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Correspondence to: Rubén Rodŕıguez De León (r.deleon@mmu.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

19927

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/19927/2011/acpd-11-19927-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/19927/2011/acpd-11-19927-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 19927–19952, 2011

Sensitivity of
persistent contrail

radiative properties

R. R. De León et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

The dependence of the radiative properties of persistent linear contrails on the vari-
ability of their ice water path is assessed in a two-stream radiative transfer model. It
is assumed that the ice water content and the effective size of ice crystals in aged
contrails do not differ from those observed in natural cirrus; the parameterization of5

these two variables, based on in situ observations, allows a more realistic representa-
tion than the common assumption of fixed values for the contrail optical depth and ice
crystal effective radius.

The results show that the large variability in ice water content that aged contrails may
share with natural cirrus, together with an assumed contrail vertical thickness between10

220 and 1000 m, translate into a wider range of radiative forcings from linear contrails
(0.3 to 51.6 mW m−2) than that reported in previous studies, including IPCC’s (3 to
30 mW m−2). The derivation of a best estimate within this range is complicated by the
fact that the ice water contents measured in situ imply mean optical depths between
0.08 and 0.32, coinciding with the range commonly assumed in contrail studies, while15

optical depths derived from satellite ice water content retrievals are significantly larger
(0.51–2.02). Further field and modelling studies of the temporal evolution of contrail
properties will thus be needed to reduce the uncertainties associated with the values
assumed in large scale contrail studies.

1 Introduction20

Contrail radiative studies generally assume a fixed particle size distribution (PSD) in the
ice cloud (e.g., Strauss et al., 1997; Meerkötter et al., 1999; Minnis et al., 1999) and a
fixed optical depth (OD) (e.g., Minnis et al., 2004; Stuber and Forster, 2007; Rädel and
Shine, 2008). This simplification is made in response to the large uncertainties in the
characterization of ice cloud PSDs (e.g., McFarquhar et al., 2007; Jensen et al., 2009)25

and the large variability found in ice cloud micro- and macro-physical properties, which
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must be taken into account when deriving representative values for large scale contrail
simulations.

In most radiative transfer applications ice clouds are represented by two parame-
ters, namely their ice water content (IWC) and a metric of their size spectrum, such
as the effective radius or Fu’s generalized size parameter (Fu, 1996). Contrail crys-5

tals may differ, both in shape and concentration, from those observed in natural cirrus
under the same conditions (Poellot et al., 1999); how much the physical properties
of these crystals are determined by their anthropogenic origin and how much by the
atmospheric environment is not clear (e.g. Jensen and Toon, 1997; Schumann et al.,
2010). Recent measurements, such as those from the mid-latitude field campaign CIR-10

RUS III (Schäuble et al., 2009) have shown that the ice water contents in cirrus and
aged contrails are similar under the same atmospheric conditions, while ground-based
observations of an aged contrail made by Atlas and Wang (2010) have confirmed that
the IWC of linear contrails can reach values close to the upper limit for mid-latitude
cirrus.15

More extensive contrail field measurements are needed but, given the small differ-
ences between the IWC in natural cirrus and in aged contrails at the same temperature
and the fact that the radiative forcing (RF) of ice clouds is mainly determined by their ice
water path, it seems reasonable to use a characterization based on cirrus measure-
ments to represent the developed stages of contrails, as has been done previously20

(e.g., Wyser and Ström, 1998; Ponater et al., 2002).
In order to investigate the sensitivity of the global RF of persistent linear contrails to

such an assumption, we set up a model with a fixed homogeneous mono-layer contrail
cover with a representative range of physical depths and altitudes, and assess the
effect of this layer on the local and global radiation fields, allowing its ice water content25

and effective ice crystal size to vary as a function of ambient temperature.
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2 Model simulations

The physical properties of both, aged contrails and natural cirrus are prescribed in the
model simulations using Schiller et al.’s (2008) IWC climatology and the PSD param-
eterization of McFarquhar and Heymsfield (1997), based on ice cloud observations in
the tropics covering a temperature range from −30◦ to −60 ◦C.5

The range of observed cirrus IWCs compiled by Schiller et al. is represented in
Fig. 1 (top), with fitted curves being shown for minimum, mean, and maximum mea-
sured values (dotted, solid and dashed lines, respectively) as functions of temperature.
These fits are used as input in McFarquhar and Heymsfield’s PSD parameterization at
six temperature values, covering a range from 195 to 245 K, to produce 18 PSDs. The10

generalized size (Dge) (Fu, 1996) calculated for these distributions ranges from 11 to
75 µm. The 6 PSDs corresponding to the mean IWC fit, are plotted in Fig. 1 (middle)
as functions of the particles’ equivalent-volume diameter.

The single scattering properties (extinction coefficient, single scattering albedo, and
asymmetry parameter) of ice crystals modelled as randomly oriented hexagonal prisms15

are integrated over the 18 PSDs and parameterized in terms of their IWC and Dge: such
a hexagonal prism habit matches both the total volume and projected areas retrieved
by McFarquhar and Heymsfield, making the micro-physical and the optical properties
in the model consistent. The databases of the optical properties for other habits cur-
rently available to us did not fulfill this consistency requirement. We therefore only use20

hexagonal prisms in our modelling. The methodology presented in Fu et al. (1998)
is used to integrate the long-wave (LW) optical properties calculated by Baran et al.
(2001). In the shortwave (SW), the parameterization described by Fu (1996) and the
single scattering properties calculated by Yang et al. (2000) are applied. The SW and
LW parameterizations are incorporated into the Edwards and Slingo two-stream radia-25

tive transfer model (Edwards and Slingo, 1996) with a configuration of 6 and 9 bands
in the SW and in the LW spectral regions, respectively.
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The uncertainties in the characterization of the relative abundance of small crystals
may affect the calculated radiative properties of ice clouds (McFarquhar et al., 2007).
In order to ensure an accurate representation of the relative concentration of small
particles in the model, the total ice number concentrations used here are compared
with those compiled by Krämer et al. (2009), which provide quality-checked aircraft in5

situ observations of ice crystal numbers performed during 28 flights in tropical, mid-
latitude and Arctic field experiments, covering latitudes from 20◦ South to 75◦ North.
The comparison (Fig. 1, bottom) suggests that despite the fact that McFarquhar and
Heymsfield’s PSDs are limited to one campaign, the dependence of the relative small
crystal concentration on temperature is consistent with values retrieved at a wide range10

of latitudes.
The background meteorology used in the model is based on monthly climatological

data for water vapour, ozone, temperature, and surface albedo from ECMWF (Sim-
mons and Gibson, 2000). Three-dimensional distributions of low, middle and high
cloud cover, and cloud total water path from the International Satellite Cloud Clima-15

tology Project (ISCCP) D2 (Rossow and Schiffer, 1999) are used; these are converted
into total water contents based on the layer’s physical depth. These cloud fields are
monthly averages of ISCCP’s three-hour resolution data, interpolated to a 2.5◦×2.5◦

regular latitude/longitude grid and 23 layers in the vertical, extending up to 1 hPa. The
total water paths of all clouds from ISCCP are separated into their liquid and solid com-20

ponents using Schiller et al.’s climatology, and scaled linearly in order to obtain a cloud
SW RF in reasonable agreement with satellite estimates. An increase of 80 % of the
total water contents from ISCCP results in a global annually averaged SW cloud RF
of 47.7 W m−2, which compares well with the estimate of 48 W m−2 from the Earth Ra-
diation Budget Experiment (ERBE) mission (Li and Leighton , 1993). This calibration25

of the estimated natural cloud RF in the model, and the fact that the clouds’ phase
partition is consistent with the prescribed contrail’s IWC, will ensure a more realistic
representation of the the relative contribution of contrails to the radiative impact of nat-
ural clouds and their interdependencies.
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The total water contents from ISCCP are assumed to be ice-only at temperatures
below −39◦ and liquid-only above −10◦C; between these two temperatures, the total
water content from ISCCP is partitioned according to Schiller et al.’s IWC climatology,
using a fitted curve to the maximum observed IWC values in which only observations
with frequencies larger than 5 % are included. This is shown by the red dashed curve5

in Fig. 1. A fit to the maximum, rather than to the mean, IWC is used because it roughly
approximates the range of IWCs retrieved from the ISCCP data for ice clouds: these
show considerably larger values than the values for mean IWC reported by Schiller et
al. The Dge of the solid phase is prescribed as a function of the IWC and temperature
of the cell according to McFarquhar and Heymsfield’s parameterization. For the liquid10

cloud phase, spherical droplets with an effective radius of 10 µm are assumed.
The contrail cover layer is taken from Fichter et al. (2005) who, based on the TRADE-

OFF inventory of aircraft flown distance for the year 1992, found an annual mean global
cover of 0.047 %. Their vertically integrated 2-D contrail cover (CC) distribution is
based on a random overlap assumption, it being assumed in the radiative transfer15

calculations that clouds in adjacent layers are maximally overlapped, while groups of
clouds separated by one or more clear layers are randomly overlapped (“maximum-
random overlap”).

The shortwave (SW), long-wave (LW) and net (SW+LW) instantaneous RFs are cal-
culated at the top of the atmosphere for two representative months, January and July.20

The solar zenith angles and day lengths at the middle of the month are used to rep-
resent the month’s SW average. The diurnal cycle is approximated by a Gaussian
integration of 5 solar zenith angles. No diurnal dependence is assumed on the CC
extent, as no global estimate of contrail lifetimes is available at present.

In the simulations, unless stated otherwise, mean observed IWC values from Schiller25

et al. are prescribed at the centre of a 1000 m thick contrail layer positioned at 200 hPa
(∼38 000 ft) with a realistic horizontal cover for year 1992. Given that the vertical res-
olution in the model is variable (between 1 and 2 km), it is necessary to adjust the
contrail’s horizontal extent when contrail and cirrus coincide in the same cell. In this
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case, the contrail’s contribution to the cloud cover is re-scaled to preserve its mass.

3 Results

The geographical distributions of the calculated contrail net RFs are shown in Figs. 2
and 3, with a global average of 7.6 mW m−2 in January and 2.6 mW m−2 in July. The
maximum monthly mean of 360 mW m−2 occurs over Northwest USA in January. The5

fact that the global mean CC in January is 0.078 % compared to only 0.038 % in July,
partly explains the larger effect of contrails in January. Other factors, however, including
the background meteorology, the albedo and the natural cloud cover, also contribute
to this seasonal variability, and enhance the weighted net contrail RF in January (see
Fig. 6).10

The impact that natural clouds have on the calculated contrail RF is assessed by
comparing modelled results for clouds being present or absent. The Northern Hemi-
sphere’s (NH) zonal RF profiles for the “all sky” and “clear sky” (contrails only) cases
and their global means are presented in Fig. 4, showing that the presence of natural
clouds reduces RF slightly more in the SW than in the LW, thereby somewhat reducing15

the net RF. Locally this is not always the case, as it can be seen in the July profiles at
latitudes higher than 60◦ N: here the contrails’ net RF is actually enhanced by natural
clouds. This effect tends to occur over high latitude ice free regions, where contrails
can show negative net RFs in the absence of other clouds. As can be seen in Fig. 4,
however, the zonal mean always remains positive.20

Natural clouds in the model are responsible for a reduction of around 40 % in the
annual contrail net RF, which contrasts with less than 10 % reported in previous studies
(e.g., Myhre et al., 2001; Stuber and Forster, 2007; Rädel and Shine, 2008). It is
possible to obtain contrail net RF reductions as small as 11 % from natural clouds in
our model if random overlap is assumed, but we regard the maximum-random overlap25

model to be more realistic in this context.
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In order to assess the sensitivity of a contrail’s RF to its altitude, while excluding any
dependence on its horizontal extent, four pressure levels (300, 250, 200 and 150 hPa),
representative of the cruise altitudes with significant CC, are used. These pressure lev-
els roughly correspond to flight levels FL300, FL340, FL380, and FL400 (i.e. altitudes
of 30 000, 34 000, 38 000, and 40 000 ft). The same CC is prescribed at these levels5

and their RFs are compared.
At middle latitudes in the NH, where most traffic is concentrated, around 70 % of the

distance travelled by aircraft occurs between FL340 and FL380. This, together with
the dependence of contrail formation on meteorological conditions, means that FL300
and FL400 have a comparatively much smaller CC. The potential CC, defined as the10

fraction of the sky that would be covered by contrails if traffic were present everywhere
and all the time, can be negligible at these flight levels in some cases, for example for
low latitude flights at FL300 in January and FL300 and FL340 in July. This is also the
case for high latitude flights at FL400 in July. Despite the small likelihood of contrails
being formed in these cases, the results of their radiative properties are still included15

for comparison purposes. At middle latitudes, contrail formation is possible at all four
flight levels.

Figure 5 shows the mean net RFs for the NH, which present slightly larger values
for FL300 in January (8.8 mW m−2, global average) and FL400 in July (3.5 mW m−2).
Other cruise altitudes show more modest impacts in both months with values of around20

7.7 mW m−2 in January and around 2.6 mW m−2 in July. These differences are related
not only to the dependence of the contrail radiative properties on the ambient temper-
ature, and therefore on its altitude, but also to the background conditions, i.e. meteo-
rology, natural cloud cover and local albedo. Despite the fact that FL340 and FL380
show similar global mean RFs for the two months, their zonal profiles show significant25

differences.
The RF’s dependence on altitude can be seen more clearly if the RF is weighted

by the CC, as in Fig. 6, which shows the net RF per percentage CC. These profiles
follow a similar zonal pattern to that of the predicted IWC (not shown), with the largest
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altitude sensitivity predicted to occur at low latitudes, where the radiative impact of con-
trails decreases markedly with altitude. This behaviour changes at middle latitudes (at
around 40 ◦ N) in both months. The modest altitude dependence predicted for January
between FL340, FL380, and FL400, at middle latitudes –where most traffic is concen-
trated – implies that the effect of contrails in winter should mainly be driven by the5

potential CC, which decreases with altitude. In July, on the other hand, the weighted
RF shows a significant altitude dependence, with FL340 showing weighted RF values
smaller than those at FL400 by as much as a factor of 10 at some heavily trafficked
latitudes.

Strategies for contrail impact reductions may therefore depend on the season but,10

given that the the potential CC (not included here) has a strong seasonal dependence,
it is important to consider the radiative and the contrail formation aspects using mutually
consistent models. The dependence of contrail formation and chemistry on altitude,
which should also be considered in mitigation strategies, are beyond the scope of the
present study.15

The OD of ice clouds is determined by their particle habit and their ice water path,
defined as the IWC integrated over the vertical extent of the cloud. No climatology of
contrail vertical thickness is available at present, but a range of values can be tested
in order to assess the sensitivity of contrail RF to its OD. A case of a contrail with a
maximum OD of 2.3 and a corresponding vertical thickness of 1 km, was reported by20

Atlas and Wang (2010) based on Lidar retrievals; this value is used here as the upper
bound for the possible range of contrails’ vertical thickness while a lower bound of 220
m is chosen. The latter was used by Minnis et al. (1999) to approximate the RF of
contrails by a single layer positioned at 200 hPa. We have confirmed the validity of this
approximation in our model by comparing the results of a 3D distribution with those of25

the vertically integrated CC. This showed differences in the RF monthly averages of
less than 10 %.

In order to assess the RF sensitivity to a contrail’s IWC, three cases are compared.
These cases are defined by the fitted curves to the mean, minimum and maximum
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IWC in Schiller et al.’s compilation (see Fig. 1). In the cases of the minimum and the
maximum IWCs, frequencies smaller than 5 % were excluded from the fits (red curves
in the top panel of Fig. 1); for natural cirrus, this maximum IWC fit is always assumed.
The results, presented in Fig. 7, show a greater sensitivity in January than in July. This
is a consequence of the greater sensitivity of the IWC to temperature observed in Fig. 15

at lower temperatures.
The dependence of the global mean RFs on the IWC is summarized in Table 1. This

shows the monthly mean OD, the ice water path and the generalized size parameter,
as well as their annual means. Here it should be noted that the average of January
and July serves as a proxy for the annual mean. Both the OD and the net RF show10

a sensitivity to the IWC variability of around two orders of magnitude. The sensitivity
to the contrails’ vertical thickness, on the other hand, is only around a factor of 2, as it
can be seen from the differences in the RF for 220 m and 1000 m physical depths with
the same IWC.

The predicted range of Dge spans a factor of 3, with a 25 µm Dge being predicted over15

the NH if mean values for IWC are assumed; this value is similar to that (23.5 µm) for
the contrail PSD commonly assumed in off-line contrail studies (Strauss et al., 1997),
showing that this PSD does not differ significantly from that of typical cirrus at contrail
altitudes. Despite the significant variability in the predicted Dge observed in Table 1, the
sensitivity of the RF to Dge cannot be assessed independently of the IWC variability20

without inconsistent micro-physical assumptions.

4 Discussion

Off-line radiative transfer studies for contrails usually assume fixed OD values, between
0.1 and 0.5, with a recent trend towards the lower end of this range. Representative OD
values are normally derived from satellite data because of their large scale coverage,25

but the detection of persistent contrails by passive remote sensing instruments requires
them to reach the detection thresholds for OD and horizontal extent while retaining
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their linear shape; this limitation may introduce biases into the physical and temporal
properties derived statistically from satellite retrievals.

In the present study if the IWC variability is neglected, and only the vertical thickness
is allowed to vary, the predicted range of mean annual global OD values (0.08, 0.32) for
contrails between 220 and 1000 m, matches the range of values commonly assumed in5

recent off-line studies. The results presented by Ponater et al. (2002), based on on-line
contrail simulations, also fall within this range, as they reported an annual global mean
OD of 0.15 for a 700 m thick contrail. Using the same vertical depth as was prescribed
by the resolution of Ponater et al.’s model, the setup used here produces an OD of
0.23.10

Ponater et al. reported a variability in global contrail OD that shows similarities with
our findings. They predict maximum monthly values to be larger than the mean by
an order of magnitude; this is confirmed in our study, but important differences with
Ponater et al.’s results, however, occur on a regional level. Their predicted ODs over
the USA show a large seasonal variability (0.04 to 0.25), whereas we find only a mod-15

est variability (0.29–0.34) (<20 %, assuming a 1000 m vertical thickness), in closer
agreement with satellite retrievals by Palikonda et al. (2005), who reported a summer
maximum 20–30 % greater than the February minimum.

Over the annual average, we find the mean OD over the USA to be similar to the NH
average, while Europe shows values about 10 % smaller. Ponater et al. similarly found20

thicker contrails over America but with a larger seasonal variability than in Europe.
This contrasts with the values presented here, in which contrails in Europe show a
considerably boader variability, with the mean OD reaching values at least 50 % larger
in July than in January, resulting in contrails being optically thinner than over the USA
during the winter but optically denser during the summer. Ponater et al.’s value of 0.0625

falls outside the range predicted here for Europe (0.07–0.28), but the satellite-retrieved
value of 0.11 reported by Meyer et al. (2002) falls within it. The fact that the satellite
estimate over Europe falls close to our lower bound, while Palikonda et al.’s satellite OD
estimate over the USA (0.27) falls closer to the upper bound of our range (0.08, 0.32) for
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that region, can be explained by the larger seasonal variability predicted over Europe.
This variability translates into ODs being smaller than 0.2 during the winter, implying
a reduced detectability by passive remote sensing instruments according to Kärcher
et al. (2009) who, based on an analytical micro-physical cloud model, concluded that
passive satellite remote strongly underestimate the ocurrence frequency of contrails5

with optical depths <0.1–0.2.
Kärcher et al. reported mean contrail-cirrus visible ODs of between 0.05 and 0.5

over the USA; this range is slightly broader than the NH range found here [0.08-0.32]
for mean IWCs, but significantly smaller than when the full IWC variability is taken into
account (0.005–2.02). It is important to remember that the range of cirrus IWCs de-10

rived from satellite retrievals falls closer to the maximum IWC fit reported by Schiller
et al. than to the mean. As a consequence we produced a new maximum IWC fit
to better emulate satellite retrievals. If this fit is assumed for contrails, the predicted
contrail ODs increase substantially and produce a range of values (0.51–2.02) which
should be regarded as more consistent with satellite measurements of IWCs. As al-15

ready mentioned, the detection of linear contrails by passive remote sensing tech-
niques is affected by many factors, but given that in the present study we assume that
the contrail IWC dependence on temperature does not differ greatly from that of cir-
rus, it seems sensible to regard this higher range as more consistent with our model
setup. Both, theoretical simulations and field measurements of contrails include max-20

imum ODs within this higher range; Ponater et al. reported monthly maximum ODs
over the USA as large as 3, while Atlas and Wang’s lidar retrievals detected a 1 km
thick persistent linear contrail with an OD around 2.3.

Minnis et al. (1999) performed off-line contrail RF calculations assuming fixed ODs
between 0.1 and 0.5 and also included a case with a variable contrail IWC. The latter25

produced a RF of 10 mW m−2; this value falls very close to their result (8 mW m−2) for
a fixed OD of 0.1. This OD is similar to the one obtained here (0.08) for the same
physical depth assuming mean IWC values, although the corresponding RF calculated
by Minnis et al. is larger than our value (2 mW m−2) by around a factor of two, bearing
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in mind that their CC is almost twice as large as the one used here. This difference
in the calculated RF is similar to that expected from model discrepancies; in a recent
intercomparison of contrail global RF models (Myhre et al., 2001) found differences of
around a factor of 2 for an assumed 1 % homogeneous global CC, and slightly smaller
differences for a realistic cover.5

Minnis et al. also considered the high end of the OD values retrieved by satellite
to be more consistent with satellite calibrated estimates of the CC, and reported their
best estimate to be 20 mW m−2, based on the assumption of a fixed OD of 0.5. These
results are consistent with our calculations for the same physical depth (220 m) and
our maximum IWC assumption, which produces a mean NH OD of 0.51 and a RF of10

11.2 mW m−2 for the same year (1992), that can be scaled up linearly to 21.5 when
considering that the CC used in Minnis et al. is 0.09 instead of the 0.047 % used here.

Based on the fitted curve for the maximum IWC, a range of RFs bewtween 16.2 and
51.6 mW m−2 is obtained for year 2005 (see Table 1) by linearly scaling up the 1992
RF using the traffic increase and excluding any climate change effects. IPCC’s best15

estimate of 10.0 mW m−2 falls outside this range, as do more recent estimates, which
tend to be smaller than that of the IPCC (2007). In this estimate a scaling factor of
1.45 is used to take into account the increase in traffic from 1992 to 2005 (Lee et al.,
2009), and a factor of 2 is applied to the upper bound of the range in order to allow
for the uncertainty in the estimated CC. Also using these scaling factors, the mean20

IWC assumption produces a RF range (2.9–14.8 mW m−2) that is similar to the values
found in the recent literature, but is inconsistent with the IWC retrieved for cirrus from
satellite measurements: these show much larger values than those retrieved in situ
for the same temperatures. Finally, a range of RFs between 0.3 and 51.6 mW m−2 is
obtained for year 2005 if the variabilities in vertical depth and in IWC are assumed in25

conjunction with the above scaling factors.
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5 Conclusions

The variability in IWC that persistent aged contrails may share with natural cirrus im-
plies larger uncertainties in RF than has been predicted by satellite and theoretical
studies. Based on the range of vertical thickness assumed here (220 to 1000 m) a sen-
sitivity of around a factor of 2 is found for the calculated contrail RF and OD, compared5

to an IWC dependence that exceeds one order of magnitude; translating into a wider
range of radiative forcings from linear contrails than that reported in previous studies,
including IPCC’s (3 to 30 mW m−2). A range of RFs between 0.3 and 51.6 mW m−2

is obtained here for year 2005 if both the vertical depth and the IWC variabilities are
taken into account and an uncertainty of a factor of two is assumed for the CC. Min-10

imum, mean, and maximum IWCs measured in situ imply mean optical depths in the
range (0.005–0.04), (0.08–0.32) and (0.51–2.02), respectively, with corresponding RFs
(0.3–1.2 mW m−2), (2.9–14.8 mW m−2), and (16.2–51.6 mW m−2). Contrail cover esti-
mates rely on satellite retrievals, which tend to overestimate the IWCs when com-
pared to in situ measurements but do coincide with the contrail OD derived from in15

situ mean IWCs. This inconsistency demonstrates the need for collocation studies, in
which ground based remote sensing retrievals, despite their limited spatial coverage,
would improve our understanding of the temporal evolution of contrails and would also
allow representative satellite values to be derived.

It is found that, for a fixed CC, the contrail’s RF dependence on altitude is mainly20

linked to the IWC predicted at the different flight levels, showing a modest altitude
dependence in January at heavily trafficked latitudes. This implies that the effect of
contrails in winter would be largely driven by the potential CC, which decreases with
altitude, In contrast, the July weighted RF shows a significant altitude dependence,
with FL340 showing smaller values than FL400 in by as much as a factor of 10 at some25

heavily trafficked latitudes.
The predicted range of Dge spans a factor of 3, with a 25 µm Dge being predicted over

the NH if mean values for IWC are assumed. The fact that this value is similar to that
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(23.5 µm) for the contrail PSD commonly assumed in off-line contrail studies, shows
that this PSD does not differ significantly from that of typical cirrus at contrail altitudes.
Despite the significant variability in the predicted Dge, and the fact that matching a
variable IWC to a fixed Dge value involves obvious physical inconsistencies, the best

estimate of 20 mW m−2 reported by Minnis et al. (1999), based on a fixed OD of 0.5 and5

a fixed averaged particle size, is comparable to the results found here (21.5 mW m−2)
if their CC of 0.09 and vertical thickness of 220 m are assumed. The OD predicted
here (0.51) for a 220 m thick contrail layer when using the maximum IWC assumption
also coincides with the value used in Minnis et al.’s best estimate, who considered the
high end of the OD values retrieved by satellite to be more consistent with satellite-10

calibrated estimates of the CC, but RFs almost twice as large are obtained if a contrail
vertical thickness of 1000 m is assumed.
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Rädel, G. and Shine, K. P.: Radiative forcing by persistent contrails and its dependence on

cruise altitudes, J. Geophys. Res., 113, D07105, doi:10.1029/2007JD009117, 2008. 19928,
19933

Rossow, W. B. and Schiffer, R. A.: Advances in understanding clouds from ISCCP, B. Am.10

Meteorol. Soc., 80, 2261-2287, 1999. 19931
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Table 1. Global mean top-of-the-atmosphere shortwave (SW), long-wave (LW), and net con-
trail radiative forcing (mW m−2) for the three IWC assumptions (minimum, mean and maximum).
The annual mean global contrail cover (CC) is 0.047 %, as calculated in the TRADEOFF inven-
tory of aircraft flown distance for the year 1992 and scaled up CC values for year 2005 and a
further factor of 2 scale up to allow for CC uncertainties. The mean optical depth (OD), gener-
alized size (Dge in µm), and ice water path (IWP in gm−2) correspond to the NH averages.

IWC Month OD Dge IWP SW LW Net Net Net
1992 2005 2005

(CC X 2)

Min Jan 0.005 12.1 0.05 −0.01 0.28 0.27
220 m Jul 0.006 12.2 0.07 −0.03 0.18 0.15

Annual 0.005 12.1 0.06 −0.02 0.23 0.21 0.3

Min Jan 0.03 13.6 0.2 −0.3 0.8 0.5
1000 m Jul 0.04 14.1 0.3 −0.3 0.5 0.2

Annual 0.04 13.9 0.2 −0.3 0.7 0.4 1.2

Mean Jan 0.07 23.3 1.6 −1.5 4.5 3.0
220 m Jul 0.09 24.0 2.0 −1.7 2.7 1.0

Annual 0.08 23.2 1.7 −1.6 3.6 2.0 2.9

Mean Jan 0.28 26.2 3.2 −3.6 11.2 7.6
1000 m Jul 0.36 26.4 4.2 −4.8 7.4 2.6

Annual 0.32 26.3 3.7 −4.2 9.3 5.1 14.8

Max Jan 0.47 29.2 13.1 −6.5 24.0 17.7
220 m Jul 0.55 28.6 15.5 −9.1 13.7 4.7

Annual 0.51 28.6 13.8 −7.8 18.9 11.2 16.2

Max Jan 1.88 35.7 27.0 −9.8 38.8 29.0
1000 m Jul 2.17 37.0 32.2 −17.3 23.8 6.5

Annual 2.02 36.3 29.6 −13.6 31.3 17.8 51.6
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Fig. 1. Minimum, mean, and maximum IWC fits from Schiller et al., the red lines correspond
to the the same dataset but including IWCs with frequencies larger than 5 % only. Middle:
Particle number densities as a function of equivalent-volume diameter, based on McFarquhar
and Heymsfield’s parameterization and Schiller et al.’s mean IWC. Bottom: Minimum, mean,
and maximum total ice crystal numbers observed by Krämer et al. (2009) compared to the total
ice crystal number for mean IWC in the present study, shown in blue.
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Fig. 2. Net January contrail radiative forcing for mean IWC.
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Fig. 3. Same as Fig. 2 but for July.
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Fig. 4. January and July zonal contrail LW (uppermost dotted and solid lines), SW (lowermost
dotted and solid lines), and net (middle dotted and solid lines) radiative forcings with natural
clouds included (all sky) and excluded (clear sky). The numbers show the global average in
mW m−2.
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Fig. 5. January and July zonal mean contrail net RFs for cruise altitudes of 30 000, 34 000
and 38 000 ft (FL300, FL340 and FL380, respectively). The numbers show the NH average in
mW m−2.
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Fig. 6. Same as Fig. 5 per unit contrail cover (in %).
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Fig. 7. January and July zonal contrail net radiative forcing for mean, minimum (min), and
maximum (max) IWC assumptions at FL380. The numbers show the global average in mW m−2.
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