

Fig. S1. Comparison of modeled SO_{2} (yellow flat line) and NO_{y} (green flat line) to the observed SO_{2} (blue dot) and NO_{y} (red dots) at each plume transect on September 16, 19 and 25. Horizontal coordinate is time scale in GMT (local time $=$ GMT - 6 hours) and vertical coordinate is concentration (ppb). Transect names listed in Table S3 of the manuscript are labled in each subplot.

21:41:00 21:43:53 21:46:46 21:49:38 21:56:10 21:59:02 27:01:55 27:04:48

Fig. S2. Comparison of the modeled NO_{x} (orange flat line) to the observed NO_{x} (green dot) at each plume transect on September 16, 19 and 25. Horizontal coordinate is time in GMT (local time $=$ GMT - 6 hours) and vertical coordinate is concentration (ppb). Transect names listed in Table S3 of the manuscript are labled in each subplot.

18:37:00 18:34:53 18:37:45 18:40:38

18:49:00 18:51:53 18:54:46 18:57:39

$19: 17: 00 \quad 19: 14: 53 \quad 19: 17: 46 \quad 19: 20: 38$

0
:56:10 21:59:02 27:01:55 27:04:48

Fig. S3. Comparison of the modeled HNO_{3} (orange flat line) and PAN (aqua flat line) to the observed HNO_{3} (yellow dot) and PAN (gray dot) at each plume transect on September 16, 19 and 25. Horizontal coordinate is time in GMT (local time = GMT - 6 hours) and vertical coordinate is concentration (ppb). Transect names listed in Table S3 of the manuscript are labeled in each subplot.

Fig. S4. Comparison of the modeled CO (blue flat line) to the observed CO (red dot) at each plume transect on September 16, 19 and 25. Horizontal coordinate is time in GMT (local time $=$ GMT - 6 hours) and vertical coordinate is concentration (ppb). Transect names listed in Table S3 of the manuscript are labled in each subplot.

Fig. S5. (a) Observed PPPs of Parish on September 19, 2006. The red star show the locations of the Parish plant. (b) Simulated PPPs of Parish at 19:00 GMT (local time: 13:00)

Fig. S6. (a) Observed PPPs of Parish on September 25, 2006. The black dots show the locations of the power plants. PPPs are identified by measured SO_{2} enhancement (color gradient in the figure), are outlined using green dash lines. Measured wind vectors are presented on the plume transect. (b) Simulated PPPs of Parish at 22:00 GMT (local time: 16:00). (c) Observed PPPs of Big Brown and Limestone on September 25, 2006. The black dots show the locations of the power plants. PPPs are identified by measured SO_{2} enhancement (color gradient in the figure), are outlined using green dash lines. Measured winds vectors are presented on the plume transect. (d) Simulated PPPs of Big Brown and Limestone at 19:00 GMT (local time: 13:00)

Fig. S7. Vertical distribution of NO_{x} for power plants simulated by CMAQ inline v4.7 on the day of measurement.

Fig. S8 (a) the observed photolysis rate (left axis, blue dot) and the flight height (right axis, black line). (b) the observed relative humidity (right axis, black cross) and the flight height (left axis, blue line). The corresponding plume transects (Table 3 and Fig. 2) are marked.

Fig. S9. (a) MODIS true color image (http://modis-atmos.gsfc.nasa.gov/IMAGES/index.html) at 17:00 UTC (local time: 11:00). The black lines indicate the trajectory of the WP-3 path. The WP-3 flew in the early afternoon hours through northeastern Texas covered by sparse clouds. (b) MODIS true color image at 16:50 UTC (local time: 10:50) on September 25; over most areas of Texas, it was clear sky and cloud-free. (c) MODIS true color image at 17:30 UTC (local time: 11:50) on September 19; over most areas of Texas, it was clear sky and cloud-free.

Layer 1 CFRACi

Layer 1 CLDBi

Fig. S10. Modeled (a) cloud cover fraction and (b) cloud bottom height over Texas on September 16, 2006 (18:00 UTC, local time 12:00).

Layer 1 PBLi

Fig. S11. Modeled planetary boundary layer height at 18:00 UTC (local time: 12:00)

Fig. S12. Vertical distribution (SO_{2} concentration in ppm unit) of Martin Lake (a), Monticello (b), and Welsh plumes (c) on September 16. Vertical axis is the model layers.

Layer 13 QCi

Fig. S13. The region (light blue) for adjusting the cloud liquid water mixing ratio (QC, KG/KG) in the modeling domain. In the northeastern Texas, QC is uniformly set to $0.00005 \mathrm{KG} / \mathrm{KG}$, 0.0005 KG/KG, and $0.005 \mathrm{KG} / \mathrm{KG}$. Layer 13 corresponds to about 1000 m .

Fig. S14. Concentrations of HNO_{3} (green), NO_{x} (blue), and PAN (yellow) at Martin Lake plume transects from observation (left bars with light colors) and model (right bars with dark colors); one of $\mathrm{NO}_{\mathrm{x}}, \mathrm{HNO}_{3}$, or PAN was not measured at Ma-3, Ma-6, and Ma-12. The observed and modeled concentrations are the average at transects.

Fig. S15. Difference of $\mathrm{ZOC}\left(\mathrm{SO}_{2}\right)$ for Martin Lake, Monticello, and Welsh plumes at layer 10 between the base case and QC_0.05 averaged over 17:00 to 20:00 UTC.

Plume transect

Fig. S16. Modeled (green triangle) and observed (box-and-whiskers) concentration at all transects on 16 and 25 September. The boxes show $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of observations; red lines show medians, and whiskers show minimum and maximum values.

Table S1 Model layer height

Layer	Height(m)
1	43
2	86
3	129
4	172
5	260
6	349
7	436
8	525
9	616
10	706
11	798
12	888
13	1074
14	1266
15	1455
16	1650
17	1851
18	2157
19	2477
20	2904
21	3477
22	4081
23	4994
24	5064
25	6384
26	7165
27	8017
28	8950
29	9981
30	11030
31	12580
32	13441
33	15439
34	18328

Table S2. Instruments and time resolution of major gas-phase species discussed

Species	Reference	Instrument	Time resolution of measurement (second)
O_{3}	Ryerson et al., 1998	NO-induced Chemiluminescence (CL)	1
NO	Ryerson et al., 1999	O_{3}-induced CL	1
NO_{2}	Ryerson et al., 2000	UV photolysis CL	1
HNO_{3}	Neuman et al., 2000	$\mathrm{SiF}_{5}{ }^{-}$Chemical Ionization Mass Spectrometry (CIMS)	1
NO_{y}	Ryerson et al., 1999	Au converter CL	1
SO_{2}	Ryerson et al., 1998	Pulsed UV fluorescence	1
CO	Holloway et al., 2000	VUV resonance fluorescence	1
CO_{2}	Peischl et al., 2010	NDIR absorption	1
Isoprene	de Gouw et al., 2003	Proton Transfer Reaction Mass Spectrometry (PTRMS)	17
PAN	Slusher et al., 2004	CIMS	2

Table S3. Plume transects measured on 16, 19 and 25 September

Facility	Transect ${ }^{\text {a }}$	Distance from plant (km)	Flight height (m)	Average wind speed (m / s)	Plume age ${ }^{\text {b }}$ (hours)
Martin Lake	Ma-1	17.3	660	7.4	0.7
Martin Lake	Ma-2	27.0	660	6.1	1.1
Martin Lake	Ma-3	37.1	660	7.1	1.5
Martin Lake	Ma-4	52.6	1800	8.8	2.0
Martin Lake	Ma-5	52.6	1080	7.9	2.0
Martin Lake	Ma-6	52.6	640	5.4	2.0
Martin Lake	Ma-7	52.6	490	6.8	2.0
Martin Lake	Ma-8	52.6	300	5.5	2.0
Martin Lake	Ma-9	67.5	660	2.9	3.4
Martin Lake	Ma-10	88.1	640	4.0	4.8
Martin Lake	Ma-11	105.7	650	4.7	5.9
Martin Lake	Ma-12	115.9	650	4.2	6.6
Monticello	Mo-1	7.8	640	8.0	0.3
Monticello	Mo-2	27.7	650	6.3	1.2
Monticello	Mo-3	47.9	650	8.1	1.6
Monticello	Mo-4	67.7	660	7.8	2.4
Welsh	We-1	11.5	640	8.4	0.4
Welsh	We-2	31.6	650	5.7	1.4
Welsh	We-3	51.7	650	8.9	2.0
Welsh	We-4	71.8	660	8.0	2.5
Big Brown	Bi-1	20.3	630	4.2	1.3
Big Brown/Limestone	Bi-2	95.7	624	6.4	3.3
Parish	Pa-1	13.5	476	5.9	0.6
Parish	Pa-2	43.3	482	7.0	1.2
Parish	Pa-19-1	3.2	471	4.1	1.5
Parish	Pa-19-2	10.0	491	5.4	4.9
Parish	Pa-19-3	12.3	462	5.0	6.1
Parish	Pa-19-4	14.5	476	5.9	6.9

Parish	Pa-19-5	20.6	488	6.2	10.6

${ }^{a}$ the downwind locations of the plume transects listed in this table are marked in Fig. 2 and Fig. S5 and S6 in supplement
${ }^{\mathrm{b}}$ plume age is computed as the distance of plume transect from plant divided by the measured average wind speed at plume transect

Table S4. Background and plume $\mathrm{O}_{3}(\mathrm{ppb})$ and OPE (unitless) from model and observations.

transect	OBS_O3_ $\mathrm{BG}^{\text {a }}$	MOD_O3_BG ${ }^{\text {b }}$	OBS_ $\triangle \mathrm{O}_{3}{ }^{\text {c }}$	MOD_ $\Delta \mathrm{O}_{3}{ }^{\text {d }}$	OBS_OPE ${ }^{\text {e }}$	MOD_OPE ${ }^{\text {f }}$
Ma-1	30.0	46.5	-2.6	-0.6	-	-0.5
Ma-2	34.0	49.6	-1.0	1.5	-	1.9
Ma-3	37.3	47.0	2.4	2.0	2.6(0.30)	2.5
Мa-6	34.0	51.5	8.9	8.0	7.2(0.90)	4.7
Ma-7	34.9	52.1	-	8.4	$6.2(0.69)$	4.0
Ma-8	35.5	52.9	-	8.3	6.8(0.94)	4.3
Ma-9	37.4	51.3	9.7	9.5	6.7(0.80)	5.5
Ma-10	38.3	50.3	8.9	7.0	8.7(0.96)	4.9
Ma-11	37.0	44.2	7.9	5.2	10.1(0.93)	4.9
Ma-12	37.0	45.4	7.4	5.3	-	5.1
Mo-1	32.7	44.3	-1.8	-0.6	-	-1.0
Mo-2	35.1	47.6	2.0	1.3	1.4(0.30)	4.1
Mo-3	37.0	49.3	4.8	4.0	8.3(0.90)	5.5
Mo-4	36.2	48.1	4.5	2.4	10.4(0.94)	4.9
We-1	32.7	44.3	-1.2	-1.1	-	-1.9
We-2	35.1	47.6	4.8	2.8	4.6(0.79)	4.1
We-3	37.0	49.3	5.3	4.0	9.4(0.71)	4.4
We-4	36.2	48.1	7.4	5.2	10.7(0.75)	4.6
Bi-1	-	44.2	-	3.1	1.7 (0.75)	1.5
Bi-2	-	46.3	-	2.0	-	2.9
Pa-1	-	52.4	-	-1.3	4.4(0.41)	-6.5
Pa-2	-	53.5	-	0.4	4.0(0.83)	1.0

${ }^{\text {a }}$ OBS_O O_{3} _BG: observed background O_{3} (in parentheses, dashes mean no valid value can be found for OBS_O $\mathrm{O}_{3} \mathrm{BG}$)
${ }^{\mathrm{b}} \mathrm{MOD}_{2} \mathrm{O}_{3}$ _BG: modeled background O_{3}
${ }^{\text {c }} \mathrm{OBS}_{-} \Delta \mathrm{O}_{3}$: OBS_O $\mathrm{O}_{3} _$Plume - OBS_O O_{3} BG (in parentheses, dashes mean no valid value can be found for OBS_ $\Delta \mathrm{O}_{3} _\mathrm{BG}$)
${ }^{\mathrm{d}} \mathrm{MOD}_{-} \Delta \mathrm{O}_{3}: \mathrm{ZOC}_{\mathrm{O} 3}\left(=\mathrm{O}_{3}\right.$ model, base $-\mathrm{O}_{3}$ model, zero-out that plant)
${ }^{e}$ OBS_OPE: ozone production efficiency of observed plume from the least square fits of O_{3} to $\left(\mathrm{NO}_{\mathrm{y}}-\mathrm{NO}_{\mathrm{x}}\right)$; values in parentheses are the R^{2} of least square fit of O_{3} to $\left(\mathrm{NO}_{\mathrm{y}}-\mathrm{NO}_{\mathrm{x}}\right)$ (in parentheses, dashes mean no valid value can be found for OBS_OPE)
${ }^{\mathrm{f}}$ MOD_OPE: ozone production efficiency of modeled plume ($=\mathrm{ZOCo}_{3} / \mathrm{ZOC}_{\mathrm{NOz}}$)

