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Abstract

During the measurement campaign FROST 2 (FReezing Of duST 2), the Leipzig
Aerosol Cloud Interaction Simulator (LACIS) was used to investigate the influences
of various surface modifications on the immersion freezing behavior of Arizona Test
Dust (ATD) particles. The dust particles were exposed to sulfuric acid vapor, to water
vapor with and without the addition of ammonia gas, and heat using a thermodenuder
operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diame-
ter of 300 nm were fed into LACIS and droplets grew on these particles such that each
droplet contained a single particle. Temperature dependent frozen fractions of these
droplets were determined in a temperature range between —40°C <7< -28°C. The
pure ATD particles nucleated ice over a broad temperature range with their freezing
behavior being separated into two freezing branches characterized through different
slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with
sulfuric acid resulted in the particles’ IN potential significantly decreasing in the first
freezing branch (T > —-35°C) and a slight increase in the second branch (T< -35°C).
The addition of water vapor after the sulfuric acid coating caused the disappearance of
the first freezing branch and a strong reduction of the IN ability in the second freezing
branch. The presence of ammonia gas during water vapor exposure had a negligi-
ble effect on the particles’ IN ability compared to the effect of water vapor. Heating in
the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles
for both branches but the additional heat did not or only slightly change the IN ability
of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other
words, the combination of both sulfuric acid and water vapor being present is a main
cause for the ice active surface features of the ATD particles being destroyed. A pos-
sible explanation could be the chemical transformation of ice active metal silicates to
metal sulfates. From an atmospheric point of view, and here specifically the influences
of atmospheric aging on the IN ability of dust particles, the strongly enhanced reac-
tion between sulfuric acid and dust in the presence of water vapor, and the resulting
significant reductions in IN potential, are certainly very interesting.
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1 Introduction

Various atmospheric observations of droplet freezing through heterogeneous ice nucle-
ation show that mineral dust particles act effectively as IN (Cziczo et al., 2004; DeMott
et al., 2003a,b; Richardson et al., 2007; Sassen et al., 2003; Seifert et al., 2010). The
reason is that mineral dust particles largely consist of aluminosilicate clays which dis-
play a high ice nucleating ability (Archuleta et al., 2005; Kaniji et al., 2008; Zimmermann
et al., 1999). Through their ability to nucleate ice, mineral dust particles influence mi-
crophysical and dynamical cloud properties, the formation of precipitation, cloud life
time, and therefore Earth’s climate (DeMott et al., 2003a,b; Zuberi et al., 2002).

Mineral dust particles originate from desert and arid regions and can be lifted into the
free troposphere during storm events and also due to dry convective mixing (Knippertz
et al., 2009). Subsequently, the mineral dust particles can be transported over large
distances (DeMott et al., 2003a; Prospero, 1999; Sassen et al., 2003) and undergo
aging processes, e.g., through coatings with sulfates and other electrolytes (Posfai
et al., 1994). As a result of these aging processes the particle surface and therefore
particles’ IN ability may change.

Several laboratory studies have been performed to investigate the influence of dif-
ferent acidic coatings on the IN ability of mineral dust particles (e.g., Archuleta et al.,
2005; Cziczo et al., 2009; Eastwood et al., 2009; Knopf and Koop, 2006; Niedermeier
et al., 2010). In the deposition nucleation mode below water saturation it was found that
sulfuric acid coating on alumina-silicate and Arizona Test Dust (ATD) particles reduced
the IN ability compared to the pure particles (Archuleta et al., 2005; Cziczo et al., 2009;
Eastwood et al., 2009). In contrast, Knopf and Koop (2006) did not observe a clear
difference between sulfuric acid coated and pure ATD particles. Furthermore, sulfuric
acid coating on aluminum oxide (corundum) particles altered the IN ability only slightly
and the same coating on iron oxide (hematite) particles even led to an enhanced IN
ability compared to the untreated particles (Archuleta et al., 2005). But the question
remains whether the coatings only cover the particle surface so that ice active surface
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features are concealed and/or lead to particle surface modifications due to chemical
reactions impairing the particles’ IN ability. The latter case would be visible in the im-
mersion freezing mode because soluble coating material would dissolve in the droplet
and therefore be removed from the particle surface. As strong indications exist that
immersion freezing is one of the important or maybe even the most important atmo-
spheric ice formation mechanism (Ansmann et al., 2008; de Boer et al., 2011; Connolly
et al., 2009; Hoose et al., 2010; Wiacek et al., 2010), and as the influences of particle
coatings on the IN ability in the immersion freezing mode are not well understood and
quantified, more investigations are needed.

During the first ’'FReezing Of duST’ campaign (FROST 1), Niedermeier et al. (2010)
investigated the influence of acidic and neutralized acidic coatings (succinic and sulfu-
ric acid, ammonium sulfate) on the IN ability of ATD particles in the immersion freezing
mode at the laminar flow diffusion cloud chamber LACIS (Leipzig Aerosol Cloud In-
teraction Simulator; Hartmann et al., 2011; Stratmann et al., 2004). With LACIS the
influence of size selected, quasi monodisperse ATD particles on droplet freezing be-
havior was investigated, with only one particle being immersed in each droplet. It was
found that the applied coatings led to particle surface modifications, decreasing the
ice nucleation ability of the treated particles in different ways. In case of sulfuric acid
coatings, the IN ability decreased with increasing coating amount and the ammonium
sulfate coated particles showed the lowest IN ability within the temperature range in-
vestigated. In contrast, the IN ability of succinic acid coated particles was similar to
that of the pure ATD particles.

During the measurement campaign FROST 2, which took place in March/April 2009
at LACIS, we expanded the investigations concerning the influence of various surface
treatments on the IN ability of ATD particles. Again size selected, quasi monodisperse,
submicron particles were considered. The particles were coated with different amounts
of sulfuric acid to explore to what extent the increase of coating amount leads to an in-
crease of surface modifications altering the IN potential of the particles. Furthermore,
the highest temperature considered was increased to —28°C (during FROST 1, the
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highest temperature considered was —34°C). Also, the sulfuric acid coated particles
were exposed to water vapor with and without the addition of ammonia gas in order
to evaluate which process is more important for IN ability reduction: sulfuric acid neu-
tralization by ammonia or the acceleration of the reaction between sulfuric acid and
mineral dust due to the presence of water. Finally, the coated and pure ATD particles
were treated thermally to investigate if additional heat leads to the evaporation of the
coating material, resulting in the ice nucleation potential of the particles being restored.

Our study is related to the investigations described in Sullivan et al. (2010) and
Reitz et al. (2011). Sullivan et al. (2010) determined the particles’ IN ability in the
deposition nucleation and immersion/condensation freezing mode at two distinct tem-
peratures: —25°C and -30°C using the Continuous Flow thermal gradient Diffusion
Chamber (CFDC). Reitz et al. (2011) performed the chemical characterization of the
differently treated particles using the Compact Time-Of-Flight Aerosol Mass Spectrom-
eter (C-TOF-AMS). In our study we focus on the investigations carried out with LACIS.
In contrast to Sullivan et al. (2010), we investigated the IN ability of the particles in the
immersion freezing mode determining the freezing behavior in the temperature range
between —28°C and —40°C. The larger temperature range and the results concerning
the chemical characterization of the particles being available, allow us to illustrate more
clearly how physicochemical surface modifications influence the IN ability of particles,
e.g., the effect of water vapor exposure to the sulfuric acid coated particles on their IN
ability.

2 Experimental methods

2.1 Particle generation and general setup

The particle generation procedure was similar to that used in the course of the
FROST 1 campaign (Niedermeier et al., 2010). In all experiments ATD (ISO 12103-1,
A1 Ultrafine Test Dust, Powder Technology Inc., Burnsville, Minnesota, USA) was used.
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It features typical properties of desert dust common in the Southwestern USA. The bulk
ATD material mainly consists of aluminosilicate (~ 80 % by mass) and additionally in-
cludes compounds like iron, calcium, magnesium etc. in smaller amounts (Vlasenko
et al., 2005). The ATD particles were dispersed using a fluidized bed generator (TSI
3400A, TSI Inc., St. Paul, Minnesota, USA) (see Fig. 1). As the result of friction in the
fluidized bed, the particles were multiply charged and a self-built Corona discharger
was used to discharge them partially. Note that the corona discharger did not influence
the IN ability of the particles (Niedermeier et al., 2010). Downstream of the corona
discharger, particles with an aerodynamic diameter larger than 560 nm were removed
from the aerosol flow using a Micro-Orifice Uniform-Deposit Impactor (MOUDI Model
100R, MSP Corporation, Shoreview, Michigan, USA). A Krypton 85 neutralizer was
applied to establish a bipolar equilibrium charge distribution on the particles.

Subsequently, the ATD particles could be processed in various ways. First of all, par-
ticles were coated with sulfuric acid in a vapor diffusion tube which contained a reser-
voir filled with sulfuric acid. The tube was surrounded by a water jacket, the tempera-
ture of which was controlled by a thermostat (HAAKE C25P, HAAKE GmbH, Karlsruhe,
Germany). Three temperatures were applied during the experiments (45°C, 70 °C, and
85 °C), resulting in three different amounts of sulfuric acid on the particles.

For the production of ammonium sulfate coatings, the ATD particles were first coated
with sulfuric acid at 70 °C and subsequently passed over a water bath at room temper-
ature (about 25 °C) where the aerosol was humidified. Then, ammonia gas was added.
In a three meter reaction path (about 10 s residence time) the neutralization of the
particulate sulfuric acid by the ammonia gas could take place. After that the aerosol
flow was dried using a diffusion dryer. Additional experiments were performed in a sim-
ilar way but without the direct addition of ammonia gas to separate the effect of water
absorbtion after sulfuric acid coating on the particles’ IN ability.

Downstream of the coating device, particles could be passed through a thermode-
nuder. In its heating section a temperature of 250 °C was applied. Finally, a DMA (Dif-
ferential Mobility Analyzer; Knutson and Whitby (1975); type “Vienna Medium”) was
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used to select a quasi-monodisperse particle size fraction. For the freezing experi-
ments, particles with a mobility diameter of 300 nm were selected.

Downstream of the DMA the aerosol flow was split by a flow divider with one frac-
tion being directly supplied to the Compact Time-Of-Flight Aerosol Mass Spectrome-
ter (C-TOF-AMS, manufactured by Aerodyne Research Inc., Billerica, Massachusetts,
USA, Drewnick et al., 2005; operated by Max Planck Institute for Chemistry, Mainz,
Germany) and the Aerosol Time-Of-Flight Mass Spectrometer (A-TOF-MS, manufac-
tured by TSI Inc., Shoreview, Minnesota, USA, Prather et al., 1994; operated from
ETH Zurich, Zurich, Switzerland) in order to characterize the selected particles with
respect to their chemical composition. The other fraction of the aerosol flow leaving
the DMA was led to a dilution system where particle free air was added. All flows were
controlled by mass flow controllers (MKS 1179, MKS Instruments Deutschland GmbH,
Munich, Germany) and checked on a daily basis with a bubble flow meter (Gilian®
GiIibratorTMZ, Sensidyne Inc., Clearwater, Florida, USA). From the dilution system, the
remaining instruments were supplied with their required flows. A Condensation Par-
ticle Counter (CPC, GRIMM 5.304, GRIMM Aerosol Technik GmbH & Co. KG, Ain-
ring, Germany) was used to measure the total particle concentration. The hygroscopic
growth and activation behavior of the selected particles were determined using a Hu-
midity Tandem Differential Mobility Analyzer (H-TDMA, operated from the Research
Center Jilich) and a Cloud Condensation Nucleus Counter (CCNC, DMT, Boulder,
Colorado, USA, Roberts and Nenes, 2005), respectively. Finally four different ice nu-
cleation instruments (the Portable Ice Nucleation Chamber (PINC, operated by the
ETH Zurich, Zurich, Switzerland, Stetzer et al., 2008), the Fast Ice Nucleus CHamber
counter (FINCH, operated by the University of Frankfurt, Frankfurt, Germany, Bundke
et al., 2008), the Continuous Flow thermal gradient Diffusion Chamber (CFDC, Col-
orado State University, Fort Collins, Colorado, USA, Sullivan et al., 2010) and LACIS)
were used to investigate the IN ability of the particles in the immersion freezing, im-
mersion/condensation freezing and deposition nucleation mode.
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2.2 LACIS-measurement procedure

During FROST 2, the LACIS measurement procedure was similar to that applied in
the course of the FROST 1 campaign (see Hartmann et al., 2011; Niedermeier et al.,
2010). The aerosol flow entered LACIS (Fig. 1) with a dew-point temperature of about
—-40°C. A part of the particle free sheath air flow was humidified by a saturator (Perma
Pure PH-30T-24KS, Perma Pure LLC, Toms River, New Jersey, USA) and subsequently
mixed with the remaining dry air flow, resulting in dew-point temperatures between
—-7.0°C and -0.4°C. The dew-point temperatures were monitored using a dew-point
mirror (DPM, Dew Master, Edge Tech, Milford, Massachusetts, USA) measuring with
an accuracy of £0.1K.

The dry aerosol and humidified sheath air flows were combined in the inlet section of
LACIS with the aerosol flow being confined by the sheath air to a narrow beam of about
2mm in diameter at the center axis of LACIS. The volume flow rates of sheath air and
aerosol flow were chosen such that both flows entered LACIS in an isokinetic fashion
with a velocity of about 0.4ms™'. Al experiments were performed at atmospheric
pressure.

LACIS itself is a laminar flow tube with an inner diameter of 15mm and a length
of 7m. It is divided in seven 1m tubes, each surrounded by a thermostated
glysantin/water-mixture (thermostats 1 to 5: JULABO FP50, JULABO Labortechnik
GmbH, Seelbach, Germany) or ethanol jacket (thermostats 6 to 7: JULABO LH85) so
that the temperature of each section can be controlled separately (Fig. 1).

For the detection of the particles at the outlet of LACIS, a white light aerosol spec-
trometer (WELAS® 1000, PALAS®, Karlsruhe, Germany) was used. Downstream of
WELAS®, the particle concentration was measured by means of a CPC (TSI 3010,
TSI Inc., St. Paul, Minnesota, USA). The outlet dew-point temperature was monitored
using another DPM (MBW 973, MBW Calibration Ltd., Wettingen, Switzerland) mea-
suring with an accuracy of + 0.05K.
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The inlet temperature and the wall temperature of the first LACIS section were set
to 20°C. The wall temperatures of section 2 to 5 were set to 0°C. The temperatures
of sections 6 and 7, from here on called freezing sections, were set to identical values
and varied between —28 and —40°C during the experiments. The inner tube walls of
the freezing sections were coated with ice by cooling these tubes down to —40°C for 5
min prior to the measurements. This procedure ensured well-defined and reproducible
wall boundary conditions for both the experiments themselves and the numerical sim-
ulations described in Hartmann et al. (2011).

The LACIS settings are chosen such that supercooled droplets are generated within
section 6 and subsequently freeze due to further cooling. Supercooled droplets which
do not freeze inside the freezing sections evaporate due to the Wegener-Bergeron-
Findeisen effect (Findeisen, 1938), caused by both the ice at the inner tube and the
nucleated ice crystals. From model calculations (Hartmann et al., 2011) we know that
the supercooled, unfrozen droplets evaporate within the second freezing section some-
where along the tube depending on the chosen inlet dew-point and wall temperature.
Consequently the residence time (i.e., the time interval during which the supercooled
droplets can freeze) depends on these two parameters. During the experiments care
was taken that regardless of the chosen wall temperature in the freezing sections,
droplets always experienced similar residence times. This was achieved by adjusting
the inlet dewpoint temperature according to the wall temperatures set in the freezing
sections.

The advantage of this measurement setup is that only frozen droplets and seed
particles remain, which can easily be distinguished with the WELAS® instrument by
size, enabling the determination of ice fractions, i.e., the number of frozen droplets
divided by the total particle number (Niedermeier et al., 2010).
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3 Results

In the following we introduce abbreviations to make the different particle treatments
clearly distinguishable. The untreated particles are labeled as: pure ATD. The sulfu-
ric acid coatings at the three different temperatures are labeled as: ATD + SA(45°C),
ATD + SA(70°C) and ATD + SA(85°C). The sulfuric acid coated and water bath ex-
posed particles are labeled as: ATD + SA(70°C) + WB; if ammonia gas was added as
well, the label is: ATD + SA(70°C) + WB + NHj5. In case of the thermodenuder inclu-
sion, the addition “+ TD” is attached to the given coating treatment.

3.1 Physical and chemical properties of the differently treated particles

To get information about the shape and surface structure of the ATD particles we in-
vestigated pure ATD and ATD + SA(70°C) by transmission electron microscopy (TEM,
Zeiss Libra 200FE) (Fig. 2). The TEM images show that more or less each particle is
unique. The surface properties differ from particle to particle and on the particles them-
selves, clearly pointing out the heterogeneity of the particles and the particle surfaces.
A clear difference between pure ATD and ATD + SA(70°C) is not apparent from these
images. By electron diffraction in the TEM it becomes clear that the particles’ surfaces
feature both crystalline and amorphous structures.

Concerning chemical composition, the C-TOF-AMS detected the fragments
HSO; and H,SOj in different intensities for ATD + SA(45°C), ATD + SA(70°C) and
ATD + SA(85°C), indicating that sulfuric acid as well as ammonium sulfate are present
on the particles (Reitz et al., 2011). The presence of the latter could be caused by
impurities of ammonia in the compressed air which was used in the experiments. How-
ever, the uptake of ammonia onto sulfuric acid is very low under dry conditions (without
additional wetting, the dewpoint temperature during our particle generation procedure
is approximately —40 °C). That implies that only a small fraction of the sulfuric acid coat-
ing should be neutralized without the water bath in line. The C-TOF-AMS also detected
the fragment so; in intensities depending on the coating amount. This fragment can
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originate from ammonium sulfate and bisulfate salts but most presumably from metal
sulfate salts.

Assuming a spherical dust particle with a diameter of 300 nm, the amount of sul-
fate to produce a complete monolayer on the particle surface is estimated to be
287 attograms per particle (agparticle™', 1ag=10""2g). The amount of sulfate con-
densed on ATD + SA(45°C) was found to be about 900ag particle'1 (Reitz et al.,
2011). For ATD + SA(70°C) and ATD + SA(85 °C) the derived sulfate mass was about
1850 ag particle‘1 and 3000 ag par’ticle'1 , respectively. Consequently for all three coat-
ing temperatures sufficient sulfate mass was available to potentially cover/react with the
complete particle surface (Reitz et al., 2011; Sullivan et al., 2010).

In case of ATD +SA(70°C)+WB +NH; and ATD + SA(70°C) + WB, the C-TOF-
AMS measurements show that the coating amounts and ammonia signals in both
experiments are comparable (sulfate mass of about 2700ag par’[icle'1 to about
2600ag particle‘1). Most of the sulfate/ammonia signals could be attributed to metal
sulfates and possibly metal bisulfates or ammonium sulfate. The amount of metal
sulfate salts was larger compared to experiments with sulfuric acid coatings under dry
conditions. The missing difference between the experiments with and without ammonia
addition could be caused by the compressed air itself containing impurities of ammo-
nia. However, it is also likely, that the tubing downstream of the water bath had become
contaminated during previous experiments with ammonia.

For the thermal treatment experiments using the thermodenuder operating
at 250°C, the C-TOF-AMS detected a clear decrease in the coating amounts
for ATD + SA(45°C)+TD, ATD +SA(70°C)+TD and ATD +SA(85°C)+TD com-
pared to the experiments without additional thermal treatment. But some
sulfate remained and the corresponding sulfate masses after thermal treat-
ment are about 500ag particle‘1 for ATD + SA(45°C)+TD, 1050ag particle‘1 for
ATD + SA(70°C) + TD and 1250 ag particle™ for ATD + SA(85 °C) + TD. When the par-
ticles had been additionally exposed to water vapor, the thermal treatment only lead to
a slight reduction of the coating mass (sulfate masses after thermal treatment of about
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2550ag particle_1 for ATD + SA(70°C) + WB + NH; + TD and about 2500 ag particle_1
ATD + SA(70°C) + WB + TD), suggesting that the sulfate salts formed in the presence
of water vapor were not volatile at 250 °C.

3.2 LACIS immersion freezing results

The ice fractions f,., as measured with LACIS in the immersion freezing mode for the
differently treated ATD particles are presented in Figs. 3 and 4 for given wall temper-
atures in the freezing sections. It should be noted that the wall temperature is equal
to the freezing temperature as described in Niedermeier et al. (2010). Additionally, the
results for homogeneous freezing of highly diluted ammonium sulfate solution droplets
are shown. It is clearly visible that homogeneous freezing is the dominating ice nu-
cleation process for T < —38 °C. For higher temperatures ice formation occurs through
immersion freezing as discussed in Niedermeier et al. (2010). These findings are also
supported by the numerical simulations presented in Hartmann et al. (2011).

For all particle types, f,.. increases with decreasing temperature, but in different man-
ners (Fig. 3). Results from the FROST 1 campaign demonstrated already that a freez-
ing point suppression due to dissolved coating material, as observed by e.g., Hung
et al. (2003) and Zobrist et al. (2008), cannot cause the differences in the determined
ice fractions. For the investigated temperature range the droplets inside LACIS are
activated and reach diameters larger than 1 um before freezing occurs. Considering
the coating amounts, the water activity of the supercooled droplets is approximately
1, i.e., the solution droplets are highly diluted when freezing occurs. Therefore only
varying surface properties caused by the particle treatments can lead to the different
IN efficiencies (Niedermeier et al., 2010).

Pure ATD nucleated ice over the whole temperature range investigated. Two different
freezing branches exist, i.e. there are two different freezing temperature dependencies
visible in the ice fraction curves, characterized by different slopes with a “knee” at
about —35°C (Fig. 4a). This behavior was not observed during the FROST 1 campaign
because there the highest freezing temperature investigated was —34 °C.
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Coating the particles with sulfuric acid at 45°C (ATD + SA(45°C)) decreased
fee slightly in the first freezing branch (T >-35°C). For ATD + SA(70°C) and
ATD + SA(85 °C) the first freezing branch vanished completely (Fig. 4d and 4f). In con-
trast, in the second branch (T < -35°C), f,., was slightly increased by any of the sulfuric
acid coatings, with the effect becoming less pronounced with increasing coating tem-
perature. Although the effect is close and partly within the experimental uncertainty, it
is worth mentioning, as it suggests an increase of the ATD’s IN potential in the temper-
ature range below —35 °C due to the sulfuric acid coating.

For the treatments ATD + SA(70°C) + WB and ATD + SA(70°C) + WB + NHj, f;, de-
creased about one order of magnitude in the whole temperature range investigated
compared to pure and sulfuric acid coated particles. Regardless whether ammonia
gas was added or not, the IN ability was identical for both treatments (Fig. 4c and 4e).
A detailed discussion concerning the missing difference is given in the discussion sec-
tion.

Figure 3b as well as Fig. 4 show f,., of the pure and coated particles that had been
additionally thermally treated by means of the thermodenuder which was operated at
250°C. fi,, of pure ATD + TD did not change within the error bars compared to the
pure ATD case (Fig. 4a). In contrast, . of the sulfuric acid coated particles clearly
decreased about one order of magnitude for all three coating conditions. The higher
the sulfuric acid coating amount prior to thermal treatment the lower was the IN ability
afterwards. In case of ATD + SA(70°C) + WB and ATD + SA(70°C) + WB + NH5 the
thermodenuder did not cause a significant change of f,., compared to measurements
without the thermodenuder. Only the slope of the ice fraction changed such that after
thermal treatment f;, was slightly lower for T < =35 °C and slightly higher for T > -35°C
compared to the thermally untreated particles. However, the differences are well within
the measurement uncertainties.
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3.3 Comparison between CFDC and LACIS data

Although measurement techniques and detection methods differ between CFDC (Sul-
livan et al., 2010) and LACIS, a comparison of the ice fractions measured with both
instruments is presented in Fig. 5 for T = —=30 °C. With LACIS the only freezing process
occurring was immersion freezing. With the CFDC the freezing behavior of the particles
at a final relative humidity of about 105 % with respect to liquid water was investigated.
A combination of ice nucleation processes could occur when the particles reach this
RH-value, but condensation and immersion freezing were expected to be predominant
(Sullivan et al., 2010). Elevated fractions of particles freezing at 105 % RH in compar-
ison to the deposition regime occur in coincidence with activation of droplets on dust
that grow to sizes quite similar to those cooled in LACIS on the basis of the model of
Rogers (1988).

Similar trends in the ice nucleating ability of the differently treated particles were
observed. For pure ATD, pure ATD + TD, ATD + SA(45°C) and ATD + SA(45°C) + TD,
the CFDC ice fractions are systematically higher than those measured with LACIS
but (almost) within the measurement uncertainty. For the other treatments namely
ATD + SA(70°C), ATD + SA(70°C) + TD, ATD + SA(85°C) and ATD + SA(85°C) +TD
as well as ATD + SA(70°C) + WB + NH; and ATD + SA(70°C) + WB + NH; + TD, ice
crystal formation was observed with LACIS but the number of detected ice crystals was
too small to determine realiable ice fraction (ice fractions were below the quantification
limit of about 5 x 10'4). Ice fractions measured with the CFDC for these cases were
partly above the LACIS detection limit however with the error bars including values well
below that limit. In summary, for the temperature where data is available from both
instruments, i.e. T = =30 °C, the agreement for pure ATD (+)TD and ATD + SA(45°C)
(+ TD) and the similar trends we saw in general between the CFDC and LACIS data
are encouraging.
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4 Discussion

As already shown in Fig. 2, the particle surfaces feature crystalline and amorphous
structures, i.e., there is a variability of the surface properties across the population of
ATD particles. Considering these findings together with those of Niedermeier et al.
(2011), it is plausible that the particles feature surface areas/structures with different
energy barriers which have to be overcome to initiate ice nucleation. For example
crystalline surface structures with e.g. hexagonal or pseudohexagonal arrangement of
hydroxyl groups at the surface of the lattice may feature a higher nucleation potential
than amorphous structures (Pruppacher and Klett, 1997). Additionally, surface dis-
locations like steps, etch pits, edges, etc. could enhance the ice nucleation process.
This is relevant because surface areas with the lowest energy barrier have the highest
probability to initiate ice nucleation at a given temperature.

For pure ATD particles it was found that two different freezing branches exist which
are characterized by different slopes in the ice fraction versus temperature curves (see
Fig. 4). This behavior suggests that within the population of ATD particles, only a small
number of particles features surface areas with comparatively high nucleation poten-
tials (see small ice fraction values within the first freezing branch, T > —35°C). However,
the majority of particles features areas with lower nucleation potentials (particles induc-
ing freezing at temperatures below —35°C). It is conceivable that the applied particle
treatments affect these different areas and their ice nucleation abilities in different ways,
and indeed such an behavior was observed.

Before going into more detail, and to avoid confusion, we first would like to address
the issue of inhomogeneous or incomplete coating of the ATD particles. The A-TOF-
MS measurements suggested that up to 15 % of the ATD + SA(45 °C) treated particles
may have contained no coating (Sullivan et al., 2010). However CCNC measurements
show that droplet activation took place in a small supersaturation interval without ex-
hibiting any steps (Wex et al., 2011). Therefore it is more likely that for ATD + SA(45 °C)
each particle contained at least some coating material but its distribution over the par-
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ticle surface may not have been homogeneous. Such inhomogeneous sulfuric acid
coatings on ATD particles were also found by Cziczo et al. (2009) based on single-
particle mass spectrometry measurements. This might explain the comparably small
changes in IN ability for the ATD + SA(45°C) case under dry conditions. However, for
the other coating temperatures there are strong indications towards a complete coat-
ing. Therefore, from here on our discussion will mainly rely on the data for pure ATD
particles or ATD + SA(70°C) and ATD + SA(85°C).

Now we look at results obtained for dry conditions, i.e. ATD + SA(70°C) and
ATD + SA(85°C). For these cases f,, was significantly reduced within the first freezing
branch but slightly increased within the second branch (7< -35°C). We suggest that
the “effective” surface areas (i.e., areas with comparatively high nucleation potential)
are destroyed or changed very easily by the sulfuric acid coating leading to the dis-
appearance of the first freezing branch with increasing coating amount. It should be
kept in mind, that here dry conditions are considered and reactions of sulfuric acid and
the ATD particles should be slow. The small increase of f,., in the second freezing
branch is suggestive for substances or surface features being formed which exhibit
higher nucleation potential and consequently increase the IN ability. This is an inter-
esting observation in itself, similar to observations made for sulfuric acid coating on
iron oxide (hematite) particles (Archuleta et al., 2005), and needs further investigation.
Application of the thermodenuder interestingly led to a significant reduction of the IN
ability, with the second branch being affected as well. This is a strong indication that the
substances and/or surface features nucleating ice in the second branch are destroyed
by the thermal treatment (the effect of the thermal treatment will be discussed in more
detail later). In general, reactions forming e.g. calcium sulfate (CaSQO,), magnesium
sulfate (MgSQ,) as well as reactions between sulfuric acid and aluminosilicates are
possible under dry conditions. However, we cannot distinguish whether certain chem-
ical components or surface features like steps, edge pits, etc. are destroyed by the
sulfuric acid. Most likely both processes are taking place. Nevertheless, assuming
chemical reactions to be responsible for the reduction of the IN potential, from the
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observed reaction products (the metal sulfates) one could speculate, that the precur-
sors of these reaction products, i.e. the aluminosilicates which also have e.g., calcium
and magnesium interspersed, could be responsible for the IN nucleation. This finding
would be in line with e.g., Kanji et al. (2008), Mason (1960) and Murray et al. (2011),
who indicated aluminosilicates, which are major components of kaolinite, montmoril-
lonite and other clay minerals, to contribute to the ice nucleation potential. However,
further experiments are needed to explore and explain the differences in the ice nucle-
ation behavior of the two freezing branches and to quantify the relative importance of
chemical reactions versus destruction or creation of ice nucleating surface features.

In case of ATD + SA(70°C) + WB + NH; and ATD + SA(70°C) + WB treatments, the
surface modifications seem to be more effective since the IN ability is decreased
strongly within both freezing branches. Due to the addition of water vapor and ammo-
nia two competitive reactions could take place. On the one hand the neutralization of
the sulfuric acid could occur forming ammonium sulfate on the particle surface. On the
other hand an enhanced reaction of the sulfuric acid with substances in/on the particle
surface is plausible due to the addition of water vapor. The question is which of these
reactions is fastest and leads to this strong IN ability reduction. The C-TOF-AMS mea-
surements showed that the neutralization of a part of the sulfuric acid occurred and
that the humidification also caused increased surface reactions (Reitz et al., 2011),
i.e., both reactions occurred simultaneously. Since ammonium sulfate is a soluble sub-
stance it should dissolve completely as soon as the particles become activated to cloud
droplets inside the LACIS tube. If neutralization due to the ammonia was the reaction
that was mostly responsible for the decrease in the IN ability, then consequently the
particle surface should recover to its condition prior to the water vapor processing and
therefore the IN ability should be similar to ATD + SA(70°C). But this is not the case.
Therefore it is more likely that the increased reaction of sulfuric acid with the particle
surface dominates the IN ability reduction. This is in agreement with Lasaga (1995),
who observed that the exposure to water vapor accelerates the reaction of sulfuric acid
with mineral dust and indeed in the water vapor experiments a higher fraction of metal
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sulfate salts was formed compared to the sulfuric acid treatments without water vapor
exposure.

Cwiertny et al. (2008) showed that iron which is interspersed in the aluminosilicates
of ATD becomes dissolved due to sulfuric acid and the presence of water (pH=1)
forming (soluble) iron(ll) and iron(lll) sulfate (FeSO, and Fe,(SO,)3). For our coating
procedure we can estimate the pH value to range between 0 and 1, using the hygro-
scopic growth measurements together with the amount of sulfate determined by the
C-TOF-AMS for estimation. Consequently, the formation of iron sulfate is conceivable.
The C-TOF-AMS and the CCNC data further indicate an increased formation of other
soluble but refractory substances like aluminum sulfate (Al,(SO,);), CaSO, or MgSO,
as well as ammonium metal sulfate salts (Reitz et al., 2011). This list of reaction prod-
ucts may not be complete as many other compounds could be present on the ATD
surface. But in any case it is clear that changes in the INs’ chemical composition as
well as physical surface properties due to coating with sulfuric acid are enhanced if
water vapor is present, leading to a more pronounced reduction in the ice nucleating
efficiency. In other words, the presence of water vapor is responsible for the enhanced
reaction between sulfuric acid and particle surface and consequently for the large IN
ability reduction. The formation of ammonium sulfate due to the addition of ammonia
(intended or unintended) has a negligible influence on the particles’ IN ability in the
immersion freezing mode.

Please note that the increasing amount of sulfuric acid available for surface modifi-
cation is coupled with an increased oven temperature. So we can not clearly separate
the effects of coating amount and heat. But we can deduce that the higher tempera-
ture in the thermodenuder as well as the humidification after coating with sulfuric acid
has a stronger effect on the IN ability than the influence of even the warmest oven
temperature used to produce the coating (85 °C).

During the thermodenuder treatments, the IN were exposed to a temperature of
250°C. This resulted in significant alterations of the particles’ IN ability with the ex-
ception of the pure ATD + TD case, where the exposure to heat did not change the
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IN ability compared to pure ATD. This indicates that heating alone did not cause
changes of the surface structure and composition. In contrast, the IN ability of
the ATD + SA(45°C) + TD, ATD + SA(70°C) + TD and ATD + SA(85°C) + TD cases de-
creased strongly, compared to the respective cases where particles did not pass
through the thermodenuder. No recovery of ice nucleation ability could be observed. In
cases of ATD + SA(70°C) + TD and ATD + SA(85°C) + TD the heat treatment resulted
in the lowest IN abilities observed in the course of the experiments. Application of
the thermodenuder in particular led a) to the evaporation of a part of volatile material
and b) an enhanced reaction between sulfuric acid and particle surface following an
Arrhenius-like relation, forming a higher amount of metal sulfate salts. Furthermore
we think that the exposure to heat in the thermodenuder opened reaction channels
producing more or other surface substances compared to the water vapor exposure
experiments. It is not unlikely that rigorous heating to 250°C directly after coating
could lead to other reaction products than the water treatment after coating.

Regarding the experiments including water vapor exposure and thermodenuder, we
found that the exposure to water vapor after sulfuric acid coating already changed sur-
face properties uniformly and irreversibly by forming a high amount of soluble metal
sulfate salts e.g., Al,(SO,)3, FeSO,, Fe,(SO,)s, etc. with decomposition temperatures
higher than 250°C. Consequently, the exposure to heat after the water bath could
cause only minor effects (e.g. due the decomposition of ammonium metal sulfate com-
pounds and further reaction of the products), and hence the IN ability was not reduced
further due to the heating in the thermodenuder. In order to verify this explanation,
further experiments are needed, which can unambiguously identify the substances
produced on the ATD surface.

To shortly sum up, the thermal treatment in the thermodenuder and the exposure to
water vapor accelerated the reaction between sulfuric acid coating and mineral dust
surface. But reaction channels and reaction products could differ between these two
different treatments. In contrast, for the dry conditions the sulfuric acid coating only
seemed to easily destroy the highly ice active surface features ability. Since the IN
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ability was slightly increased in the second freezing branch due to the coating, ice
nucleating substances and/or surface features might form which feature higher ice nu-
cleation potential. In general, the different surface treatments applied in the course of
our investigations mainly resulted in a decrease of the ATD particles’ IN potential lead-
ing to steeper freezing curves which were shifted towards the homogeneous freezing
case.

5 Conclusions

During the measurement campaign FROST 2 the ability of Arizona Test Dust particles
to act as IN in the immersion freezing mode was investigated at LACIS. The particles
were exposed to various thermochemical treatments including exposure to sulfuric acid
at three different temperatures, to water vapor with and without the addition of ammonia
gas, and heat using a thermodenuder operating at 250 °C. Thus, the influence of vari-
ous surface modifications on the IN ability due to physicochemical reactions of coating
material and particle surface was investigated.

First of all, it was found that two different freezing branches exist for pure ATD parti-
cles which are characterized by different slopes in the ice fraction versus temperature
curves with a “knee” at —35 °C. This freezing behavior emphasized the variability of the
surface properties across the population of ATD particles where only a small number
of particles exhibit surface features with comparatively low energy barriers, i.e., high
nucleation potential. The sulfuric acid coating seemed to easily attack these highly
ice active surface features so that with increasing coating amount the first freezing
branch (T > —-35°C) vanished completely. The IN ability in the second freezing branch
was slightly increased suggesting that, due to the coating, ice nucleating substances
and/or surface features might form which feature higher ice nucleation potential.

The addition of water vapor subsequent to the sulfuric acid coating induced highly
effective surface modifications, most likely due to accelerated chemical reactions on
the particle surface, significantly decreasing the IN ability in both freezing branches.
Assuming chemical reactions to be responsible for the reduction of the IN potential,
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from the observed reaction products (the metal sulfates) one could speculate, that the
precursors of these reaction products, i.e. the aluminosilicates having e.g., calcium
and magnesium interspersed, could be inducing the ice nucleation. The presence of
ammonia gas after water vapor exposure led to neutralization of the remaining free
sulfuric acid and has a negligible effect on the particles’ IN ability. In other words, the
combination of both sulfuric acid and water vapor being present is the main cause for
the ice active surface features of the ATD particles being destroyed. The application
of a warm coating procedure and the exposure to ammonia seem to be of secondary
importance.

Thermal treatment of the pure dust particles did not alter their IN ability, indicating
that heat alone does not change the surface structure and/or composition of the pure
ATD particles. For the dust particles coated with sulfuric acid, similar to the addition
of water vapor, heating in the thermodenuder resulted in a significant decrease of the
particles’ ice nucleation ability. Although this rigorous heating to 250 °C subsequent to
the sulfuric acid coating, might lead to other reaction products than the exposure to
water vapor, both treatments (water vapor and heat) enhance the reaction between the
sulfuric acid coating and the mineral dust. No recovery of the IN ability was observed
indicating the irreversible destruction of the IN potential of the ATD particles due to the
sulfuric acid coating. For the humidified sulfuric acid coated particles, the IN ability was
only slightly changed after thermal treatment. In other words, the exposure to water
vapor already irreversibly changed particle surface properties such that further heating
in the thermodenuder caused no significant effects.

Finally, it is evident that the various particle processings physicochemically and irre-
versibly altered the ATD particles’ surfaces. From an atmospheric point of view, and
here specifically the influences of atmospheric aging on the IN ability of dust particles,
the strongly enhanced reaction between sulfuric acid and dust in the presence of water
vapor, and the resulting significant reductions in IN potential, are certainly very interest-
ing and require further investigations concerning fundamental process understanding
and quantification.
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Fig. 1. Sketch of the generation, coating and size selection of the particles. Also included are

the setup of particle conditioning and LACIS laminar flow tube.
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Fig. 2. Images resulting of Transmission Electron Microscopy (TEM) investigations for pure
ATD (left panel) and ATD + SA(70°C) (right panel) are presented on the left of the panels.
Additionally, results of electron diffraction are shown on the right of the panels where the red

arrows indicated the investigated surface area.

18585

Jadeq uoissnosiq | Jeded uoissnosiq | Jadedq uoissnosiqg | Jeded uoissnosiq

ACPD
11, 18557-18588, 2011

Influence of surface
processing on IN
ability of mineral dust
particles

D. Niedermeier et al.

1] i


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/18557/2011/acpd-11-18557-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/18557/2011/acpd-11-18557-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10° a) b4 10°L ) oy
AR |
T, 2 JrAY
= "'Aflm o i
A HIH W
@ i A k L A
w? 1072 | Aye 102} i
s 1 ‘L \ =1 A
o W A ’¢ 3 & g o
103 L 103 iy
10* 10

0

T[°C]

26 -28 -30 -32 -34 -36 -

42

-26

-28

-30

32 -34 -36 -38 -40 -42

T[°Cl

Fig. 3. Immersion freezing behavior of all types of examined particles. Panel (a) shows ice frac-

tions f,

e Of pure and coated ATD particles (filled symbols). Panel (b) shows f,., of the thermally

treated pure and coated ATD particles using a thermodenuder operating at 250 °C (open sym-
bols). Different colors indicate different particle types/treatments: pure ATD (orange squares),
ATD + SA(45°C) (blue triangles), ATD + SA(70°C) (green triangles), ATD + SA(85 °C) (dark yel-
low triangles), ATD + SA(70°C) + WB (pink diamonds) and ATD + SA(70°C) + WB + NH; (up-
side down red triangles). Additionally, results for homogeneous freezing of highly diluted am-

monium sulfate droplets are shown (black dots).
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Fig. 4. Immersion freezing behavior of all types of examined particles. Panel (a) pure ATD
(orange squares), panel (b) ATD + SA(45°C) (blue triangles), panel (c) ATD + SA(70°C) +
WB (pink diamonds), panel (d) ATD + SA(70°C) (green triangles), panel (e) ATD + SA(70°C) +
WB + NH; (upside down red triangles) and panel (f) ATD + SA(85°C) (dark yellow triangles).
Open and filled symbols represent particles that were and were not thermally treated, respec-
tively.
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Fig. 5. Comparison between CFDC condensation/immersion freezing data (stars) and LACIS
immersion freezing results (hexagons) at T = —30°C. Measurements without thermodenuder
are shown by filled symbols while measurements with thermodenuder are presented as open
symbols. The quantification limits of LACIS and CFDC are marked by the light grey and dark
grey area, respectively. Where no data from LACIS is given, measured f,., was below the
detection limit.
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