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Abstract

This paper presents a novel approach to investigate cloud-aerosol interactions by cou-
pling a Markov Chain Monte Carlo (MCMC) algorithm to a pseudo-adiabatic cloud par-
cel model. Despite the number of numerical cloud-aerosol sensitivity studies previ-
ously conducted few have used statistical analysis tools to investigate the sensitivity
of a cloud model to input aerosol physiochemical parameters. Using synthetic data
as observed values of cloud droplet number concentration (CDNC) distribution, this in-
verse modelling framework is shown to successfully converge to the correct calibration
parameters.

The employed analysis method provides a new, integrative framework to evaluate
the sensitivity of the derived CDNC distribution to the input parameters describing the
lognormal properties of the accumulation mode and the particle chemistry. To a large
extent, results from prior studies are confirmed, but the present study also provides
some additional insightful findings. There is a clear transition from very clean marine
Arctic conditions where the aerosol parameters representing the mean radius and geo-
metric standard deviation of the accumulation mode are found to be most important for
determining the CDNC distribution to very polluted continental environments (aerosol
concentration in the accumulation mode >1000 cm's) where particle chemistry is more
important than both number concentration and size of the accumulation mode.

The competition and compensation between the cloud model input parameters il-
lustrate that if the soluble mass fraction is reduced, both the number of particles and
geometric standard deviation must increase and the mean radius of the accumulation
mode must increase in order to achieve the same CDNC distribution.

For more polluted aerosol conditions, with a reduction in soluble mass fraction the
parameter correlation becomes weaker and more non-linear over the range of possible
solutions (indicative of the sensitivity). This indicates that for the cloud parcel model
used herein, the relative importance of the soluble mass fraction appears to decrease
if the number or geometric standard deviation of the accumulation mode is increased.
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This study demonstrates that inverse modelling provides a flexible, transparent and
integrative method for efficiently exploring cloud-aerosol interactions efficiently with re-
spect to parameter sensitivity and correlation.

1 Introduction

Clouds are recognised as one of the most important modulators of radiative processes
in the atmosphere (Platnick and Twomey, 1994). Cloud reflectance is partially depen-
dent on droplet size, which in turn is linked to the concentration of cloud condensation
nuclei (CCN). The net effect of an increase in CCN is to increase cloud albedo (at fixed
cloud liquid water path) generally resulting in a radiative cooling of the surface. In order
to assess the impact of aerosols on clouds in the climate system, it is crucial to un-
derstand the underlying physical processes governing cloud-aerosol interactions. The
ability of a particle to act as a CCN is a function of the size of the particle, its compo-
sition and mixing state, and the supersaturation of the air (Fitzgerald, 1974; Hegg and
Larson, 1990; Laaksonen et al., 1998; Feingold, 2003; Conant et al., 2004; Kanaki-
dou et al., 2005; Quinn et al., 2007). Untangling the relative importance of size and
composition for the cloud nucleating ability of aerosol particles is at present a major
challenge facing the cloud-aerosol modelling community, and this topic is at the core
of the aerosol indirect effect (Dusek et al., 2006; McFiggans et al., 2006; Andreae and
Rosenfeld, 2008; Stevens and Feingold, 2009).

Dusek et al. (2006) showed that particle size accounts for 84 to 96 % of observed
variability in CCN concentrations. They hypothesised that aerosol-CCN relationships
could be simplified by parameterising the effects of chemical composition on CCN ac-
tivation for certain aerosol types. Modelling studies by Feingold (2003) and Ervens et
al. (2005) also showed that for an internally-mixed aerosol, composition has a relatively
small effect on droplet activation, except perhaps under conditions of both high pollution
levels and small updraft velocities. However, Hudson (2007) presented a more exten-
sive set of measurements that showed significantly more variability in the relationship
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between dry particle size and critical supersaturation by including cleaner air masses
in the analysis. Other studies have also shown that under certain combinations of me-
teorological/aerosol conditions the effect of chemistry may be relatively more important
(e.g. Lance et al., 2004; Rissman et al., 2004; Twohy et al., 2008). In light of this, it
is necessary to scrutinize and evaluate model parameters over a wide range of input
and output conditions by efficiently searching the entire parameter space of relevant
properties governing aerosol activation and growth.

The difficulty in untangling relationships among aerosols, clouds and precipitation
has been attributed to the inadequacy of existing tools and methodologies (Stevens
and Feingold, 2009). Numerous cloud-aerosol modeling sensitivity studies have been
conducted (e.g. Feingold, 2003; Rissman et al., 2004 and references therein; Chuang,
2006), however, few have used statistical analysis tools to investigate the sensitivity of
a cloud model to input aerosol parameters. There are two kinds of sensitivity analysis:
local and global. The former studies input parameter variations across ranges that are
believed to contain the appropriate values, while global sensitivity analysis considers
input parameter changes over the entire multi-dimensional parameter domain (Pérez
et al., 2006). When the local sensitivity to a set of model input parameters is tested,
models are often run iteratively, perturbing one set of selected parameters at a time
thus testing the sensitivity to these parameters individually. This approach requires
prior knowledge as to how best to perturb each input parameter as the number of pos-
sible model permutations performed is usually limited. The selection of these values
becomes more difficult if a parameter is non-measurable or if only limited or unreliable
measurements exist.

Methods which explore the whole parameter space on the other hand have distinct
advantages. Global sensitivity analysis generally leads to different, but more reliable
results because parameter sensitivities in non-linear models of complex systems typ-
ically vary considerably over the feasible space of solutions. Secondly, if a model
exhibits highly non-linear parameter interactions it is possible to account for parameter
compensation by simultaneously varying parameters.
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Few studies have used global sensitivity analysis to study cloud-aerosol interactions.
One example is the study of Anttila and Kerminen (2007), which used the probabilistic
collocation method (PCM) to test the sensitivity of cloud microphysics to Aitken mode
particles (50—100 nm diameters). One of the main conclusions of their work is that pa-
rameters describing the aerosol number size distribution are generally more important
than those describing chemical composition corroborating the results of e.g. Dusek et
al. (2006), unless the particle surface tension or mass accommodation coefficient of
water is strongly reduced due to the presence of surface-active organics. Despite the
progress made, a polynomial approximation can never perfectly replace the original
cloud-parcel model. Moreover, the parameters used in the polynomial function do not
represent system properties, but are just fitting coefficients.

An alternative approach to global sensitivity analysis of cloud-aerosol interactions
is to embrace an inverse modelling approach and invoke posterior probability density
functions of model parameters using Markov Chain Monte Carlo simulation (MCMC).
Such methods not only provide an estimate of the best parameter values, but also a
sample set of the underlying (posterior) uncertainty. This distribution contains impor-
tant information about parameter sensitivity, and correlation (interaction), and can be
used to produce confidence intervals on the model predictions. The parameter sensitiv-
ity determined for the full dimensional parameter set is complimentary to the sensitivity
derived from 2-D response surface analyses (Partridge et al., 2011, herein denoted
P11).

MCMC approaches have found widespread application and use in a range of different
disciplines to estimate posterior parameter distributions (Voutilainen and Kaipo, 2005;
San Martini et al., 2006; Tomassini et al., 2007; Laine and Tamminen, 2008; Vrugt et
al., 2008a; Wraith et al., 2009; Bikowski et al., 2010; Jarvinen et al., 2010; Loridan et
al., 2010; Vuollekoski et al., 2010).

Unfortunately, MCMC simulation requires significant computational resources and in
addition, standard MCMC approaches are not particularly efficient, and typically require
many thousands of model evaluations to find the posterior parameter distribution, even
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for relatively simple problems. Therefore, it is paramount to test the performance and
applicability of sophisticated state of the art MCMC algorithms for investigating cloud-
aerosol parameter interactions.

P11 introduced an automatic parameter estimation framework to solve the cloud-
aerosol inverse problem using the shuffled Complex Evolution (SCE-UA) global optimi-
sation algorithm (Duan et al., 1992) in conjunction with a pseudo-adiabatic cloud parcel
model (Roelofs and Jongen, 2004). Synthetic data was used to illustrate the methodol-
ogy, and conclusive convergence to the appropriate parameters used to generate the
synthetic data was demonstrated because we used artificially created data their true
values were known a-priori. In P11 it was shown that without holding the lognormal
parameters describing the Aitken mode, surface tension and updraft fixed at their true
values it would be difficult to find the minimum of the objective function (OF). In par-
ticular, it was illustrated that the cloud-aerosol inverse problem is particularly difficult
to solve because it is highly nonlinear, and may contain numerous local minima both
within the immediate vicinity of the true solution, and far away. Although the SCE-UA al-
gorithm was shown to successfully locate the optimum parameter values for the soluble
mass fraction and lognormal aerosol parameters describing the accumulation mode, it
does not provide an estimate of the underlying parameter uncertainty, associated with
model nonlinearity, measurement and model error.

Explicit treatment of parameter uncertainty is possible if we adopt a Bayesian frame-
work. In this study, we therefore pose the model calibration problem in a Bayesian
framework, and use the DREAM adaptive MCMC sampling scheme (Vrugt et al.,
2008b, 2009a) to approximate the posterior parameter distribution. This distribution
contains the best parameter values found with SCE-UA, but also summarizes the as-
sociated parameter uncertainty. The method is used to compare the sensitivity of the
pseudo adiabatic cloud parcel model to different input key parameters. The specific
aims are as follows:
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— Demonstrate that that DREAM, a current state of-the-art MCMC method, suc-
cessfully solves the cloud-aerosol inverse problem, while simultaneously also pro-
viding estimates of parameter uncertainty and correlation.

— To demonstrate the applicability and power of MCMC to investigate cloud-aerosol
interactions. We are particularly concerned with a global sensitivity analysis of
the parameters describing the aerosol physiochemical properties.

— Pinpoint which are the dominant parameters controlling the activation of cloud
droplets in different aerosol environments; from clean marine Arctic conditions to
polluted continental conditions.

To the authors’ knowledge this study is the first to use an MCMC framework with
a pseudo-adiabatic cloud parcel model to summarize cloud-aerosol parameter and
model uncertainty, and infer probability distributions of the determining factors that con-
trol the growth of droplets for different atmospheric conditions.

This paper will be presented in the following manner. First we will provide a brief
introduction to inverse modelling using Bayesian inference. This will also include a de-
tailed description of MCMC simulations using the DREAM algorithm, and a discussion
about the choice of the OF.

This is followed by a short overview of the most important cloud — aerosol sensitivity
tests that will be performed, followed by stepwise summary of the results. This will
highlight the sensitivity of the cloud droplet number concentration (CDNC) distribution
to the different calibration parameters followed by a section with the main findings and
conclusions of the work considered herein.
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2 Method
2.1 Bayesian inference

To start we provide a short summary of Bayesian inference. For a comprehensive re-
view see e.g. Tamminen and Kyrola, 2001; Jackson et al., 2004; Villagran et al., 2008.
Bayesian inference represents a mathematically rigorous approach to parameter esti-
mation. This statistical method treats the model parameters as random variables with a
joint (but yet unknown) posterior probability distribution. This distribution is the product
of the prior distribution and the likelihood function and conveys all desired informa-
tion about the current knowledge of the parameters, and implicitly carries information
about their best values (also called maximum likelihood), underlying uncertainty, and
possible multi-dimensional correlation. The posterior probability density function of the
parameters, hereafter referred to as P(6|Y') can be written as follows using Bayes law:

p(OIY) = p(6) x L(E]Y) (1)

where P(0|Y) denotes the prior distribution of the parameters, and L(6|Y) signifies the
likelihood (objective) function. This function essentially measures the distance between
the model predictions and corresponding observations. Many different formulations
of this function are available in the (Bayesian) literature. Schoups and Vrugt (2009)
recently introduced a generalized likelihood function that encapsulates most of these
different formulations, and amongst others is especially developed to explicitly treat
autocorrelation, heteroscedasticity, and non-Gaussianity of the residuals.

Once the posterior parameter distribution is known, model predictive uncertainty can
be assessed by running samples of the posterior parameter distribution through the
respective model, and inspecting the resulting range of the model predictions.

The prior distribution defines the knowledge about the parameters that is available
before any data is collected or processed. This distribution typically constitutes in-
formation about the system of interest, and ensures that the parameter estimates at
least partially adhere to prior knowledge. The likelihood function provides a diagnostic
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measure of how well the model fits the data. The highest likelihood is generally found
for those parameter values that provide the least squares fit to the experimental data.
Additional observations (new evidence) are easily processed in this framework and
will result in changes in the posterior parameter distribution. Hence, when confronted
with new data, the likelihood function (and prior distribution) will likely change and alter
parameter and predictive uncertainty.

In the past decade, much progress has been made in the development of efficient
sampling methods that approximate the posterior distribution within a limited number of
model evaluations. The Markov Chain Monte Carlo (MCMC) scheme was introduced
by Metropolis et al. (1953), the basis of which is a Markov chain, which generates a ran-
dom walk through the search space and successively visits solutions stemming from a
fixed probability distribution (Vrugt et al., 2009b). This sampling procedure operates in
two steps: (1) the proposal step: A candidate value is sampled from a “proposal distri-
bution”. (2) The acceptance/rejectance step: the candidate value is either accepted or
rejected using the Metropolis acceptance probability (Jarvinen et al., 2010). MCMC is
especially designed to generate samples from the posterior distribution. This distribu-
tion contains important information about parameter sensitivity (width of the posterior
distribution for each parameter), and correlation.

The original Metropolis MCMC scheme was extended for posterior inference in a
Bayesian framework by Gelfand and Smith (1990), and has subsequently enjoyed
widespread use in many fields of study (Vrugt et al., 2009a and references therein).
MCMC algorithms are typically used to summarize parameter and model output un-
certainty, without recourse to studying parameter sensitivities. A few studies exist that
have used MCMC simulation to study “global’” parameter sensitivities (Benke et al.,
2008; Kanso et al., 2006; Vrugt et al., 2006, 2008b), yet such contributions are rather
novel. This is rather remarkable as the posterior distribution directly conveys informa-
tion about parameter sensitivity.

Existing theory and experiments prove the convergence of well constructed MCMC
schemes to the appropriate limiting distribution under a variety of different conditions.
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However, in practice this convergence is observed to be frustratingly slow, the effi-
ciency being limited by the scale/orientation of the proposal distribution (Vrugt et al.,
2009a). Slow convergence towards the correct target distribution is frequently caused
by an inappropriate selection of the proposal distribution used to generate trial moves
in the Markov Chain. This indicates the need for preliminary test runs or arduous
hand tuning of the proposal distribution. Naturally this is a particular hindrance for the
successful application of Bayesian inference for models that are CPU intensive, neces-
sitating the use of more sophisticated and efficient MCMC methods which improve on
the efficiency of older methods by employing adaptive techniques that “learn” during
the sampling process. This allows the continuous adaptation of the shape/size of the
proposal distribution such that the sampler more rapidly evolves towards the appropri-
ate limiting distribution (Vrugt et al., 2009a). Convergence can also be hindered for
inverse problems that contain numerous local minima in the posterior parameter space
when using single chain MCMC methods. Gelman and Rubin (1992) advocate the use
of MCMC algorithms that run multiple different Markov chains (trajectories) in parallel.
This not only reduces the chance of getting stuck in local solutions, it also enables the
use of a powerful array of statistical measures to diagnose convergence to a limiting
distribution. For instance, a simple comparison of the within and in-between variances
of the different chains will help judge whether the same distribution is being sampled
by the different parallel chains.

Therefore, for the efficient investigation the cloud-aerosol inverse problem we employ
a state of the art self adaptive DiffeRential Evolution Adaptive Metropolis algorithm
(DREAM) (Vrugt et al., 2009a) in this study.

2.2 DiffeRential Evolution Adaptive Metropolis algorithm: DREAM

The DREAM sampling scheme is an adaptation of the Shuffled Complex Evolution
Metropolis (SCEM-UA) global optimisation algorithm (Vrugt et al., 2003) but main-
tains detailed balance and ergodicity. The DREAM algorithm uses differential evolu-
tion as a genetic algorithm for population evolution with a Metropolis selection rule to
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decide whether to accept the candidate points (offspring) or not. In DREAM, N different
Markov chains are run in parallel, and jumps in each chain are generated using a fixed
multiple of the difference of the states of one or more randomly chosen pairs of chains.
The scale and orientation of this discrete proposal distribution is continuously changing
en route to the posterior target distribution. The samples generated after convergence
can be used to summarize the posterior distribution, and communicate parameter and
model predictive uncertainty. The number of steps in each chain required to reach sta-
tionarity (convergence) is commonly called “burn-in”, and these samples are removed
from the analysis (Dekker et al., 2011).

Synthetic and real-world case studies have shown that this new approach elicits good
efficiencies for complex, highly nonlinear, and multimodal target distributions (Vrugt et
al., 2009a) typical for the parameters involved in cloud-aerosol interactions (P11). It is
therefore well suited to the purpose of this investigation.

2.3 Pseudo-adiabatic cloud parcel model

Adiabatic cloud parcel models have been used successfully with field measurements
to estimate the impact of aerosol size/composition for liquid clouds (Ayers and Larson,
1990; Nenes et al., 2002; Hsieh et al., 2009). To complete an MCMC simulation for
a single cloud case with just a few calibration parameters, many thousands of cloud
model evaluations are required to explore the posterior distribution. The computational
requirements of MCMC could therefore hinder the use of CPU intensive models. In this
paper, we utilize a computationally efficient pseudo-adiabatic cloud parcel model that
provides a reasonable trade-off between processes accounted for, and computational
speed. This provides us with flexibility to run different MCMC trials with different data
sets, and calibration parameters. The chosen cloud parcel model (Roelofs and Jongen,
2004) simulates the pseudo-adiabatic ascent of an air parcel, condensation and evap-
oration of water vapor on aerosols, particle activation, condensational growth, collision
and coalescence between droplets, and aqueous phase sulfur chemistry. The reader
is referred to P11 for a description of the model setup and to Roelofs and Jongen, 2004
for more information on the parcel model.
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2.4 Calibration parameters

To test a wide range of input aerosol size distributions, data from four distinctively
different aerosol environments were used as outlined in P11. These are:

1. Marine Arctic: summertime measurements performed at Ny-AIesund, Svalbard
(P. Tunved, personal communication, 2011).

2. Marine general: global measurements (Heintzenberg et al., 2000).

3. Rural continental: measurements from the well-established SMEAR Il station at
Hyytiala (Tunved et al., 2005).

4. Polluted continental: summer continental air mass measurements from Melpitz
station (Birmili et al., 2001).

The base value for all 10 input parameters of the pseudo-adiabatic cloud parcel model
and the associated lower and upper limits for the four parameters to be optimised can
be found in Table 1 for marine Arctic and marine general conditions; in Table 2 for ru-
ral continental and polluted continental environments. For each aerosol environment
the base value, and lower/upper bounds for the lognormal parameters describing the
accumulation mode were obtained using the statistics from P. Tunved, personal com-
munication, 2011; Heintzenberg et al., 2000; Tunved et al., 2005; and Birmili et al.,
2001 as a guide. The aerosol size distributions for marine Arctic, and marine general
environments used to generate the synthetic CDNC distribution data can be found in
P11. The base soluble mass fraction and upper and lower limits are selected based
on values from the literature (P11). The only difference to P11 is that we constrain the
prior limits for each environment so that they are more physically realistic. It is impor-
tant that the prior limits are representative of the real atmosphere or else subsequently
derived sensitivity may be misleading.
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Synthetic calibration data

To benchmark our MCMC algorithm, it is useful to start the inverse modelling analysis
with numerically generated cloud data (i.e. “synthetic” calibration data) simulated using
known values of the model parameters. This is important to ensure that the subsequent
sensitivity analysis is not contaminated by model error or parameter non-identifiability

The choice of the calibration data set essentially determines the posterior distribution
of the parameters. More information available in the calibration data allows for more
parameters to be constrained. On the contrary, noisy data with poor sensitivity to the
individual parameters will result in uncertainty in the posterior distribution. Hence, in
such situations it will be difficult to reduce parameter uncertainty, and appropriately
calibrate the pseudo-adiabatic cloud parcel model. Thus, the information content of
the calibration data directly determines the identifiability, uncertainty, and correlation of
the pseudo-adiabatic cloud parcel parameters (P11).

The main thrust of this paper is to assess the impact of the calibration parameters on
the number of activated cloud droplets and we therefore remove the interstitial aerosols
from our calibration data set. This droplet size distribution is output at 100 m above
cloud base as the calibration target.

To investigate the influence of environmental conditions on the posterior distribution
and sensitivity of the governing pseudo-adiabatic cloud parcel model parameters we
synthetically generate CDNC distributions using input from four different aerosol envi-
ronments (cf. Sect. 2.4). The resulting CDNC distributions are depicted in Fig. 1.

2.5 Coupling pseudo-adiabatic cloud parcel model to MCMC algorithm

Figure 2 provides a schematic overview of the cloud-parcel parameter estimation prob-
lem using MCMC simulation with DREAM. The plot is essentially divided in two main
parts. The top part corresponds to “the real-world” (in our case represented by synthet-
ically generated data). The environmental conditions (denoted with “true input”) act on
the “real cloud” to produce a certain particle size distribution (dotted blue line, Fig. 2).
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The terminology “true” and “observed” response is used to differentiate between re-
ality and respective observations of reality that are prone to measurement error and
uncertainty. Our framework thus explicitly recognizes the role of measurement error.
The DREAM algorithm is now used to find those values of the pseudo-adiabatic cloud
parcel parameters that provide the best possible fit to the measured droplet size dis-
tribution. This results in an ensemble of parameter values that define the posterior
distribution.

Mathematically, the model calibration problem can be formulated as follows: Let
Yqb x,0)={yy.....y,} denote predictions of the model ® with observed input variables
X and model parameters 6. Let, Y ={y,...,y,} represent n observations of the droplet
size distribution. The difference between the model-predicted and measured droplet
size distribution can be represented by the residual vector E as:

E(0)=G(V)-G(Y)={G(71)-G(1)....G(7x) = G(¥n)} = {€1(6).....€,(6)} ()

where G(.) allows for various monotonic (such as logarithmic) transformations of the
output. The inverse modeling approach now relies on the estimation of the set of input
parameters @ such that the measure E, commonly called the objective function (OF),
is in some sense forced to be as close to zero as possible.

We run the DREAM algorithm with the parameter bounds listed in Table 1 and with
10 different Markov chains and 75 000 cloud parcel model evaluations. Our experience
with other parameter estimation problems of similar dimension suggests that these set-
tings are appropriate. Such a setup completes an MCMC simulation in approximately
two days using a standard desktop computer.
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2.6 Defining the Objective Function (OF)

The most popular OF is the simple least squares (SLS) or maximum likelihood estima-
tor. We follow this assumption and use the following definition of the OF:

OF = > wly; - ®(X;.0)F = X wie;(6)° (3)

i=1 i=1

The 8 vector consists of calibration parameters, for the cloud-aerosol inverse problem
these are the input lognormal parameters describing the accumulation mode and sol-
uble mass fraction, whereas the w; denote weights associated with a particular mea-
surement point. In this study in which we use a synthetically generated calibration
dataset we assume the weights of the individual data points in Eq. (3) are similar and
equal to one.

The identifiability of calibration parameters is highly dependent on the definition of
the OF. Adiabatic cloud parcel models that employ a moving centre (MvCr) framework
are particularly problematic for inverse modelling techniques as both the droplet radius
and number are simultaneously changing in each run (P11).

For comparisons between different simulations to be meaningful, it is essential to
construct a calibration data set that is constant with respect to the droplet size grid
regardless of the prescribed calibration input parameters. If the OF is defined using
only the raw MvCr output of the dN/dlogD, function, without any radius information,
then it is in theory possible to achieve exactly the same function shape for different
parameter combinations, i.e. the calibration parameters are non-identifiable.

To avoid this, a direct interpolation of the droplet size distributions (Fig. 1) is per-
formed so that the corresponding model predictions of the dN/dIogDp size distribu-

tion function, ¥ = {J,,....y,} are interpolated to the size grid of the calibration data,
Y ={y;,....y,}- Unfortunately this interpolation (termed “interpolation method” herein)
results in poorly defined and chaotic response surfaces (P11) which result in non-
identifiability problems. Tests show using the SCE-UA algorithm (P11) that for the
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current definition of the calibration data we are restricted to studying only four pa-
rameters or the algorithm struggles to locate the calibration parameter values used to
generate our calibration data for the perfect case (no measurement error).

In reality neither the adiabatic cloud model nor the measurements are perfect. There-
fore, in order to investigate parameter sensitivity when using a synthetically generated
calibration data set, it is necessary to corrupt the calibration data with a “measure-
ment error’, (Koda and Seinfeld, 1978). This is done in the following manner: First an
error fraction is defined as 10 % of the calibration data, and thus a sigma vector, o,
representing a synthetic variability is calculated as:

6=010.Y, (4)
where the error is then defined from this ¢ using the Matlab normrnd function as:
Y arror = NOrmrnd(u, o, Ny) (5)

where N\, denotes the number of observations (cloud model size bin resolution) used
to calibrate the cloud-parcel model. The normrnd function generates random numbers
from the normal distribution with mean parameter 1 = 0 and standard deviation ¢. To
obtain our corrupted calibration data, the calibration data vector is corrupted with this
measurement error vector by.

Y=Y+Y 0 (6)

The simulation is then re-run to obtain the parameter sensitivity from the posterior
distribution. This is calculated by allowing an 80 % burn in (cf. Sect. 2.2) of the MCMC
simulation (i.e. we only take the last 20 % of the simulations at which point the algorithm
has reached a stationary posterior distribution).

The algorithm was run first with no measurement error to be sure of convergence
and then again with the calibration data corrupted with a synthetic measurement error
(Eqg. 4-6) to obtain parameter uncertainty.
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3 Results
3.1 Performed sensitivity simulations and analysis

In this first study using DREAM we limit ourselves to investigating four parameters when
using the “Interpolation method” for the OF definition. Thus, simulations and analysis
will be presented for the calibration parameters deemed to be of most interest. Those
are the number concentration, mean radius, and geometric standard deviation of the
accumulation mode as well as the soluble mass fraction (cf. Tables 1-2). The analysis
is performed for four aerosol environments (Sect. 2.4)

In the following, we will:

1. Show that MCMC simulation with DREAM converges nicely to the known param-
eter values (in the case of synthetic data) used to create the synthetic (artificial)
data for marine general and rural continental aerosol environments.

2. Perform an initial sensitivity analysis of the calibration input parameters for marine
general and rural continental environments.

3. Examine the posterior parameter distributions for all four aerosol environments in
order to present a more detailed sensitivity analysis whilst concurrently revealing
the effects of parameter compensation within the adiabatic cloud parcel model.

4. Repeat step 3 for a “low” and “high” updraft velocity to study the effect of updraft
velocity on the derived sensitivity.

3.2 Performance of MCMC algorithm

In order to make sure that the MCMC algorithm can successfully find the true optimal
solution (RMSE = 0) for every calibration parameter for the “perfect case” (no measure-
ment error) simulations were initially performed for marine general and rural continental
conditions using Eq. (3) for the calculation of the OF. The results are shown in Fig. 3
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and Fig. 4 for marine general and rural continental data, respectively. The success of
the MCMC algorithm in reaching the true synthetic calibration input parameter values
is illustrated by the convergence of the Markov Chains (red lines) during the length of
the simulation towards the true values (green dotted line). It is clear that when the size
distribution measurements are not corrupted with a synthetic measurement error the
single true optimal solution for every parameter is successfully located in fewer than
40 000 function evaluations.

The results from subsequent simulations in which we corrupted our calibration data
with a 10 % synthetic measurement error were overlaid for each aerosol environment
onto Figs. 3 and 4 respectively with blue dots so that the sensitivity bounds with re-
spect to the true optimal solution are visible. The range on the Y-axis of each subplot
in Figs. 3 and 4 corresponds to the prior range defined in Tables 1, 2 for marine general
and rural continental conditions within which the algorithm is allowed to search. This
means that the range of the posterior distribution (last 15000 simulations) for a spe-
cific parameter in relation to the prior distribution (seen at iteration = 0) provides key
information as to how sensitive the particle size distribution is to changes in a param-
eter. Since all input parameters are simultaneously optimised within this framework,
a parameter whose posterior distribution has a small spread about the true solution is
of high importance; as there are few combinations for which it can be defined in the
model input and still get a measurement output which is close to the calibration data.

In order to visualise the convergence of the individual Markov Chains to the optimal
solution we illustrate the evolution of the OF during the MCMC simulation in Fig. 5 for
one parameter, the soluble mass fraction, for marine general conditions. This param-
eter creates some difficulties for the search algorithm as the convergence is not rapid.
This can be explained by the fact that it is possible to achieve the same closeness of
fit between the generated data set and the calibration data set (RMSE) for different
values of the soluble mass fraction. It is hypothesised that this is attributed to param-
eter compensation within the cloud parcel model which will be discussed further in the
following subsections.
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3.3 Sensitivity analysis

3.3.1 Initial results from optimisation procedure

The parameter sensitivity is explored by corrupting our calibration data set with a syn-
thetic measurement error (Egs. 3-5).

Based on the width of the posterior distribution (cf. Sect. 3.2) it is clear from Figs. 3a
and 4a that for both aerosol environments the key calibration parameter for describing
the CDNC distribution is the number of particles in the accumulation mode, as its pos-
terior range is the narrowest out of all calibration parameters relative to its prior range.
Conversely for marine general conditions these figures indicate that the least impor-
tant calibration parameter for our pseudo-adiabatic cloud parcel model is the soluble
mass fraction. For rural continental conditions the difference between the widths of the
posterior distributions is less clear.

The CDNC distribution associated with this posterior distribution is shown in Fig. 6
for all four aerosol environments. It is clear that the solutions stored within the posterior
distribution bound the calibration data set for all aerosol conditions.

In order to confirm these preliminary indications and see the true relative sensitiv-
ity between different calibration parameters we normalise the posterior ranges by the
prior ranges for each individual parameter. The last 20 % of the samples generated
with DREAM are considered, thus a burn-in of 80 %. Burn-in is required to give the
MCMC sampler time to converge to the posterior distribution. For our simulations this
results in the last 15 000 parameter combinations stored in the individual chains. These
parameter values correspond to the stationary distribution of the calibration parameters
and can be used to define parameter and predictive sensitivity.

3.3.2 Parameter sensitivity

We will now explore the relative sensitivity between the parameters by investigating
the posterior distribution for each of the four calibration parameters for each of the four

20070

Jadedq uoissnosiq | Jadeq uoissnosiq |  Jadeq uoissnosig | Jaded uoissnosig

ACPD
11, 20051-20105, 2011

Towards inverse
modeling of
cloud-aerosol
interactions — Part 2

D. G. Partridge et al.

: “““ “““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/20051/2011/acpd-11-20051-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/20051/2011/acpd-11-20051-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

aerosol environments (Fig. 7). A larger normalised posterior range represents smaller
sensitivity to a calibration parameter. It should be noted here that our normalised
ranges used to infer parameter sensitivity are dependent on the prior range. It is for this
reason that the prior ranges have to represent physically reasonable lower and upper
limits for each parameter (cf. Sect. 2.4).

The results for marine general aerosol conditions (Fig. 7b) confirm those displayed
in Fig. 3, i.e., for the pseudo-adiabatic cloud parcel model used in this study the particle
concentration of the accumulation mode is the most important parameter for the acti-
vation of cloud droplets. The geometric standard deviation of the accumulation mode
and soluble mass fraction are least important. For marine Arctic conditions (Fig. 7a)
the results are similar; however, the geometric standard deviation is of larger impor-
tance. This low sensitivity to chemistry in clean CCN limited environments is intuitive;
it does not matter how soluble a particle is if it does not exist. Thus, the number of
particles must be, up to a certain threshold the limiting factor in any environment for
the cloud droplet nucleating ability of an aerosol population. This will be especially true
for environments in which the number of available cloud condensation nuclei (CCN) is
limited (P11). This is also consistent with current observations and theory for cleaner
environments (e.g. Dusek et al., 2006).

For rural continental conditions, the overall picture is the same, the number of aerosol
particles in the accumulation mode is still the key parameter and the soluble mass
fraction is the least important calibration parameter (Fig. 7c). However, now the solu-
ble mass fraction is relatively more important. The geometric standard deviation is of
equal importance as the mean radius, and there is a dramatic increase in the accu-
mulation mode number normalised posterior range compared to marine general condi-
tions. Moving to a yet further polluted environment (Fig. 7d) we see a shift in the domi-
nant parameter for describing droplet activation to the parameter representing particle
chemistry, with the difference between sensitivity of the lognormal aerosol parame-
ters describing the accumulation mode decreasing further. The results are consistent
with current theory for conditions in which the environment is polluted and the updraft
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is relatively low, (0.3ms‘1). For more polluted aerosol conditions with a low updraft
velocity the higher concentration of larger particles results in the activation of larger
droplets, followed by a suppression of peak supersaturation which tends to reduce the
total number of droplets activated. This allows for the soluble mass fraction to be rel-
atively more important, in agreement with previous studies (Feingold, 2003; Lance et
al., 2004; Ervens et al., 2005; Quinn et al., 2008). It is expected at higher updraft
velocities a greater fraction of the larger aerosol would be able to achieve the critical
supersaturation required for activation (regardless of composition), thereby decreasing
the relative sensitivity of the aerosol composition compared to aerosol size (Antilla and
Kerminen, 2007).

The evolution of the calibration parameter sensitivity from very clean (marine Arctic)
to more polluted conditions is in keeping with our two dimensional response surface
analysis of the sensitivity between number and chemistry (P11). This is caused by the
shift from CCN limited to CCN saturated environments and the associated competition
for water vapour. Also similar to P11 for which the updraft was relatively low, there is a
clear tipping point in the calibration parameter sensitivity between marine general and
rural continental conditions (Fig. 7).

For low updraft velocities (0.3ms'1) the chemistry appears to be of similar impor-
tance to the accumulation mode mean radius for rural continental conditions, and more
important than the accumulation mode mean radius for polluted continental conditions.
This result highlights the importance of accurately representing the chemical compo-
sition of aerosols. For rural continental conditions the geometric standard deviation of
the accumulation mode is only slightly less important for the cloud nucleating ability
of particles than the mean radius. This is in agreement with the study of Antilla and
Kerminen (2007).
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3.4 Distribution of parameter values

Table 3 lists values of the derived posterior mean, minimum, maximum, coefficient of
variation (CV) and maximum likelihood (ML) value of the four input parameters under
investigation for all four aerosol environments. The ML value is the value associated
with a calibration parameter that gave the best fit to the CDNC distribution stored in the
calibration data. For all aerosol environments the soluble mass fraction has the highest
coefficient of variation, showing the parameter to have the highest uncertainty within
the posterior parameter distribution. Overall the minimum and maximum ranges after
optimisation are generally more constrained for the two clean environments compared
to the two more polluted conditions. In addition the ML of the soluble mass fraction for
polluted continental conditions is 0.41, considerably lower than the true value of 0.60.
This indicates that for polluted regions, more variability in the parameters describing
the activation of cloud droplets is possible, whilst still achieving approximately the same
CDNC distribution.

The ML value is very close to the true values of the calibration parameter for marine
general and rural continental conditions (Table 3; Fig. 7b). For marine Arctic and ru-
ral conditions the ML value departs considerably from the true values for the soluble
mass fraction (0.36 compared to 0.60). For polluted conditions the ML for the number
concentration in the accumulation mode is 1457 cm'3, ~250cm™3 higher than the true
value. The reason for this departure from the true value can be partially ascribed to
the magnitude of the corrupted calibration data. The sigma values calculated using
a 10% error in Sect. 2.6 were generally positive, meaning that the corrupted droplet
size distribution on average had a higher peak droplet number than the calibration data
set. Therefore, it is logical that the MCMC algorithm tends towards a ML accumulation
mode number concentration that is higher than the true value for this parameter. This
is more noticeable for CCN saturated conditions for which there is a reduced sensitivity
(higher uncertainty) to the particle concentration as more particles remain unactivated,
staying within the interstitial size regime.
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3.5 Parameter compensation and correlation

To explore these statistics further we derive the marginal distributions for each aerosol
environment and present the results in Fig. 8. These histograms are derived by plotting
the DREAM generated samples of each individual parameter. A marginal distribution
that extends over the entire prior ranges is indicative for poor parameter sensitivity. On
the contrary, if the histogram is well defined with narrow ranges, then this parameter
is well defined, and sensitive to the calibration data. The marginal density is the prob-
ability distribution of the variables contained in our four dimensional inverse problem
and provides us with counts of the calibration parameters values over their posterior
distribution range, thus providing the shape of the posterior distribution. The scale and
orientation of the inferred parameter distributions provide important diagnostic informa-
tion about the structure of the adiabatic cloud parcel model under investigation.

For polluted continental aerosol conditions (subplots M-P) the histograms shows sig-
nificant parameter variation across the posterior range indicating that there is a great
range of possible aerosol physiochemical properties that can be considered optimal for
the given environmental conditions. This results in a decrease in the relative impor-
tance of the aerosol parameters describing the accumulation mode distribution. The
spread of the posterior distribution around the “correct” modal value for each calibra-
tion parameter is generally more constrained for cleaner aerosol conditions, especially
for the lognormal aerosol parameters describing the accumulation mode. This indi-
cates that for clean environments these parameters are particularly important for the
accurate prediction of the droplet size distribution.

The shape of the marginal density distribution for each aerosol environment except
marine Arctic indicates the presence of strong correlations between the four calibration
parameters under investigation. For each of these three environments, many of the
four calibration parameters depart from a normal distribution. The probability density
is forced to accumulate at the parameter bounds to the left of the true optimal solution,
causing the marginal distributions to be skewed.
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This indicates that aerosol physiochemical properties within the pseudo-adiabatic
cloud parcel model compensate each other to achieve the same CDNC distribution. To
examine this in more detail consider Table 4 that presents correlation coefficients of the
samples of the posterior parameter distribution for all environments. For each aerosol
environment there are three calibration parameters that show significant co-variation
(correlation coefficient |r| > 0.6) which have been highlighted in bold. For all except
the most polluted conditions the parameters show significant correlation. For instance,
consider the relationship between the soluble mass fraction with both number concen-
tration and geometric standard deviation of the accumulation mode, and the correlation
between the number and geometric standard deviation. For the polluted continental
environment the correlation between the soluble mass fraction and geometric stan-
dard deviation is slightly lower (0.49), there is also a stronger relationship between the
mean radius and geometric standard deviation of the accumulation mode. As three
of the four aerosol environments share common correlations between different calibra-
tion parameters we present these three in the form of scatter plots for all conditions
(Fig. 9). These scatter plots can potentially be used to gauge at which point within the
parameter space a specific parameter used to describe the activation of cloud droplets
becomes important for a certain atmospheric environment. All parameter combinations
present in the posterior distribution shown in Fig. 9 give approximately the same cloud
droplet size distribution for each aerosol environment respectively (Fig. 6).

The parameter combinations in the posterior distribution for the geometric standard
deviation versus the number of particles in the accumulation mode show clear pos-
itive correlation for all four environments. Thus, in order to reach the same CDNC
distribution it is necessary for both the number and geometric standard deviation to
increase simultaneously. This is in agreement with other studies. For instance Quinn
et al. (2008), reported that for a given mean particle diameter and total number con-
centration, increases in the geometric standard deviation lead to a decrease in the
total droplet concentration because a broader mode suppresses the supersaturation
due to the presence of more larger particles. The shape of the correlation across the
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parameter space indicates the variation in sensitivity between the parameters. For the
two cleaner environments, the relative importance of number increases as the geo-
metric standard deviation increases; the inverse being true for the two more polluted
environments. This is clearly shown by the increase in scatter for larger values of
the geometric standard deviation for polluted continental conditions, and decrease for
marine general conditions. This analysis highlights the importance of a proper repre-
sentation of the geometric standard deviation for estimating the cloud nucleating ability
of particles (cf. Sect. 3.3).

There is a strong negative relationship between the soluble mass fraction and the
number of aerosol particles as well as the geometric standard deviation of the accu-
mulation mode for all aerosol environments. There is a clear shift in the linearity of
the correlation as we move into polluted environments which can be attributed to the
increased sensitivity of the soluble mass fraction relative to the lognormal aerosol prop-
erties describing the accumulation mode. From the shape of the correlation for polluted
continental conditions we can also see that the relative importance of the soluble mass
fraction decreases if the number or the geometric standard deviation of the accumula-
tion mode is increased. This is in agreement with current theory that for more polluted
environments the effect of a decrease in supersaturation with a larger geometric stan-
dard deviation is larger in the presence of more large particles. Thus the ability for
the soluble mass fraction to compensate in such conditions is reduced, evident from
the increase in scatter in the posterior distribution. In Fig. 10 the relationship between
all four calibration parameters is presented, clearly illustrating that in order to achieve
the same CDNC distribution within the parameter thresholds provided by the posterior
distribution these three parameters must compensate each other so that if the soluble
mass fraction is reduced both the number of particles and geometric standard deviation
must increase, and the mean radius of the accumulation mode must increase.

The correlations are less clear for marine Arctic conditions (Fig. 10a) and it is likely
this can be partly attributed to the very narrow CDNC distribution and the loss of infor-
mation caused by an interpolation of this function to a fixed size grid (P11).
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The scatter plots presented in Fig. 10 illustrate that a wide range of aerosol physio-
chemical properties exists that result in very similar cloud microphysical properties.
Therefore, for inverse modelling of cloud-aerosol interactions detailed measurements
of cloud properties are required in order for the different clouds to be “unique”. For in-
stance height resolved measurements, size resolved chemistry, and interstitial aerosol
measurements are all crucial.

In summary, the sensitivity analysis presented in Sect. 3 highlights that the size of the
aerosol particle is only “sometimes” more important than its chemical composition. This
must be considered in the future development of parameterisations used to calculate
droplet number with respect to subsequent calculations of the aerosol indirect effect,
thus it is paramount to estimate the importance of chemical effects for a variety of
environments and meteorological conditions globally.

4 Effect of updraft velocity

As we cannot infer more than four parameters simultaneously given the limited informa-
tion content of the data without non-identifiability contaminating our sensitivity analysis
(P11), we now investigate what happens with the posterior parameter distributions if
the updraft is changed to 0.15ms™" and to 0.60ms™', respectively. It is important
to ascertain the effect of updraft on the sensitivity of the parameters describing the
aerosol physiochemical characteristics as it has a strong influence on the number and
size of cloud droplets formed (Rissman et al., 2004; Brenguier and Wood, 2009). We
also showed from our initial response surface analysis (P11) that the CDNC distribution
was most sensitive updraft perturbations.

To present the results from all updraft simulations simultaneously we calculate our
relative sensitivity as 1-normalised posterior ranges for every parameter, and plot these
against the accumulation mode number concentration for each aerosol environment
(Fig. 11) it is clear that the relative importance of the chemistry compared to the ac-
cumulation mode radius increases for all aerosol environments when the updraft is
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halved (Fig. 11a). When the updraft is doubled (Fig. 11c) the parameters become
somewhat more identifiable with lesser dispersion of the posterior distribution. This is
especially true for the number concentration of the accumulation mode. The soluble
mass fraction increases in sensitivity when the updraft velocity is increased, although
for the more polluted environments its importance relative to the remaining parameters
is higher than for cleaner environments. This result can be explained by a combina-
tion of parameter compensation and CCN saturation of the aerosol environment. For
clean aerosol conditions an increase in the value of the base updraft velocity (keeping
all other values fixed) results in almost all of the available CCN becoming activated.
Therefore, as the updraft isn’t optimised during the MCMC simulation it cannot act as
a limiting factor, and smaller perturbations in the remaining parameters will be am-
plified causing clean environments to exhibit higher sensitivity to changes in aerosol
physiochemical properties.

To check this hypothesis a simple sensitivity analysis to the input parameters was
performed as in P11 (figures not shown). For the higher updraft base case a small
perturbation in these parameters resulted in a larger change on the CDNC distribution.
This effect becomes weaker as the environment becomes more CCN saturated due to
the effect of parameter compensation (cf. Sect. 3.5). The smaller relative change from
halving the updraft compared to doubling it with respect to the base case (Fig. 11b)
can be easily explained by the non-linear relationship between updraft and the ac-
cumulation mode concentration and soluble mass fraction as shown by our response
surface analysis (P11), so that below a certain updraft value only small changes in the
sensitivity will be observed. In summary, for low updraft the critical saturation is the lim-
iting factor, whereas for high updraft conditions the non-linear physiochemical effects
relating to the aerosol are limiting.
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5 Discussion

The sensitivity analysis presented in Sects. 3 and 4 shows that the importance of the
chemistry for the cloud nucleating ability of aerosol particles varies substantially as a
function of both the aerosol concentration and the updraft velocity. We have probed an
idealised cloud using synthetically generated CDNC distribution measurements with
respect to four of the key calibration parameters of a pseudo-adiabatic cloud parcel
model. The restricted number of input parameters was caused by the current “Interpo-
lation method” definition of the OF (cf. P11).Improvements to the information content
of the calibration data set are required in order to constrain more input parameters, for
instance the updraft velocity, in order to allow a better understanding of cloud-aerosol
interactions using MCMC. This is important parameter to include in our MCMC analy-
sis since updraft is highly uncertain; it is both difficult to measure and highly variable
(Lance et al., 2004). It has also been shown that for clean aerosol conditions the frac-
tion of aerosols activated to droplets is a weak function of vertical velocity and a much
stronger function of vertical velocity when aerosol concentrations are typical of polluted
continental conditions (Snider and Brenguier, 2000). In relation to the parameter com-
pensation (cf. Sect. 3.5) initial tests show that if the updraft is included, then for CDNC
distributions generated with a high updraft the soluble mass fraction will be compen-
sated by this parameter, the effect being stronger the more polluted the environment.
This has implications with respect to future climate change as it can be envisaged that
an increase in updraft velocities in clean aerosol environments could increase the sus-
ceptibility of the CDNC distribution to changes in aerosol physiochemical properties.
The strong correlation between three of the four parameters investigated in this syn-
thetic study provides hope for simplification of parameterisations describing droplet
activation (Kivekas et al., 2007), and this motivates applying the MCMC to real world
observations of cloud-aerosol properties. The strong parameter correlation and com-
pensation for all aerosol environments also highlights the need for detailed measure-
ments of cloud properties if we wish to constrain the cloud-aerosol inverse problem
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using physically based cloud models. Future measurement campaigns should direct
efforts towards measuring cloud microphysical properties at multiple height levels and
include the interstitial aerosol and size resolved chemistry. The parameter compensa-
tion and correlation, in particular for polluted environments also highlights the difficulty
in ascertaining the true parameter sensitivity using synthetic studies. Parameter com-
pensation can mask sensitivity and in this respect the methodology presented in this
study is complemented well by 2-D response surface analysis (P11).

In the future, improvements to the method to keep the size grid fixed without loss of
information should be developed to in order for to allow more calibration parameters to
be investigated, more efficiently.

6 Conclusions

In this study, we have coupled a state of-the-art MCMC algorithm, to a pseudo-

adiabatic cloud parcel model. By using synthetically generated observations for marine

Arctic, marine general, rural continental and polluted continental conditions, we have

shown that the MCMC algorithm is able to efficiently locate the true optimal solution and

the associated sensitivity of four of the most important input parameters for describing

the development of a CDNC population in a pseudo-adiabatic cloud parcel model.
The most important advantages of the approach adopted are:

— MCMC algorithms can successfully be coupled with adiabatic cloud parcel mod-
els. This framework opens up new ways forward to investigate cloud-aerosol
interactions.

— It is possible to simultaneously quantify both parameter sensitivity and cloud par-
cel model performance/investigate model structure. This framework results in a
high level of transparency with respect to statistical inference of parameter uncer-
tainty and correlation, and assessment model prediction uncertainty ranges.
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— The ability of DREAM to search the entire parameter space significantly reduces
the chance of getting stuck in local optima. Yet, population based search and op-
timization algorithms pose computational problems, particularly when the model
requires significant time to run and produce the desired output.

— The DREAM algorithm is can be run in parallel, and distributed computing opens
up new possibilities for solving complex, and computationally demanding param-
eter estimation problems.

The most important limitations are:

— Care must be taken that the parameter sensitivity results presented herein are
dependent on the choice of the calibration data set, and likelihood (objective)
function used.

— Sensitivity of the model to input parameters can be potentially masked by param-
eter correlation, thus care must be taken in the sensitivity analysis.

— To inspire confidence in the MCMC inverse modeling approach, a successful
demonstration using real rather than synthetic measurements is required. This
is a prerequisite to accurately predict cloud-aerosol interactions across a range of
spatial scales.

We found strong correlations between certain input parameters, most notably the
solubility versus the number and geometric standard deviation of the accumulation
mode aerosol. In light of this it is crucial to improve our knowledge of the physical
upper and lower limits of aerosol physio-chemical properties in the real atmosphere
by performing more detailed measurements. This will ensure a better confidence in
subsequently derived parameter sensitivity using MCMC methods.

The applied algorithm shows that for marine Arctic and marine general aerosol con-
ditions the aerosol particle size and mean radius of the accumulation mode are the
most important parameters when simulating the cloud droplet number concentrations,
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whereas the chemical composition is the least important. However, for the present
updraft applied (0.3 m s'1) in more polluted environments (aerosol concentration of the
accumulation mode > 400 cm‘3) the relative importance of the soluble mass fraction
increases considerably. In CCN saturated conditions (aerosol concentration of the ac-
cumulation mode > 1000 cm‘s) chemistry dominates the lognormal aerosol parameters
describing the accumulation mode.

Whilst these main conclusions mostly confirm those obtained by previous studies,
the method presented considers and displays a number of important findings in an
integrative way, providing a visually clear way to deconstruct complex cloud-aerosol
interactions into a visually simple form.

The results presented here are not derived using real-world cloud data, the findings
so far being limited to synthetic cases only. In a related future study we will investigate
cloud-aerosol interactions in an inverse framework using real measurements, the ob-
jective being to show whether the model input parameters match their measurement
estimates when the model output is successfully optimised to the associated obser-
vations. Showing this to be the case improves our confidence in the adiabatic cloud
parcel model and the parameters most important for describing the model output.
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Table 1. Model parameter values used to generate synthetic data for marine Arctic and marine
general aerosol environments (bold), as well as their respective lower and upper bounds used
to create posterior distributions derived with DREAM.

Environment

Marine Arctic

Marine general

Parameter \ Lower Limit  True Value Upper Limit \ Lower Limit True Value Upper Limit
1 Mass Accom Coefficient N/A 1.00 N/A N/A 1.00 N/A
2 Surface Tensionm N m™ N/A 70.00 N/A N/A 70.00 N/A
3 Updraft (ms-1) N/A 0.30 N/A N/A 0.30 N/A
4 Ni(em™) N/A 80.00 N/A N/A 265.00 N/A
5 R1 (nm) N/A 17.40 N/A N/A 21.00 N/A
6 GSD1 N/A 1.43 N/A N/A 1.45 N/A
7 N2 (cm's) 36.50 74.50 150.00 60.00 165.00 250.00
8 R2 (nm) 35.00 48.00 65.00 70.00 82.50 100.00
9 GSD2 1.50 1.68 1.85 1.40 1.50 1.60
1 Sol MF 0.30 0.60 1.00 0.45 0.90 1.00
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Table 2. Model parameter values used to generate synthetic data for rural continental and
polluted continental aerosol environments (bold), as well as their respective lower and upper

bounds used to create posterior distributions derived with DREAM.

Environment

\ Rural Continental

\ Polluted Continental

Parameter \ Lower Limit  True Value Upper Limit \ Lower Limit True Value Upper Limit
1 Mass Accom Coefficient N/A 1.00 N/A N/A 1.00 N/A
2 Surface Tensionm N m™' N/A 70.00 N/A N/A 70.00 N/A
3 Updraft (m 5'1) N/A 0.30 N/A N/A 0.30 N/A
4 N1 (cm'3 N/A 1010.00 N/A N/A 4900.00 N/A
5 R1(nm) N/A 23.70 N/A N/A 33.00 N/A
6 GSD1 N/A 1.71 N/A N/A 1.55 N/A
7 N2(em™d) 215.00 451.00 690.00 730.00 1200.00 1600.00
8 R2(nm) 75.00 89.80 105.00 75.00 93.50 105.00
9 GSDh2 1.40 1.58 1.75 1.50 1.55 1.62
1 Sol MF 0.25 0.70 1.00 0.20 0.60 1.00
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Table 3. Prior ranges and true values for each environment are presented under heading “Initial
Range” for marine Arctic, marine general, rural continental and polluted continental conditions.
Summary statistics of the derived final (posterior) distribution are also listed for each parameter.

ACPD
11, 20051-20105, 2011

Jaded uoissnosig

Environment | Initial Range | Optimised Range: DREAM | DREAM .
; . Towards inverse
Parameter | Min Truth Max | Min Max Mean | CV ML .
_ modeling of
| Arctic . cloud-aerosol
7.N2 (cm™®) | 36.50 7450 150.00 72.55 93.36 83.89 | 0.05 85.68 @ interactions — Part 2
8. R2 (nm) 35.00 48.00 65.00 45.06 53.51 49.27 | 0.03 49.91 2
10. Sol MF 0.30 0.60 1.00 0.30 0.63 0.41 | 0.18 0.36 g
RMSE 38.81 40.12 39.20 | 0.01 38.81 o
O
| Harine genere . TWePage
7. N2 (Cm_s) 60.00 165.00 250.00 161.21 187.39 169.51 | 0.03 165.12
8. R2 (nm) 70.00 82.50 100.00 74.63 89.09 81.79 | 0.03 81.31 o ! !
9. GSD2 1.40 1.50 1.60 1.47 1.60 1.52 | 0.02 1.50 o
10. Sol MF 045  0.90 1.00 0.47 100 080|015  0.89 = ! !
RMSE 45.08 47.48 45.65 | 0.01 45.08 g
\ Rural Continental %- ! !
>
7. N2 (cm_s) 215.00 451.00 690.00 394.78 606.27 454.61 | 0.09 428.87 T
8. R2 (nm) 75.00  89.80 10500 | 75.89 10500  96.55 | 0.06  104.85 = ! !
9. GSD2 1.40 1.58 1.75 1.43 1.75 1.56 | 0.05 1.50 as
10. Sol MF 0.25 0.70 1.00 0.28 1.00 0.67 | 0.23 0.68 ! !
\ Polluted continental g
7.N2 (cm™®) | 730.00 1200.00 1600.00 | 1074.10 1599.90 1392.10 | 0.10 1457.30 g _
8. R2 (nm) 75.00 93.50 105.00 80.67 104.99 95.72 | 0.06 100.25 (23
9. GSD2 1.50 1.55 1.62 1.50 1.62 1.57 | 0.02 1.58 8 _I
10. Sol MF 0.20 0.60 1.00 0.31 0.74 0.51 | 017 0.41 oY)
RMSE 40.69 43.48 41.07 | 0.01 40.69 % _
o)
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Table 4. Correlation structure induced between the parameters of the posterior distribution
derived with DREAM for four contrasting environments including marine Arctic, marine general,
rural continental and polluted continental environments”. We separately list the best attainable
values of the likelihood (objective) function (lowest value of the RMSE). Correlation coefficients
larger than |r| > 0.6 are highlighted in bold.

Environment N2 R2 GSD2 SolMF RMSE

Arctic

N2 1.00

R2 0.17 1.00

GSD2 0.76 0.49 1.00

Sol MF -0.95 -043 -0.76 1.00

RMSE -0.17 0.07 -0.06 0.22 1.00
Marine general

N2 1.00

R2 0.08 1.00

GSD2 0.97 -0.09 1.00

Sol MF -0.98 -0.23 -0.93 1.00

RMSE 0.53 0.01 0.50 -0.48 1.00
Rural Continental

N2 1.00

R2 -0.42 1.00

GSD2 0.94 -0.67 1.00

Sol MF -0.90 0.14 -0.81 1.00

RMSE 0.48 -0.30 045 -0.34 1.00
Polluted continental

N2 1.00

R2 -0.40 1.00

GSD2 0.94 -0.62 1.00

Sol MF -0.72 -0.31 -0.53 1.00

RMSE -0.15 -0.06 -0.08 0.16 1.00
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Table A1. Prior ranges and true values for each environment are presented under heading
“Initial Range” for marine Arctic, marine general, rural continental and polluted continental con-
ditions. Summary statistics of the derived final (posterior) distribution are presented for rural
continental and marine aerosol conditions.

ACPD
11, 20051-20105, 2011

Jaded uoissnosig

Environment | Initial Range | Optimised Range: DREAM | DREAM T ds
wards inver
Parameter | Min Truth Max | Min Max Mean | CV ML owa s_ erse
= - modeling of
| Arctic: Updraft=0.15 ms . cloud-aerosol
7.N2(cm™®) | 3650 7450 150.00 | 76.83 107.99  91.62 | 0.07  88.12 @ interactions — Part 2
8. R2 (nm) 3500 48.00 6500 | 39.76  51.30 4532 | 0.05  43.50 2
9. GSD2 1.50 1.68 185 | 1.73 1.85 1.78 | 0.01 1.76 7 D. G. Partridge et al.
10. Sol MF 0.30 0.60 1.00 | 0.30 0.65 0.44 | 0.21 0.51 S
RMSE 26.80  27.91 27.11 | 0.01 26.80 o
Q
\ Marine general: Updraft=0.15 ms™" b _
7.N2(cm™) | 60.00 165.00 250.00 | 159.13 193.30 178.19 | 0.05 178.34 -
8. R2 (nm) 70.00 8250 100.00 | 70.01 99.93 8233|008  76.02 ! !
9. GSD2 1.40 1.50 160 | 1.47 1.60 1.56 | 0.02 1.57 o
et | e e i gh ab Slin an ¢ e B
\ Rural Continental: Updraft=0.15ms™ S
7.N2(cm™®) | 215.00 451.00 690.00 | 345.01 687.22 480.03 | 0.17  401.70 Ry
8. R2 (nm) 7500  89.80 10500 | 75.02 10498 9448 | 0.08  96.85 b ! !
9. GSD2 1.40 1.58 175 | 1.45 1.75 1.60 | 0.05 1.53 =
10. Sol MF 0.25 0.70 1.00 | 025 0.94 0.56 | 0.27 0.73 - ! !
RMSE 2402 2563  24.27 | 0.01 24.02
. E . Bk Cose
‘ Polluted continental: Updraft=0.15 ms o
2
7. N2 (cm™®) | 730.00 1200.00 1600.00 | 961.04 1599.90 1290.20 | 0.13 1087.60 §
8. R2 (nm) 7500 9350 105.00 | 8154 10500  97.32 | 0.06  98.78 =
9. GSD2 1.50 1.55 162 | 150 1.62 1.55 | 0.02 1.51 > _I
10. Sol MF 0.20 0.60 1.00 | 0.30 0.72 0.52 | 0.15 0.63 &
RMSE 2306 2453 2335|001  23.06 S _
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Table A2. Prior ranges and true values for each environment are presented under heading
“Initial Range” for marine Arctic, marine general, rural continental and polluted continental con-
ditions. Summary statistics of the derived final (posterior) distribution are presented for each.

ACPD
11, 20051-20105, 2011

Environment | Initial Range | Optimised Range: DREAM | DREAM

Jaded uoissnosig

Towards inverse
modeling of
cloud-aerosol

Parameter | Min Truth Max | Min Max Mean | CV ML

\ Arctic: Updraft=0.60 ms™

7.N2(@m™ | 3650 7450 150.00 | 72.62 9566  81.85 | 0.06  79.52 o . X
8.R2(hm) | 3500  48.00 6500 | 4218 51.34 4638 | 0.03  46.79 % interactions — Part 2
9. GSD2 1.50 1.68 1.85 1.66 1.82 172 | 0.02 1.71 = _
10. Sol MF 0.30 0.60 1.00 0.35 0.65 0.51 | 0.12 0.53 2. D. G. Partridge et al.
RMSE 63.47 6560  64.01 | 0.01  63.47 S
-
| Marine general: Updraft=0.60 ms™' %

@ é
7.N2(cm™®) | 60.00 165.00 250.00 | 157.86 169.26 162.08 | 0.01  162.42 b _
8. R2 (nm) 70.00 8250 100.00 | 7620 8547 8079 | 0.02  80.17 .

9. GSD2 1.40 1.50 1.60 1.46 1.56 1.51 | 0.01 1.51 ! !
10. Sol MF 0.45 0.90 1.00 0.79 1.00 0.90 | 0.04 0.88 o
AMISE 781 282 7872|001 7781 - EEE EEE
w
Rural Continental: Updraft=0.60 ms™" (%)
- ; e e
7.N2 (cm™®) | 215.00 451.00 690.00 | 439.43 569.61 489.88 | 0.05 459.88
8.R2(nm) | 7500  89.80 105.00 | 76.82 10496  91.26 | 0.08  87.02 § ! !
9. GSD2 1.40 1.58 1.75 1.49 1.75 1.63 | 0.04 1.61 ®
10. Sol MF 0.25 0.70 1.00 0.36 0.79 0.58 | 0.14 0.67 ! !
RMSE 7440 7767 7516 | 0.01  74.40 .
Environment \ Polluted continental: Updraft=0.60 ms™’ @) ! !

w
7.N2 (cm™) | 730.00 1200.00 1600.00 | 1108.40 1598.90 1302.10 | 0.07 1203.70 Q _
8. R2 (nm) 7500 9350 10500 | 8595 10500  96.69 | 0.05  93.32 2
9. GSD2 1.50 1.55 1.62 1.50 1.62 1.56 | 0.02 1.55 S
10. Sol MF 0.20 0.60 1.00 0.33 0.73 0.55 | 0.13 0.61 - _I
RMSE 65.52 70.23 66.23 | 0.01 65.52 % _

(]
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Fig. 2. A schematic representation of inverse modeling. The rectangular box in the bottom
panel ® represents the cloud — parcel model that is being used to predict the observed par-
ticle size distribution from given input data (also called forcing or boundary conditions), and
some a-priori values of the model parameters. The model parameters are iteratively adjusted
so that the predictions of the model,® (represented by the green and red solid lines) approx-
imate as closely and consistently as possible the observed response (measured particle size
distribution).
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Fig. 3. Marine general aerosol environment. Evolution of the DREAM sampled Markov chains
(different dots) towards the stationary posterior distribution of the lognormal parameters de-
scribing the accumulation mode and soluble mass fraction. Each panel considers a different
parameter. The dashed green line represents the actual values of the calibration parameters
used to generate the synthetic aerosol size distribution. The red line represents the conver-
gence of DREAM algorithm when the calibration data set is not corrupted with a measurement
error.
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Fig. 4. Rural Continental aerosol environment. Evolution of the DREAM sampled Markov
chains (different dots) towards the stationary posterior distribution of the lognormal parameters
describing the accumulation mode and soluble mass fraction. Each panel considers a different
parameter. The dashed green line represents the actual values of the calibration parameters
used to generate the synthetic aerosol size distribution. The red line represents the conver-
gence of DREAM algorithm when the calibration data set is not corrupted with a measurement
error.
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Fig. 5. Marine general aerosol environment: evolution of the DREAM generated Markov chains
to the stationary posterior distribution. The y-axis (soluble mass fraction) is up-side-down, and
the OF was transformed to the log-space. This made the interpretation easier.
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Fig. 6. The range of droplet size distributions associated with the posterior parameter dis-
tribution values (last 20 % of the posterior samples derived with DREAM). (A) Marine Arctic
aerosol environment (cyan), (B) marine general aerosol environment (blue), (C) rural continen-
tal aerosol environment (green), (D) polluted continental aerosol environment (red). Coloured
lines represent the calibration data set (synthetic observations). Each grey line represents one
sample from the posterior distribution.
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Fig. 7. Normalized posterior parameter ranges for (a) Marine Arctic aerosol environment, (b)
Marine general aerosol environment, (c) Rural Continental aerosol environment, and (d) pol-
luted continental aerosol environment. The last 20 % of the samples generated with DREAM
were used to derive the results. The y-axes are scaled between 0 and 1 using the prior ranges
defined in Table 1 to yield normalized ranges. The blue error-bars represent define the 1 %—
99 % limits of the posterior distribution. The blue circles are used to signify the maximum
likelihood values of the parameters that provide the closest fit (lowest RMSE) to the measured
aerosol size distribution, whereas the red circles denote the true parameter values used to cre-
ate the synthetic data. Each grey line going from left to right through each panel is a different
parameter sample from the posterior distribution.
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Fig. 8. Histograms of the marginal distributions of the four different adiabatic cloud parcel model
parameters for (A—D) Marine Arctic, (E-H) Marine general, (I-L) Rural Continental, and (M—P)
polluted continental conditions. The star in each subplot is used to separately indicate the true
values of the cloud model parameters used to create the calibration data set.
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Fig. 9. Scatterplots of the posterior samples of the adiabatic cloud parcel model parameters
for (A—C) Marine Arctic, (D—F) Marine general, (G-I) Rural Continental, and (J-L) polluted
continental environments. The solid lines in each individual plot denote the posterior range of

each individual parameter.
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Fig. 11. Parameter relative sensitivity for (a) Updraft = 0.15ms™", (b) updraft = 0.30ms™",
(¢) updraft = 0.60ms™'. The last 20% of the samples generated with DREAM were used
to derive the results. The y-axes NPR labels correspond to “Normalized posterior parameter
range”. Thus, we present the relative sensitivity for each parameter as the aerosol environ-
ment becomes more polluted. A higher value of 1-NPR indicates a parameter having higher
relative sensitivity. Going from left the light the x-axes corresponds to the accumulation mode
number of marine Arctic, marine general, rural continental, and polluted continental conditions
respectively.
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