett, 2007; Rose et al., 2008; Mikhailov et al., 2009; Ruehl et al., 2010).
Three types of methods have been used to account for hygroscopic growth of at-

mospheric aerosols in general circulation models (GCMs): (i) the f (RH) method, (ii)
Köhler-theory and (iii) thermodynamic equilibrium models. The f (RH) method (Charl-
son et al., 1992) scales particle optical properties as a function of RH. In a simplified25

manner, this method accounts for the hygroscopic nature of water-soluble aerosol par-
ticles and, hence, has been used for first-order estimates of aerosol HG and the cor-
responding radiative forcing of climate. The second method explicitly accounts for the
hygroscopic nature, since the Köhler equation is based on the Raoult-term. However,
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both methods do not account for gas-liquid-solid partitioning and deliquescence that
accompanies aerosol hygroscopic growth. Only models that also account for the gas-
liquid-solid partitioning of single and mixed solute solutions are sufficiently comprehen-
sive to calculate the RHD based HG factor (HGF) of single and mixed solutions, which
usually includes various inorganic, organic and non-soluble compounds.5

Here we first introduce new single solute solutions parameterizations for the aerosol
HGF, which are based on a new representation of water activity, presented in Sect. 2.
The equations provide the basis of our revised gas-liquid-solid equilibrium partitioning
model, i.e. version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), which
considers mixed solutions of various compounds important for atmospheric modeling.10

EQSAM4 is described in the companion paper. Our HGF parameterizations require
for a given temperature only one solute specific coefficient, νi , to approximate aw for
the entire range of water activity (0–1). νi is pre-determined in Sect. 3 from our ana-
lytical equations with the bisection method using RHD measurements and applied to
three cases: (a) flat surface, i.e. without Kelvin-term and sub-saturation (RH<100 [%]),15

(b) curved surface, i.e. including Kelvin-term and subsaturation, and (c) supersatura-
tion with Kelvin-term, i.e. RH ≥ 100 [%]. The derived HGF and supersaturation re-
sults are compared with those derived from the thermodynamic reference model E-
AIM (Wexler and Clegg, 2002; Clegg and Wexler, 2007) for two key compounds NaCl
and (NH4)2SO4, which are important for modeling of cloud condensation nuclei (CCN)20

and central for CCN calibrations (Frank et al., 2006, 2007) and CCN studies (Dusek et
al., 2006; Rose et al., 2008). A comprehensive box model inter-comparison of major
inorganic aerosol thermodynamic properties of mixed solutions predicted by EQSAM4
and EQUISOLV II (Jacobson et al., 1996, 1999) is subject of the revised publication of
Xu et al. (2009).25
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2 Aerosol hygroscopic growth parameterizations of single solutes

2.1 Köhler theory and models

Köhler theory relates the particle growth of a spherical droplet formed on a soluble
particle to the ambient relative humidity (RH), which can be expressed as (e.g. Prup-
pacher and Klett, 2007; Seinfeld and Pandis, 2006; Mikhailov et al., 2004, 2009; Rose5

et al., 2008):

RH =
pw(g)

psat
w(g)

= aw · Ke

= aw · exp
(

4 · Mw · σsol
R · T · ρw · Dwet

)
= aw · exp

(
4 · Mw · σsol

R · T · ρw · gs · Ds

)
(1)

pw(g) [Pa] and psat
w(g) [Pa] denote the partial pressures of water vapor of the ambient

air at temperature T [K] and at saturation at the same T . It is common to express the
dimensionless fractional relative humidity RH [−] as the saturation ratio s=RH [−], with10

RH (not in italics) in [%]. In case of supersaturation, RH> 100 [%], it is customary to
use the supersaturation S, which is defined as S = (s−1) ·100 [%].

The dimensionless term aw [−] is the water activity of the solution (droplet) and
is referred to as the Raoult term (or volume contribution), since it accounts for an
increase of the droplet volume (D3

wet) with increasing RH with a 1/D3
wet proportionality.15

Ke [−] is the Kelvin (or surface) term, which accounts for a compensating effect with a
1/Dwet proportionality and the RH dependent surface tension σsol [J m−2] of the solution
droplet; R [J mol−1 K−1] is the ideal gas constant and T [K] the droplet temperature, Dwet
[m] is the ambient droplet diameter (geometric diameter = mass equivalent diameter
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of a compact spherical droplet). With the assumption of “volume-additivity”, i.e. the
volume of the solution droplet is given by the sum of the volumes of the dry solute and
of the pure water contained in the droplet, Dwet can be expressed in terms of the dry
mass equivalent diameter Ds [m] and the RH dependent mass equivalent growth factor
gs [−] of the droplet. gs is defined as the ratio of wet to dry droplet diameter, and can5

be expressed in terms of the solute molality µs =ns/mw [mol(solute) kg−1(H2O)]:

gs =
Dwet
Ds

=
(
Vwet
Vs

)1/3
=
(
Vw + Vs

Vs

)1/3
=
(
Vw
Vs

+ 1
)1/3

=
(
ρs · mw
ρw · ms

+ 1
)1/3

=
(

ρs
Ms · ρw · µs

+ 1
)1/3

(2)

Vwet = Vw+Vs [m3] is the total volume of the wet droplet with Vs =ms/ρs = ns Ms/ρs

and Vw =mw/ρw = nw Mw/ρw [m3], i.e. the volumes of the initially dry solute and the
associated pure water, respectively. ms and mw [kg] denote the corresponding solute10

and water masses, Ms and Mw [kg mol−1] the molar masses, ns and nw [mol] the num-
ber of moles, and ρs and ρw [kg m−3] the densities, respectively. In the following gs
will be referred to as the hygroscopic growth factor (HGF) and applied to atmospheric
aerosols.

2.1.1 Water activity representations – concepts15

To clarify similarities and differences with previous work, we follow Rose et al. (2008)
– in the following abbreviated as Rose08 (available at http://www.atmos-chem-phys.
net/8/1153/2008/) – as they present a comprehensive overview of water activity repre-
sentations on which the various present-day Köhler models are based. Rose08 have
subdivided the water activity representations into 5 categories (see their Table 3), i.e.20
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1. Activity parameterization (AP) models, e.g. Tang and Munkelwitz (1994), Tang
(1996), Kreidenweis et al. (2005), which are of the type:

aw = 1 +
∑
q

aq · (100 · χs)q (3)

Tang and Munkelwitz (1994) and Tang (1996) have presented parameterizations
for the activity of water in aqueous solutions derived from electrodynamic balance5

(EDB) single particle experiments as polynomial fit functions of RH dependent
solute mass percentage (100 · χs). The solute mass fraction χs and the polynomial
coefficients aq [−] are listed e.g. in Table A2 of Rose08 to which we refer for a
further discussion (also for 2–5).

2. Osmotic coefficient (OS) models, e.g. Robinson and Stokes (1959, 1965), Pitzer10

and Mayorga (1973), Brechtel and Kreidenweis (2000), which are of the type:

aw = exp

(
−Mw · Φw ·

∑
i

µi

)
= exp(−Mw · Φs · νs · µs) (4)

According to Robinson and Stokes (1959) (the book pages are online freely
accessable at http://books.google.de/books?id=6ZVkqm-J9GkC&printsec=
frontcover) the water activity aw is related to the total molality of all solute species15 ∑
i
µi by the dimensionless molal osmotic coefficient of the aqueous phase Φw

[−], where
∑
i
µi can be expressed as νs · µs if the molal osmotic coefficient of

the solute Φs is used in conjunction with the solute molality µs [mol kg−1(H2O)]
and the solute’s stoichiometric coefficient νs. Mw is the molar mass of water in
SI-units [kg mol−1]. Φw deviates from unity as the solution becomes non-ideal.20
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3. Van’t Hoff factor (VH) models, e.g. van’t Hoff (1887), Low (1969), Young and War-
ren (1992), which are of the type:

aw =
1

1 + is · ns/nw

= (1 + Mw · is · µs)−1 (5)

The van’t Hoff factor is [−] is a constant, and similar to the stoichiometric coeffi-
cient (dissociation number) νs. deviations of is from νs can be attributed to solution5

non-idealities. The relation between is, νs and Φs can be approximated by a se-
ries expansion of the exponential term in Eq. (4) and can be approximated as
(Kreidenweis et al., 2005):

is ≈ νs · Φs (6)

4. Effective hygrosocopicity parameter (EH) model of Petters and Kreidenweis10

(2007), which is of the type:

aw =
(

1 + κ
Vs

Vw

)−1

(7)

Vs = ns Ms/ρs and Vw = nw Mw/ρw are the volumes [m3] of the initially dry solute
and pure water, respectively, with Ms and Mw [kg mol−1] the molar masses of so-
lute and water, respectively, and ρs and ρw [kg m−3] the densities of the initially15

dry solute and pure water, respectively. The dimensionless hygroscopicity param-
eter κ [−] parameterizes the composition dependent water activity of a solution
droplet in analogy to the van’t Hoff factor. κ and the van’t Hoff factor is are related
by:

κ = is ·
ns · Vw

nw · Vs
= is ·

vw

vs
= is ·

ρs · Mw

ρw · Ms
(8)20
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with vs and vw [mol m−3] the molar volumes of the solute and of water, respectively.

Rose08 have used the Pitzer-Simonson-Clegg mole fraction based model AIM of
Clegg et al. (1998a, b), Wexler and Clegg (2002) as a reference model (Clegg and
Wexler, 2007), which is also based on osmotic coefficients, i.e. on Eq. (4), but combines
the OS model with the universal functional group activity coefficient model (UNIFAC,5

Fredenslund et al., 1975).
The activity coefficient model describes the water activity by

aw = fw · xw = fw · (1 + Mw · µs)−1 (9)

fw [−] denotes the rational or mole fraction scale activity coefficient of water, which is
included in this water activity representation model to account for non-ideal solutions10

and solutes that dissociate (partly or completely). xw [−] is the mole fraction of water in
the solution that at equilibrium contains the numbers of moles (amount-of-substance)
nw [mol] and ns [mol] of water and solute, respectively. xw can be mathematically
described as:

xw =
nw

nw + ns
=

1

1 + ns/nw

= (1 + Mw · µs)−1 (10a)15

Analogously, the mole fraction of the solute xs is given by

xs = 1 − xw =
ns

nw + ns
=

1

1 + nw/ns

=
(

1 +
1

Mw · µs

)−1

(10b)

i.e. satisfying the condition xs + xw = 1 for a binary solution (sone solute and water).
xw and xs are related to the solute molality µs [mol(solute) kg−1(H2O)] by

µs =
ns

mw
=

ns

nw
· 1
Mw

=
xs

xw
· 1
Mw

=
(
Mw ·

[
1/xs − 1

])−1
=
(
Ms ·

[
1/χs − 1

])−1
(11)20

where χs =
ms

(ms+mw) [−] is the solute mass fraction, ms and mw [kg] the masses of solute

and water, with Ms and Mw [kg mol−1] the corresponding molar masses, respectively.
24822
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To consider cases for which the solution contains more than one solute, Eqs. (10a,
b) is expressed in a more general form:

xi = ni /

∑
j

nj

 (12)

ni is the number of moles [mol] of component i , where i =w for the solvent, or i = s for
the solute; j = s1,s2,s3,...,sn,w is the summation over all n + 1 components in solution,5

so that
∑
j
xj =1.

Equation (9) expressed in the general form yields the activity and the activity coeffi-
cient of solutes (i = s) or the solvent water (i =w), i.e.:

ai = fi · xi (13)

fi [−] is the rational activity coefficients and is defined on a reference state for which fi10

is unity for infinite dilution (pure water), so that fi → 1 as xi → 0. fi of the solute s is
related to the molal-based activity coefficients γi by (Robinson and Stokes, 1959):

fi = γi

(
1 + Mw ·

∑
i

µi

)
(14)

with the summation in Eq. (14) over all solute molalities. Mw is the molar mass of water
[kg mol−1)], µi the solute molality [mol kg−1(H2O)] given by Eq. (11).15

The activity coefficients have been introduced to correct the solution molalities for
non-ideality and to substitute earlier correction coefficients used in other aw representa-
tions. Following Rose08, we will use the E-AIM model version III as a reference, which
is available online (http://www.aim.env.uea.ac.uk/aim/model3/mod3rhw.php) (Wexler
and Clegg, 2002; Clegg and Wexler, 2007), to be consistent with the reference (AP3)20

of Rose08 (see their Table 3).

24823

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/24813/2011/acpd-11-24813-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/24813/2011/acpd-11-24813-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.aim.env.uea.ac.uk/aim/model3/mod3rhw.php


ACPD
11, 24813–24855, 2011

Hygroscopic growth
parameterizations

S. Metzger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.1.2 Water activity parameterization as a function of νi

To parameterize the aerosol hygroscopic growth we introduce a new parameterization
for the water activity, i.e. adding to the definitions summarized above. Since the com-
putation of all the aw representations is to some degree problematic – mainly since for
all successful water activity parameterizations the correction coefficients are not inde-5

pendent of aw –, we suggest here a new relation of aw and the solute molality, µs, as
a central aspect of our formulations. aw and µs are related by a single solute specific
coefficient νi :

aw =
(
A + µo

s · Mw ·νi ·
[

1
µo

s
· µs + B

]νi)−1

=
(
A + µo

s · Mw · νi ·
[

1
µo

s
· 1
Ms · (1/χs − 1)

+ B
]νi)−1

(15)

The terms νi , A and B are dimensionless [−], while µs is the solute molality10

[mol(solute) kg−1(H2O)] defined by Eq. (11). A and B also depend only on µs and
νi , but for certain applications they can be neglected, i.e. A= 1 and B= 0, as demon-
strated in Sect. 3. To match units with µs, we multiply µs on the rhs of Eq. (15) with
an initial concentration of 1 mole of pure solute that dissolves in 1 kg of initially pure
water, considering stoichiometry and molality scale, i.e. µo

s = 1 [mol kg−1]. Mw is the15

molar mass of water [kg mol−1)].
Similar to the VH concept, i.e. Eq. (5), and the activity coefficient concept, i.e. Eq. (9),

we express the water activity aw in terms of the solute molality µs and a solute specific
correction coefficient. However, νi introduced here is not only a linear correction factor,
which is the case in other water activity representations, but appears also as a constant20

in the exponent of Eq. (15) in the form of x ·ax. According to our findings νi can be
assumed constant for the entire aw range (0−1). Hence, it suffices to determine νi ,
e.g. with the bisection method, using any aw value if the corresponding µs is known,
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e.g. at saturation. In case of saturation, aw equals the RH of deliquescence (RHD) and
µs is given through the relation Eq. (11) by the mass fraction χsat

s . Solubility values and
the corresponding thermodynamic data are available for many compounds, e.g. in the
CRC Handbook of Chemistry and Physics (2006).

2.1.3 RH of deliquescence (RHD) as a function of νi5

Here, we determine νi from the compound’s RH of deliquescence (RHD), since tem-
perature dependent values are available for major compounds, which are relevant for
atmospheric aerosol modeling. The RHD can be obtained as a function of νi from
Eq. (15) and Eq. (1), i.e. substitution of aw = RH

Ke
yields:

RH =
Ke(

A + µo
s · Mw· νi ·

[
1
µo

s
· µs + B

]νi) (16a)10

and at saturation, where RH=RHD and ws = χsat
s , Eq. (16a) can be expressed as:

RHD =
Ke(

A + µo
s · Mw · νi ·

[
1
µo

s
· 1
Ms · (1/ws − 1)

+ B
]νi) (16b)

Thus, RHD values can be obtained with Eq. (16b) if ws, νi , A and B are known. In
Sect. 3 we derive these yet unknown terms first from RHD measurements, by solving
Eq. (16b) once, for example with the bisection method. The temperature dependency15

of the RHDs is obtained by (e.g. Wexler and Potukuchi, 1998):

RHD(T ) = RHD(To) · exp
[
Tcoef ·

(
1
T

− 1
To

)]
(16c)

The T−dependent RHD values (with ws at T ) can be used to determine νi by solving
Eq. (16b) e.g. with the bisection method for the compounds for which RHD and ws data
are available. The procedure is described in Sect. 3.20
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2.1.4 Solute molality (µs) as a function of νi

According to our parameterization of water activity (aw) the solute molality (µs) is also
parameterized as a function of νi and directly given by re-arranging Eq. (15):

µs = µo
s ·

[ 1

νi · µo
s · Mw

·
(

1
aw

− A
)] 1

νi

− B

 (17a)

Using the relation of aw and RH, Eq. (1), Eq. (17a) can be expressed in terms of RH,5

νi and Ke, whereby Ke also depends on µs according to Eqs. (1–2). Thus, with aw = RH
Ke

i.e.:

µs = µo
s ·

[ 1

νi · µo
s · Mw

·
(
Ke

RH
− A
)] 1

νi

− B

 (17b)

Equation (17b) can be directly solved, e.g. with the bisection method, while Eq. (17a)
can also be analytically solved, since the Ke term is not relevant for flat surfaces. How-10

ever, this also depends on the choice of the A and B terms. In case of a flat surface and
subsaturation (RH≤95 [%]), Ke, A and B are neglected, i.e. Ke = 1, A= 1 and B = 0,
and Eq. (17b) reduces to:

µs = µo
s ·

[ 1

νi · µo
s · Mw

·
(

1
RH

− 1
)] 1

νi

 (17c)

For applications up to RH≤98 [%], a slightly different representation of Eq. (17c) can15

be used, which only differs by a term B98, i.e.

µs = µo
s ·

[ 1

νi · µo
s · Mw

·
(

1
RH

− 1
)] 1

νi

− B98

 (17d)
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Equations (17a–d) relate the solute molality µs to aw and RH, depending only on the
solute specific coefficient νi . Note that B-terms are needed only for high RH>95 [%].
The A and B-terms are defined in Sect. 3. Whether Eqs. (17a), (17b), (17c), or (17d)
should be used depends on the desired level of complexity and the scientific ques-
tions, which determine the RH regime, i.e. only Eq. (17b) accounts for the particle size.5

Equations (17a–d) can be applied in EQSAM4, while Eq. (17c) is equivalent to the one
of EQSAM3, introduced by Metzger and Lelieveld (2007) by their Eq. (20), but limited
w.r.t. Köhler theory to the subsaturated RH regime, with RH≤95 [%]. For these cases,
the results of the four different representations of Eq. (17) are, however, rather similar.
This is demonstrated in the next section.10

3 Parameter determination

To solve our water activity parameterization, i.e. Eq. (15), the dimensionless terms νi ,
A and B are required. Here, A and B have been empirically determined to best match
the reference results of E-AIM − the explicit derivation is beyond the scope of this work
and will be presented separately. A and B are defined to only depend on the solute15

specific coefficient, νi , and on the solute molality µs, i.e.:

A = (1 + νi · µs · Mw) · exp

(
− Mw · µo

s · νi · (
µs

µo
s

)νi

)
(18)

B =
(

1 +
1

νi · µs · Ms

)−1

·
(
νi ·

µs

µo
s

)− 1
νi

(19)

As A and B depends on µs and νi , we additionally define an alternative B-term for
Eq. (17d) with RH≤98 [%], which only depends on νi :20

B98 = 10
[

2
νi

− 2
]

(20)
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To solve Eqs. (15–20), νi must be known. If νi can be assumed constant for
the entire range of water activity aw (0–1), it should be possible when Eq. (1) is
used to determine νi for any particle dry diameter (Ds) at given temperature (T )
from the saturation point, i.e. also for the case where aw equals the RH of deliques-
cence (RHD). In this case, we can solve Eq. (16b) directly with a root finding algo-5

rithm, notably the bisection method; see e.g. Numerical Recipes (http://www.nr.com/)
in Fortran 90, Second Edition (1996), page 1185 (an online version is freely avail-
able at: http://apps.nrbook.com/fortran/index.html). To constrain the bisection method
when solving Eq. (16b) we use the T -dependent RHD and ws values, i.e. for the left
hand-side at To = 298.15 [K] RHD= 0.7528 [−] for NaCl(cr) and RHD= 0.7997 [−] for10

(NH4)2SO4(cr), and calculate νi as follows:

1. Given ws = χs, we first calculate µsat
s from Eq. (11);

2. A is a function of νi and calculated from µs =µsat
s and Mw using Eq. (18);

3. B is a function of νi and calculated from µs =µsat
s and Ms using Eqs. (19) or (20);

4. We finally determine νi by solving Eq. (16b) with the bisection method by using15

µsat
s from step 1, A and B from step 2 and 3 and assuming Ke = 1. Given νi and

µs, Eqs. (17a–d) can be solved for aw and RH, if at step 1 the HGF is additionally
calculated from Eq. (2). Apart from this, the procedure of solving Eqs. (17a–d) is
the same as to determine νi .

Note that the choice of A and B in Eqs. (18–20) depends on the application. At20

To the following values for NaCl(cr) and (NH4)2SO4(cr) are: mass fraction solubil-

ity ws = 0.2647 [−] and ws = 0.4331 [−], molar masses Ms = 0.05844 [kg mol−1] and
Ms = 0.1321 [kg mol−1], and densities ρs = 2170 [kg m−3] and ρs = 1770 [kg m−3], re-
spectively.

Once νi has been determined, Eqs. (17a–d) can be either solved for RH for a given25

solute molality µs, e.g. from Eq. (11) or reference model calculations, or vise versa
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as done in the companion paper (i.e. GCM application where the RH is usually pre-
scribed). The hygroscopic growth factor (HGF), the saturation (s) and supersaturation
(S) can then be obtained from µs with Eq. (2) and Eq. (1), respectively, by using Eq. (15)
to solve the associated aw of Eq. (1). Note that this combination of Eq. (15) and Eq. (1)
yields Eq. (16a), and if the RHD is substituted by the RH it yields Eq. (16b).5

For consistency with Rose08, we also compare our results with the parametric cal-
culations of E-AIM. Rose08 provided in their electronic supplement aw−µs values in
the aw range 0.97–1, which we have connected with the E-AIM web-output, with aw
and µs obtained by running the E-AIM model version III (http://www.aim.env.uea.ac.uk/
aim/model3/mod3rhw.php), to cover the remaining aw range from the RHD to 0.97 by10

keeping the large number of the Rose08 AIM data points above 0.97. We have then
calculated from these E-AIM aw−µs values our reference HGF from Eq. (2), and refer-
ence RH from Eq. (1), by assuming (for the sake of simplicity) volume additivity, and a
constant pure water surface tension of the solution, σsol = 0.076 [N m−2], and the pure
water density ρw =997.1 [kg m−3]. For a discussion of σsol and the volume additivity of15

Eq. (1) we refer to Rose08, who provide a comprehensive sensitivity analysis to various
parameters affecting Eq. (1).

3.1 Bulk particles – flat surface

To compare our water activity parameterization with the E-AIM reference data and to
test the sensitivity w.r.t. different combinations of A and B, we solve Eqs. (17a–d) for20

two key compounds, NaCl(cr) and (NH4)2SO4(cr), considering four cases:

1. Equation (17a): using the A-and B-terms, but no Ke-term.

2. Equation (17b): same as (1) but considering the Ke-term as our best aw estimate.

3. Equation (17c): same as (1) but without the A- and B-terms as our simplest aw
estimate.25

4. Equation (17d): same as (3) but with a different B-term than (1) and (2).
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Table 1 gives an overview of the equations applied for the four different cases, i.e.
solute molality, µs-models. Note that Eqs. (17a–d) can be used to calculate either aw,
RH or µs. Here we prescribe µs and calculate aw and RH, while in the companion
paper we prescribe RH and calculate µs from Eqs. (17a–d). The RHD and the derived
νi values are listed in Table 2 for the four cases listed in Table 1. These data, together5

with a Fortran 90 program to reproduce our results are provided in the Supplement.
Figures 1 and 2 firstly compare our four RH calculations as a function of HGF for
the simplest case of flat surface, i.e. particles with a sufficiently large dry diameter in
the subsaturated RH regime, so that the Kelvin-term can be neglected for the aerosol
HGF calculations. Then, the four cases shown in Table 1 should yield similar results10

if the corresponding νi values listed in Table 2 are used to solve Eqs. (17a–d). For
each case (equation), we calculate the RH by prescribing the E-AIM µs values of two
single solute solutions: (1) pure sodium chloride, NaCl(cr), and (2) pure ammonium
sulfate, (NH4)2SO4(cr), assuming a sufficiently large dry particle diameter (geometric
diameter = mass equivalent diameter for a compact spherical droplet), i.e. Ds =1 [µm],15

so that the Kelvin term is negligible. The HGF is shown for the deliquescence branch
of the hysteresis curves, i.e. considering an initially dry solute that entirely deliquesce
when the RH exceeds the solute’s RHD. Figure 1 shows the HGF for the RH range,
RHD≤RH≤97 [%], while Fig. 2 shows the complementing results for the RH range,
97≤RH≤100 [%], to highlight possible differences in the “quasi” ideal solution range20

close to RH 100 [%], where the water activity approaches unity.
According to Figs. 1 and 2, the results based on Eq. (17a) and Eq. (17b) are almost

identical for the entire RH-range, which indicates that for this case the Kelvin-effect is
indeed negligible. And for RH<95 [%], all four cases, i.e. Eqs. (17a–d), agree well with
the reference. In the RH range, 95<RH ≤98 [%] the results of Eq. (17d) (using the25

simplified B-term) are still close to those of Eq. (17a–b) and E-AIM, while the results
of Eq. (17c) without the A- and B-terms deviate noticeably. But when the RH exceeds
98 [%] the results of Eq. (17d) also start to deviate from our reference. Only the results
of Eq. (17a–b) agree well with the E-AIM results close to RH 100 [%]. But for these high
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RH values, and for submicron arerosol particles in general, the Kelvin-term becomes
important anyhow, so that only our most complete parameterization Eq. (17b) can be
used for further evaluation.

3.2 Submicron sized particles – curved surface

In the case of submicron sized particles (Ds <1 [µm]), surface curvature becomes im-5

portant for the aerosol hygroscopic growth calculations. Equation (17b) includes the
Kelvin-term and will be used to calculate the HGF of submicron sized particles with
Eq. (2) using the above νi values listed in Table 2 for Eq. (17b). Figure 3 compares
the HGF obtained with Eq. (17b) with E-AIM for RH≤97 [%] and the four different dry
particle diameters Ds =0.05, Ds =0.1, Ds =0.5 and Ds =1 [µm]. Figure 4 complements10

Fig. 3 for the high values within the subsaturated regime, i.e. 97 ≤RH≤100 [%]. Note
that aw, and the derived HGF results of E-AIM, do not directly depend on the Kelvin-
term Ke. We plot the HGF versus RH=aw·Ke following Rose et al. (2008), which yields
a dependency of the E-AIM results on Ke, but also shifts the RHD (of E-AIM) to a higher
water activity (due to aw·Ke). We can reproduce this shift in RHD if the Kelvin-term is15

considered in the RHD calculations using the νi determined from the flat surface case.
The estimated size dependent RHD values are obtained by calculating the RHD with
Eq. (16b) using the νi values listed in Table 2 for Eq. (17b), which is the only equation
of Eq. (17a–d) that accounts for a size dependency by including the Ke-term. The size
dependent RHD estimates are shown in Table 3 for the different dry particle diameters.20

According to Figs. 3 and 4 the results of Eq. (17b) agree well for different particle
sizes in the subsaturated RH regime. It also appears that the results capture the de-
crease of the HGF for nanometer size particles reported by measurements provided
by Biskos et al. (2006a, b). Note that we have not applied a shape correction factor,
and used for simplicity a constant surface tension of pure water (as mentioned above)25

for the Ke-term calculation for both Eq. (17b) and E-AIM. For a discussion of these pa-
rameters we refer to Biskos et al. (2006a, b), Rose08, Harmon et al. (2010) and Wang
et al. (2010) (and references therein). In the next section we focus on the remaining
RH regime of water vapor saturation and supersaturation, i.e. RH≥100 [%].
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3.3 Supersaturation – Köhler curves

To evaluate the upper RH limit where the parameterizations may still be valid, we com-
pare the results obtained from Eq. (17b) with E-AIM for the case of water vapor sat-
uration and supersaturation, i.e. RH≥100 [%]. The supersaturation S [%] is defined
as S = (s−1) ·100, with s obtained by solving Eq. (1) as a function of wet diameter,5

Dwet, using Eq. (17b). For E-AIM we again use RH= aw ·Ke, following Rose08. Fig-
ure 5 completes the RH range shown in Figs. 3 and 4, and shows that the results of
Eq. (17b) are comparable to E-AIM from the RHD to supersaturation for pure NaCl(cr)
and (NH4)2SO4(cr) particles and different dry particle diameters, i.e. Ds =0.05, Ds =0.1,
Ds =0.5 and Ds =1 [µm]. These results are also comparable to Fig. 15.5 of Pandis and10

Seinfeld (1998), which describe their approximation for ideal solutions. Figure 6 shows
the critical supersaturation Sc, which complements Fig. 5. Sc is given by the maximum
S. The results are comparable to Fig. 15.6 of Pandis and Seinfeld (1998) and Fig. 10
of Rose08. Note that Fig. 6 covers a diameter range 5–500 [nm], which is extended
compared to Rose08 (their Fig. 10 shows 20–200 [nm]), so that our maximum criti-15

cal supersaturation is about 10 [%] for 5 [nm] NaCl(cr) particles. Note that these high
critical supersaturations are merely shown to evaluate the Eq. (17b) method. To bring
the results closer to our artificial help lines in the log−log diagram, it was necessary
to assume for the 5 [nm] particles (and only for 5 [nm]) for NaCl(cr) and (NH4)2SO4(cr)
a shape factor of 1.15 and 1.14, respectively, which was used to calculate the Kelvin-20

term with Eq. (1) for E-AIM, Kappa and the Eq. (17b) method. For all other particle
sizes no shape factor was applied.

4 Discussion

We presented aerosol hygroscopic growth parameterizations that provide the core of
our revised gas-liquid-solid partitioning model, i.e. version 4 of the EQuilibrium Simpli-25

fied Aerosol Model (EQSAM4), which is described in greater detail in the companion
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paper. EQSAM4 is part of our aerosol chemistry-microphysics module (GMXe), the
latter being coupled to the EMAC atmospheric chemistry-climate model (Pringle et al.,
2010), and will be used to study the aerosol hygroscopic growth of single and mixed
solutes. Thus, a requirement is that the parameterizations are both sufficiently accu-
rate and computationally efficient, so that large-scale, long-term and high-resolution5

atmospheric chemistry-climate simulations are feasible.

1. Simplified HGF calculations:
as demonstrated in Sect. 3, our empirical representation of water activity, aw, by
Eq. (15), and the derived equations for the solute molality µs, Eqs. (17a–d), can
help estimate the HGF of atmospheric aerosols. Our results compare well with the10

reference calculations of E-AIM for typical RH (aw) values, relevant to conditions
in the atmosphere. HGF estimates, as calculated from Eq. (2) and based on
the complete aw representation, Eq. (17b), which includes the Kelvin-effect, also
applies to submicron sized particles (e.g. Russell and Ming, 2002; Biskos et al.,
2006a, b), i.e. with a dry diameter Ds below 0.5 [µm]. The results agree well with15

the κ-method of Petters and Kreidenweis (2007) for the ideal solution cases, but
agree more closely with E-AIM for concentrated solutions. Both, the κ and νi
method only require one coefficient per compound, and agree relatively well w.r.t.
the CCN activation of the aerosols according to Köhler theory (e.g. Charlson et al.,
2001; McFiggans et al., 2006) down to dry diameters Ds below 0.05 [µm]. Only for20

(NH4)2SO4 particles the Sc obtained from the κ-method agrees more closely with
E-AIM, but the steep increase in supersaturation agrees less w.r.t. E-AIM and at
0.005 [µm] also the Sc obtained by the νi method appears closer to E-AIM when
the same κ and νi values are assumed for all particles sizes. For simplicity and
clarity, we have neglected here potential effects of surface tension and other size25

effects, though they can be included when needed. For a discussion we refer to
e.g. Rose08 and references therein.
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2. The advantage of Eqs. (17a–b):
compared to most other representations of water activity (briefly summarized in
Sect. 2) our approach requires only one empirical coefficient νi to cover a wide
range of aw from concentrated solutions at low RH, around the compound’s RHD,
up to ideal solutions at large RH and CCN activation. The κ-method of Petters5

and Kreidenweis (2007), which also requires only a single parameter, is limited to
ideal solutions and not optimally valid for concentrated solutions as confirmed by
Figs. 3 and 4. The advantage of our parameterizations Eqs. (17a–b), compared to
our Eqs. (17c–d), is that they can be applied to concentrated and ideal solutions,
since they include the additional A- and B-terms. Equation (17b) can be further10

applied to the supersaturated RH regime, because it includes the Kelvin term.
However, the A-, B- and Ke-terms depend on µs, which makes Eqs. (17a–b) more
complex to solve in case RH or aw is prescribed. Nevertheless, despite this self-
dependency, also Eq. (17a–b) can be directly solved when using νi by a root-
finding method, such as the bisection method used in this study.15

3. The advantage of Eqs. (17c–d):
compared to our more comprehensive parameterizations Eqs. (17a–b), our sim-
pler parameterizations Eqs. (17c–d) are limited to the subsaturated RH regime;
Eq. (17c) to approximately RH≤95 [%]; Eq. (17d), which includes a simplified B-
term defined by Eq. (20), to approximately RH≤ 98 [%]. This actually covers the20

most important RH range for atmospheric aerosols, useful for many applications
especially in GCMs. And for CCN activation, Eq. (17b) can be used. The advan-
tage of using Eqs. (17c–d) is that the HGF of single or mixed compound solutions
can be analytically and non-iteratively obtained for a given RH, by using a sin-
gle constant νi value per compound and various particles dry sizes, since our25

calculations do not depend on the aerosol liquid water content.

24834

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/24813/2011/acpd-11-24813-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/24813/2011/acpd-11-24813-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 24813–24855, 2011

Hygroscopic growth
parameterizations

S. Metzger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4. Determining νi :
to determine νi , any of the νi -based equations, i.e. Eqs. (15–17d), could be solved
with a root finding method, e.g. bisection, by prescribing a pair of water activity
(aw) and solute molality (µs) values of an aw −µs diagram. Such a data pair
can be either obtained from detailed calculations or measurements. Using for5

instance RHD and solubility (ws) measurements, both values are directly known
and related by νi through Eqs. (16a–b), i.e.: aw by RHD=RH= aw ·Ke through
Eq. (1), and µs by ws through Eq. (11). Hence, in this work we have determined
νi by solving Eq. (16b) using a measured RHD for NaCl(cr) and (NH4)2SO4(cr) and
assuming a flat surface, i.e. Ke =1, as described in Sect. 3.10

5. Constant νi :
in all cases we have used a solute specific coefficient, i.e. νi , determined from
the solute’s RHD. According to the comparison with the E-AIM reference calcu-
lations, it appears that a constant νi suffices to estimate the compound’s HGF
with Eqs. (17a–d) for a wide RH range and various particle sizes. Note that we15

express the water activity aw in terms of the solute molality µs and a solute spe-
cific correction coefficient, similar to the VH concept, i.e. Eq. (5), and the activity
coefficient concept, i.e. Eq. (9). However, νi introduced here is not only a linear
correction factor, which is the case in other water activity representations, but is
also used in the exponent of Eq. (15) in form of x ·ax. Apparently, even our sim-20

plest aw estimate based on Eq. (17c) yields reasonably accurate results for the
subsaturated regime, RH≤ 95 [%], but the Kelvin-term must be neglected. The
advantage of using νi is that it allows to directly solve Eqs. (17a–d), i.e. either
Eqs. (17a–b) with e.g. the bisection method, or Eqs. (17c–d) analytically without
iterations. In all cases, νi allows to easily compute the HGF for a wide RH range25

with Eq. (2) when using Eqs. (17a–d). Thus, for our purpose, i.e. application in
EQSAM4, the proposed νi based equations suffice, and complicated calculations
of solution densities, activity coefficients, or osmotic coefficients, as described in
the overview article of Rose08, are not required here.
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6. Uncertainty range for HGF and Sc calculations:
an indication of the uncertainty of our best estimates based on Eq. (17b) is given
by a comparison of Figs. 5 and 6 with the corresponding Fig. 10 of Rose08. Ac-
cording to our Fig. 5, a relatively large difference appears for the supersaturation
estimate for Ds =0.05 (NH4)2SO4 particles. In the logarithmic plot of Fig. 6, these5

differences are less obvious, and the Fig. 10 of Rose08 even shows a larger devi-
ation relative to the results of E-AIM for the various other aw based Sc estimates.
Thus, the comparison of our Fig. 6 and their Fig. 10 shows that our best esti-
mate based on Eq. (17b) lies well within the uncertainty range given by the aw
representations discussed in Rose08.10

7. From single to mixed solute solutions:
our example calculations are shown for single solute solutions. But the νi based
equations are also applicable for mixed solutions, if e.g. the widely used addi-
tive approach of partial water masses of single solutes in mixed solutions (ZSR-
relation; Zdanovskii, 1948; Stokes and Robinson, 1966), or other approaches,15

e.g. CSB (Hanford et al., 2008) are used to obtain the mixed solution water con-
tent. Our νi approach even simplifies the calculation for the mixed solution mo-
lality and water content, since our Eqs. (17a–d) do not depend on the water con-
tent. Thus, the mixed solution water content and the corresponding HGF can
be more easily calculated with Eqs. (11) and (2). Especially by considering the20

Kelvin term, our νi based equations can substantially simplify the calculations,
since in this case (multidimensional) iterations would be required otherwise. The
mixed solution RHD, often referred to as mutual deliquescence relative humid-
ity, MDRH, (Wexler and Seinfeld, 1991), for which all salts are simultaneously
saturated with respect to all components, will be considered in our revised gas-25

liquid-solid partitioning model, i.e. version 4 of the EQuilibrium Simplified Aerosol
Model (EQSAM4), described in the companion paper.
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8. Relation to other concepts through aw:
the relationship of our νi -based aw parameterizations to the various other con-
cepts and aw representations is given by aw itself. The water activity is the central
thermodynamic property from which all other properties can be derived – the var-
ious relations, which are most important for atmospheric aerosol research, are5

briefly summarized in Sect. 2. The relation of νi to the EQSAM3 concept intro-
duced by Metzger and Lelieveld (2007) is given by our Eq. (17c) for the solute
molality µs, which equals their corresponding equation Eq. (20), with νi = νe/νw.
Both equations are limited w.r.t. to Köhler theory to RH≤95 [%] though only de-
pend on solute specific constants. Thus, in the EQSAM3 context, νi may be also10

directly related to an effective dissociation and the solute solubility.

5 Conclusions

We have introduced a new parameterization of the water activity (aw) of single solute
solutions, which only requires an empirical solute specific coefficient, νi . νi can for
instance be determined from RHD measurements or reference calculations through15

the various relations presented. One advantage of the νi concept is that it requires
only a single coefficient to parameterize the solute molality for a wide range of water
activities, while other concepts require solution dependent coefficients. The derived
HGF parameterizations can be used up to high relative humidity and size ranges, from
nanometer sized particles to cloud condensation nuclei (CCN). Another advantage is20

that the water uptake for mixed solutions can be more easily obtained from our νi based
equations, since the solute molality calculated with Eqs. (17a–d) does not depend on
the water content of the solution, so that the mixed solution water content can be
more easily obtained with e.g. the ZSR-relation. This work provides the equations on
which the revised EQSAM4 model builds, which considers mixed solutions of various25

compounds important for atmospheric modeling described in a companion paper and
evaluated for various mixed solution cases in the revised publication of Xu et al. (2009).
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Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/11/24813/2011/
acpd-11-24813-2011-supplement.zip.
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aerosol particles interacting with water vapor: conceptual framework and experimental ev-
idence for restructuring, phase transitions and kinetic limitations, Atmos. Chem. Phys., 9,
9491–9522, doi:10.5194/acp-9-9491-2009, 2009.

Naono M. and Nakuman C.: Analysis of adsorption isotherms of water vapor for nonporous
and porous adsorbents, J. Colloid Interface Sci., 145, 405–412, 1991.15

Numerical Recipes (http://www.nr.com/) in Fortran 90, Second Edition, 1996.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic

growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971,
doi:10.5194/acp-7-1961-2007, 2007.

Pilinis, C., Pandis, S. N., and Seinfeld, J. H.: Sensitivity of direct climate forcing by atmospheric20

aerosols to aerosol size and composition, J. Geophys. Res., 100, 18739–18754, 1995.
Pitzer, K. S. and Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coeffi-

cients for strong electrolytes with one or both ions univalent, J. Phys. Chem., 77, 2300–2308,
1973.

Pringle, K. J., Tost, H., Message, S., Steil, B., Giannadaki, D., Nenes, A., Fountoukis, C.,25

Stier, P., Vignati, E., and Lelieveld, J.: Description and evaluation of GMXe: a new aerosol
submodel for global simulations (v1), Geosci. Model Dev., 3, 391–412, doi:10.5194/gmd-3-
391-2010, 2010.

Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and precipitation, Dordrecht, Kluwer
Academic Publishers, 1997.30

Raoult, F. M.: Z. Phys. Chem., 2, 353, 1888.
Reiss, H.: The kinetics of phase transitions in binary systems, J. Chem. Phys., 18, 840–848,

1950.

24841

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/24813/2011/acpd-11-24813-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/24813/2011/acpd-11-24813-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/acp-7-3163-2007
http://dx.doi.org/10.5194/acpd-10-8165-2010
http://dx.doi.org/10.5194/acp-4-323-2004
http://dx.doi.org/10.5194/acp-9-9491-2009
http://www.nr.com/
http://dx.doi.org/10.5194/acp-7-1961-2007
http://dx.doi.org/10.5194/gmd-3-391-2010
http://dx.doi.org/10.5194/gmd-3-391-2010
http://dx.doi.org/10.5194/gmd-3-391-2010


ACPD
11, 24813–24855, 2011

Hygroscopic growth
parameterizations

S. Metzger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Robinson, R. A. and Stokes, R. H.: Electrolyte Solutions, (revised), London: Butterworth, 1959.
Robinson, R. A. and Stokes, R. H.: Electrolyte Solutions, 2nd ed. (revised); Butterworths:

London, 1965.
Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.:
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Table 1. Overview of the applied cases using four different solute molality, µs-models.

µs-model aw K(e)-terma A-term B-term νi from

Eq. (17a) Eq. (15) no Eq. (18) Eq. (19) Eq. (16b)
Eq. (17b) Eq. (15) yes Eq. (18) Eq. (19) Eq. (16b)
Eq. (17c) Eq. (15) no A = 1 B = 0 Eq. (16b)
Eq. (17d) Eq. (15) no A = 1 Eq. (20) Eq. (16b)

Eq. (2) E-AIMb yes – – –

a Through Eq. (1), b similar as AP3 of Rose08 (see their Table 3).
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Table 2. νi [−] and RHD values at To =298.15 [K] and Ds =1 [µm] for the cases of Table 1.

Solute νi -Eq. (17a) νi -Eq. (17b) νi -Eq. (17c) νi -Eq. (17d) RHDa

NaCl(cr) 1.737506 1.737506 1.408369 1.384214 0.7528
(NH4)2SO4(cr) 1.661410 1.661410 1.335281 1.305553 0.7997

a RHD measurements (values of Fountoukis and Nenes, 2007).
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Table 3. Estimateda RHD values for different Ds with νi from Table 2 using Eq. (17b) of Table 1.

Ds [µm] 0.05 0.1 0.5 1 flat surfaceb

NaCl(cr) 0.7704 0.7616 0.7545 0.7537 0.7528
(NH4)2SO4(cr) 0.8238 0.8117 0.8021 0.8009 0.7997

a Using Eq. (16b) with the Ke-term from Eqs. (1–2) and the A and B-terms from Eqs. (18–19);
b Reference RHD that have been used to determine the νi values for Eq. (17b) (shown in Table 2).
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Table 4. List of greek symbols.

Greek Symbol Name Unit

νi solute specific coefficient, Eq. (15) (introduced by this work) [−]

νs stoichiometric coefficient of solute (± ion-pair) [−]
γi molal-based coefficients [kg(H2O)] mol−1

µs molality of solute [mol kg−1(H2O)]
µo

s reference molality of 1 mole of solute (considering stoichiometry) [mol kg−1(H2O)]
µsat

s saturation molality of solute [mol kg−1(H2O)]∑
i
µi summation over all solute molalities [mol kg−1(H2O)]

Φs molal or practical osmotic coefficient of solute [−]
Φw molal or practical osmotic coefficient of water [−]
ρs density of solute [kg m−3]
ρw density of water [kg m−3]
σsol surface tension of the solution droplet [J m−2]
χs solute mass fraction, referring to the solute’s dry mass [−]
χsat

s solute mass fraction, referring to the solute’s dry mass at saturation [−]
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Table 5. List of symbols.

Symbol Name Unit

A A-term, Eq. (18) and introduced with Eq. (15) [−]
B B-term, Eq. (19–20) and introduced with Eq. (15) [−]

aw water activity (Raoult-term) [−]
Ds dry droplet diameter of the solute [m]
Dwet wet droplet diameter of the solution [m]
fw rational or mole fraction scale activity coefficient of water [−]
gs hygroscopic mass equivalent (diameter) growth factor [−]
is van’t Hoff factor of solute [−]
Ke surface or Kelvin-term of the solution [−]
ms crystalline mass of solute [kg]
mw aqueous mass of water (solvent) [kg]
Ms molar mass of solute [kg mol−1]
Mw molar mass of water [kg mol−1]
ns moles of solute [mol]∑
i
ns,i summation over all moles of solutes [mol]

nw moles of water [mol]
pw(g) water vapor [Pa]
psat

w(g) vapor pressure at saturation (at given T) [Pa]
RH relative humidity in percent (as used in text) [%]
RH fractional relative humidity (as used in equations) [−]
s saturation ratio [−]
S supersaturation [−]
Sc critical supersaturation in percent [%]
Tcoef dimensionless temperature coefficients for the RHD [−]
To reference temperature in Kelvin [298.15 K]
T temperature in Kelvin [K]
T temperature in degree Celsius [◦C]
ws mass fraction solubility, referring to the solute’s dry mass required for saturation [−]
xs mole fraction of solute [−]
xw mole fraction of water [−]
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Table 6. List of names and abbreviations.

Abbreviation Name
sat superscript, indicator for saturation

(cr) subscript, phase indicator for anhydrous (solid=crystalline=cr) phase

(aq) subscript, phase indicator for aqueous phase

(g) subscript, phase indicator for gas phase

AWC Aerosol liquid Water Content
EQSAM4 EQuilibrium Simplified Aerosol Model, version 4
EMAC ECHAM MESSy Atmospheric Chemistry-climate model
f (RH) f(RH) method (Charlson et al., 1992)
GCMs General Circulation Models
HG Hygroscopic Growth
HGF hygroscopic Growth Factor
H-TDMA Hygroscopicity tandem differential mobility analyzer
IPCC Intergovernmental Panel on Climate Change
log10 decadal logarithm
log natural logarithm
RH Relative Humidity
RHD Relative Humidity of Deliquescence
UNIFAC Universal functional group activity coefficient model (Fredenslund et al., 1975)
ZSR-relation Zdanovskii-Stokes-Robinson mixing rule (Zdanovskii, 1948; Stokes and Robinson, 1966)
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Fig. 1. Hygroscopic mass equivalent (diameter) growth factor (HGF) for pure NaCl(cr) and
(NH4)2SO4(cr) particles with a dry diameter Ds = 1 [µm] for RH ≤ 97 [%], showing the four different
solute molality, µs−models, summarized in Table 1, in comparison to the results of E-AIM.
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Fig. 1. Hygroscopic mass equivalent (diameter) growth factor (HGF) for pure NaCl(cr) and
(NH4)2SO4(cr) particles with a dry diameter Ds =1 [µm] for RH≤97 [%], showing the four differ-
ent solute molality, µs-models, summarized in Table 1, in comparison to the results of E-AIM.
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Fig. 2. Same data as Figure 1 but for RH values within the subsaturated regime, i.e. 97≤ RH≤ 100 [%].
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Fig. 2. Same data as Fig. 1 but for RH values within the subsaturated regime, i.e.
97≤RH≤100 [%].

24851

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/24813/2011/acpd-11-24813-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/24813/2011/acpd-11-24813-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 24813–24855, 2011

Hygroscopic growth
parameterizations

S. Metzger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 1

 1.5

 2

 2.5

 3

 3.5

 70  75  80  85  90  95

H
G
F
 
[
-
]

RH [%]

E-AIM
Eq17b
Kappa

Dp = 0.05 µm

 1

 1.5

 2

 2.5

 3

 3.5

 70  75  80  85  90  95

H
G
F
 
[
-
]

RH [%]

E-AIM
Eq17b
Kappa

Dp = 0.1 µm

 1

 1.5

 2

 2.5

 3

 3.5

 70  75  80  85  90  95

H
G
F
 
[
-
]

RH [%]

E-AIM
Eq17b
Kappa

Dp = 0.5 µm

 1

 1.5

 2

 2.5

 3

 3.5

 70  75  80  85  90  95

H
G
F
 
[
-
]

RH [%]

E-AIM
Eq17b
Kappa

Dp = 1 µm

(NH4)2 SO4

NaCl 

(NH4)2 SO4

NaCl 

(NH4)2 SO4

NaCl 

(NH4)2 SO4

NaCl 

Fig. 3. Same as Fig. 1, but for dry particle diameter Ds = 0.05 (upper left), Ds = 0.1 (upper right),
Ds = 0.5 (lower left) and Ds = 1 [µm] (lower right) comparing Eq. (17b) with E-AIM for RH≤ 97 [%].
For comparison, the results using the κ method of Petters and Kreidenweis (2007) are also included,
obtained by solving Eq. A30 of Rose08 using κ = 1.28 for NaCl(cr) and κ = 0.61 for (NH4)2SO4(cr).
Note that it is not possible to obtain HGF results below to the RHD for NaCl(cr) with the κ−method
using κ = 1.28.

22

Fig. 3. Same as Fig. 1, but for dry particle diameter Ds = 0.05 (upper left), Ds = 0.1 (upper
right), Ds = 0.5 (lower left) and Ds = 1 [µm] (lower right) comparing Eq. (17b) with E-AIM for
RH≤97 [%]. For comparison, the results using the κ method of Petters and Kreidenweis
(2007) are also included, obtained by solving Eq. A30 of Rose08 using κ =1.28 for NaCl(cr) and
κ = 0.61 for (NH4)2SO4(cr). Note that it is not possible to obtain HGF results below to the RHD
for NaCl(cr) with the κ-method using κ =1.28.
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Fig. 4. Same as Figure 3 but for high RH values within the subsaturated regime, i.e. 97≤ RH≤ 100 [%].
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Fig. 4. Same as Fig. 3 but for high RH values within the subsaturated regime, i.e.
97 ≤ RH ≤ 100 [%].
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Fig. 5. Wet particle diameter, Dwet, as a function of supersaturation for pure NaCl and (NH4)2SO4

aerosols with different dry diameters, i.e. Ds = 0.05, Ds = 0.1, Ds = 0.5 and Ds = 1 [µm] as shown in
Figs. 3 and 4. S is defined as S = (s − 1) · 100 [%] and s is obtained from Eq. (1) for both our results
using Eq. (17b) and the reference calculations using the E-AIM data of Rose 08. For comparison, the
results using the κ method of Petters and Kreidenweis (2007) are also included, which are obtained by
solving Eq. A30 of Rose08 using κ = 1.28 for NaCl(cr) and κ = 0.61 for (NH4)2SO4(cr).
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Fig. 5. Wet particle diameter, Dwet, as a function of supersaturation for pure NaCl and
(NH4)2SO4 aerosols with different dry diameters, i.e. Ds = 0.05, Ds = 0.1, Ds = 0.5 and Ds = 1
[µm] as shown in Figs. 3 and 4. S is defined as S = (s−1) ·100 [%] and s is obtained from
Eq. (1) for both our results using Eq. (17b) and the reference calculations using the E-AIM data
of Rose 08. For comparison, the results using the κ method of Petters and Kreidenweis (2007)
are also included, which are obtained by solving Eq. A30 of Rose08 using κ = 1.28 for NaCl(cr)
and κ =0.61 for (NH4)2SO4(cr).
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Fig. 6. Critical supersaturation as a function of dry diameter, Ds, for pure NaCl and (NH4)2SO4 par-
ticles with different diameters, i.e. Ds = 0.005, Ds = 0.01, Ds = 0.05, Ds = 0.1 and Ds = 0.5 [µm],
complementing Fig. 5. Note, the black solid lines are artificial help lines; the lower line and points
correspond to NaCl, the upper ones to (NH4)2SO4.
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Fig. 6. Critical supersaturation as a function of dry diameter, Ds, for pure NaCl and (NH4)2SO4
particles with different diameters, i.e. Ds = 0.005, Ds = 0.01, Ds = 0.05, Ds = 0.1 and Ds = 0.5
[µm], complementing Fig. 5. Note, the black solid lines are artificial help lines; the lower line
and points correspond to NaCl, the upper ones to (NH4)2SO4.
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