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Abstract

We present a computationally efficient approach to account for the non-linear chem-
istry occurring during the dispersion of ship exhaust plumes in a global 3-D model
of atmospheric chemistry (GEOS-Chem). We use a plume-in-grid formulation where
ship emissions age chemically for 5 h before being released in the global model grid.5

Besides reducing the original ship NOx emissions in GEOS-Chem, our approach also
releases the secondary compounds ozone and HNO3, produced in the 5 h after the
original emissions, into the model. We applied our improved method and also the
widely used “instant dilution” approach to a 1-yr GEOS-Chem simulation of global tro-
pospheric ozone-NOx-VOC-aerosol chemistry. We also ran simulations with the stan-10

dard model, and a model without any ship emissions at all. Our improved GEOS-Chem
model simulates up to 0.1 ppbv (or 90 %) more NOx over the North Atlantic in July than
GEOS-Chem versions without any ship NOx emissions at all. “Instant dilution” overes-
timates NOx concentrations by 50 % (0.1 ppbv) and ozone by 10–25 % (3–5 ppbv) over
this region. These conclusions are supported by comparing simulated and observed15

NOx and ozone concentrations in the lower troposphere over the Pacific Ocean. The
comparisons show that the improved GEOS-Chem model simulates NOx concentra-
tions in between the instant diluting model and the model with no ship emissions, and
results in lower O3 concentrations than the instant diluting model. The relative differ-
ences in simulated NOx and ozone between our improved approach and instant dilution20

are smallest over strongly polluted seas (e.g. North Sea), suggesting that accounting
for in-plume chemistry is most relevant for pristine marine areas.

1 Introduction

Seagoing ships carry approximately 90 % of the goods traded globally and the
seaborne trade has been estimated to increase by 5 % per year between 2002 and25

2007 (Eyring et al., 2010). These ships emit large quantities of gases and particles
into the marine boundary layer. Important gas-phase products of fuel combustion from
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shipping are nitrogen oxides (NOx =NO+NO2). NOx emissions lead to photochemical
production of ozone (O3) and influence the hydroxyl-radical (OH) concentrations that
determine the lifetime of methane (CH4) (Lawrence and Crutzen, 1999), both signifi-
cant contributors to global radiative forcing (IPCC, 2007). Furthermore, high O3 mixing
ratios in the lower troposphere are a key component of photochemical smog and pose5

a threat to human health and vegetation. 70 % of ship emissions are estimated to occur
within 400 km of land (Corbett et al., 1999), so ships contribute significantly to pollution
in highly populated coastal areas.

Ships are strong polluters because they are still allowed to combust marine heavy
fuel. Marine engines combust this fuel at high temperatures, leading to relatively high10

NOx emissions. No international legislative framework is currently in place for moni-
toring and allocating international ship emissions. Only recently, the European Union
and the United States Environmental Protection Agency (EPA) issued the mandatory
use of cleaner shipping fuel types in the increasingly polluted harbor regions. Previ-
ous studies (e.g. Corbett et al., 2007; Eyring et al., 2010) indicate that the total NOx15

emissions of shipping are in the range 3.0–10.4 Tg N per year, amounting to 15–30 %
of total global NOx emissions.

State-of-science knowledge of the impact of ship emissions relies on emissions in-
ventories in combination with model studies (e.g. Corbett et al., 1999; Eyring et al.,
2005; Wang et al., 2008; Marmer et al., 2009). Standard Eulerian chemistry-transport20

models (CTMs) simulate atmospheric concentrations of air pollutants by instant dilu-
tion of highly localized sources (e.g. power plants, highways) over the entire model grid
cell. This is an acceptable simplification for chemically inert species, and probably also
for chemically reactive species, provided that there are many such sources within a
model cell. However, when emitting chemically reactive species from highly localized25

sources in relatively clean areas (e.g. ship stacks), instant dilution leads to unrealisti-
cally high NOx and O3 concentrations (Davis et al., 2001). Such overestimations occur
because non-linear chemistry during the initial dispersion stage of the plume is ne-
glected in the instant dilution approach. For example, Kasibhatla et al. (2000) found
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that their instantly diluting (GFDL, 5◦ ×5◦) model simulated NOx concentrations that
were 10× higher than observations over the central North Atlantic. Franke et al. (2008)
reported that instant dilution of ship NOx emissions in a grid box comparable to the
grid cell size of a global model (2.8◦ ×2.8◦), leads to overestimation of ship-induced
ozone production by a factor three. A recent study by Charlton-Perez et al. (2009)5

suggests, by comparing simulations at different resolutions from a high resolution CTM
(200 m×200 m×40 m), that a coarse-grid CTM (5◦ ×5◦) might overestimate O3 pro-
duction by a factor 1.6. Several studies with Lagrangian models (e.g. von Glasow
et al., 2003; Song et al., 2003; Chen et al., 2005) showed that the NOx lifetime within
ship plumes is a factor 2.5–10 shorter than the lifetime of roughly 1 day estimated by10

the instantly diluting CTMs. These Lagrangian models account for the higher NOx con-
centrations in the initial dispersion stages of the plume, leading to elevated OH levels
and thereby shorter NOx lifetimes.

Not a single global CTM currently takes the in-plume effects during ship plume dis-
persion into account. Most models use instant dilution to mix ship emissions with15

background concentrations of trace gases. The GEOS-Chem model (Bey et al., 2001)
attempts to avoid model errors associated with instant dilution, by replacing every emit-
ted NOx molecule by 10 O3 and 1 HNO3 molecules, based on the average ozone
production efficiency of 10 (O3 molecules produced per NOx molecule consumed) ob-
served over the eastern Pacific Ocean near California (Chen et al., 2005). Although20

this approach appears to overcome some of the model errors encountered by other
CTMs, it erroneously produces O3 at night, neglects effects of temperature and ambi-
ent concentrations on O3-NOx chemistry, and underestimates NOx concentrations in
shipping routes, making it practically impossible to use the model in combination with
in situ or satellite observations of NOx to constrain ship NOx emissions. The Global25

Modeling Initiative’s (GMI) tropospheric CTM used by Duncan et al. (2008) corrects
for the continuous O3 production at night by scaling the ozone production efficiency
with the NO2 photolysis rate, but does not account for the effects of temperature and
ambient concentrations either.
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One way to accurately represent highly localized emissions in remote locations in
coarse global models, is by using the concept of “effective emissions”. In this ap-
proach, a small-scale model is used to evaluate the effects of non-linear chemistry on
the enhanced concentrations in a plume up until the moment that sub-grid chemical
nonlinearities have sufficiently decayed, and subsequently introduce the emissions as5

(reduced) “effective emissions” in the large-scale model (in the past used for dealing
with urban and power plant plume in Eulerian models, Sillman et al., 1990). Such an
approach has been attempted for aircraft emissions in the TM3 global CTM (Meijer
et al., 1997) and recently also for ship emissions in a regional model (Huszar et al.,
2010). Huszar et al. (2010) found, using a regional CTM (CAMx) over Europe, that the10

large scale NOx concentrations decrease and the ship NOx contribution is reduced by
up to 20–25 % (compared to instant dilution) and that the ship induced ozone produc-
tion was reduced by 15–30 % over large areas of Europe.

In this study we propose a method to accurately implement ship emissions using
plume-in-grid approach, accounting for non-linear chemistry during the early stages of15

plume dispersion, in the GEOS-Chem global CTM. We model the effects of non-linear
chemistry within a ship exhaust plume with a Gaussian dispersion model that includes
complete atmospheric chemistry. In situ observations of trace gases in ship plumes are
used to test our Gaussian dispersion model. We test and evaluate various approaches
of dealing with ship emissions in a global CTM with observations over the Atlantic and20

Pacific Ocean.

2 Model

2.1 PARANOX model

In this study a Gaussian dispersion plume model, named PARANOX (PARAmetrization
of emitted NOX) has been used. The basic characteristics of this model were described25

by Meijer (2001) and Vinken (2010). This model was originally designed to simulate
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the effects of aircraft emissions in the upper troposphere, but for this study we adapted
it to marine boundary layer conditions. The model simulates the chemical evolution
of atmospheric trace gas concentrations resulting from emissions in 10 rings perpen-
dicular to the wind direction, as a cross-section of the plume. The model takes into
account the chemistry inside and outside the plume, diffusion of emitted species inside5

the plume between the rings, expansion of the plume, and entrainment of ambient air
in the plume. In this section we first describe the general characteristics of PARANOX
and then evaluate PARANOX with ship plume observations from the ITCT 2K2 aircraft
campaign (Chen et al., 2005).

The model includes a detailed simulation of O3-NOx-hydrocarbon chemistry for the10

troposphere, with 43 species and 98 reactions. Originally the gas-phase reaction
rates were taken from DeMore et al. (1997). We updated PARANOX with the lat-
est reaction rates from the IUPAC Subcommittee for Gas Kinetic Data Evaluation
(http://www.iupac-kinetic.ch.cam.ac.uk/index.html). Rainout of species is not taken into
account. The time step in the model is 100 s. To facilitate the discussion of plume15

chemistry in the remainder of the paper, the most critical O3-NOy-HOx reactions for
both day and nighttime are given in Table 1.

Sulfate particles are formed in the ship plume, that allow heterogeneous reactions
in the plume. The PARANOX model includes heterogeneous formation of HNO3 from
N2O5 and H2O on aerosols. The reaction rate constant Khet (s−1) of Reaction (R12) is20

given by

Khet =
1
4
γνS (1)

With γ the reaction probability, S (cm−1) the aerosol surface area density, and ν
(cm s−1) the mean absolute molecular velocity of air molecules. Originally the reaction
probability of N2O5 on sulphate aerosol was 0.1 as suggested for tropospheric condi-25

tions above 200 K by DeMore et al. (1997). Following recent studies, e.g. Evans and
Jacob (2005), we updated this reaction probability to 0.02.
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In this study we follow an approach for the lateral and vertical dispersion in the lower
troposphere originally described by Hanna et al. (1985) (Offshore and Coastal Disper-
sion algorithm), adapted for dispersion calculations over water by Song et al. (2003)
and commonly used to describe ship plume dispersion (e.g. Franke et al., 2008; Kim
et al., 2009; Song et al., 2010). These lateral and vertical dispersion parameters de-5

pend on the meteorological stability class and can be tuned in PARANOX. The marine
boundary layer is often topped by an inversion. It is generally assumed that plumes will
not expand above this top. Therefore, we stop expansion in the vertical direction when
the outer radius of the 10th ring reaches this top. After this top has been reached the
expansion in the lateral direction still continues.10

2.2 Evaluation of PARANOX

In order to validate the simulations by the plume model we compare our results with
observations from the ITCT 2k2 aircraft campaign (Chen et al., 2005). In this study,
measurements were taken from a ship plume 100 km off the Californian coast around
noon on 8 May 2002. Measurements of chemical species concentrations were taken15

from the aircraft at ∼100 m above sea level in eight consecutive transects of the ship
plumes, corresponding to plume ages of 30 min up to 3 h. Concentrations of NOx,
HNO3, PAN, SO2, H2SO4, O3, CO and CO2 have been measured.

For the PARANOX evaluation we used a NOx emissions rate of 12.4 g s−1, as re-
ported for the ITCT 2K2 aircraft campaign by (Chen et al., 2005). We adopt back-20

ground concentrations as given in Table 2, consistent with the values reported for the
ITCT 2K2 aircraft campaign.

Figure 1 shows the evolution of observed and simulated NOx, O3 and OH concentra-
tions, as well as the instantaneous NOx lifetime, in the plume in the 3 h after emissions.
The PARANOX simulated concentrations correspond to the weighted average over the25

10 rings.
To structure the discussion of the results we separate the plume dispersion in three

regimes, as proposed by Song et al. (2003): early plume dispersion ([NOx] above
17795
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1 ppmv), mid-range dispersion ([NOx] ∼ several ppbv) and long-range dispersion ([NOx]
below 1 ppbv). We can also classify the evolution of the plume by following the O3
concentrations: O3 titration ([O3] less than half of ambient concentration), O3 recovery
([O3] increasing to ambient concentration) and net O3 production ([O3] above ambient
concentration).5

The strong decline in the O3 concentrations during the first stage is caused by the O3
being titrated by the abundantly available NO via Reaction (R3). Almost all O3 within
the plume is gone at this point, but stored as NO2 and will later be recycled. In the
second stage, HO2 is converted to OH and NO2 via Reaction (R4) (this is reflected by
the rise in OH concentrations in Fig. 1c). The NO2 is then photolyzed (Reaction R5),10

leading to net photochemical O3 production (Fig. 1b). The OH concentrations are
maximal in this stage and almost 2 times higher than background levels. These high
OH concentrations imply a shorter NOx lifetime and a relatively low fraction of NOx
remaining. By instantly diluting the emissions, common practice in global CTMs, this
stage is missing and this results in too high NOx lifetimes. After about 80 min the final15

stage sets in. Reactions of NO with HO2 (Reaction R4) and organic peroxides (e.g.
CH3O2, Reaction R9), lead to increasing levels of photochemically produced O3, as
shown in Fig. 1b. All three stages show that PARANOX simulations agree with the
observed concentrations.

As mentioned before, the main problem in global CTMs is the overestimation of the20

lifetime of ship emitted NOx due to instant dilution. In this study we define the NOx
lifetime within the plume in terms of how fast NOx is lost at a given point in time, the
so-called “instantaneous lifetime”:

τNOx
=

[NO]+ [NO2]

PHNO3

(2)

The main sink of NOx during the day is reaction of NO2 with OH via Reaction (R2),25

i.e. the production of HNO3. At night it is mainly controlled by Reactions (R6) and (R7),
which involve the formation of NO3 and N2O5, followed by HNO3 formation from N2O5
on sulfate aerosols (Reaction R12).
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Figure 1d shows that both the observed and simulated NOx lifetime in the plume is
lower than the background lifetime. We conclude that the PARANOX model is able to
capture the non-linear chemistry occurring in a dispersive ship plume, and we will now
use it to account for these effects in the global CTM GEOS-Chem.

3 Using PARANOX to account for non-linear plume chemistry5

As running PARANOX online for every ship plume would be computationally too ex-
pensive, the PARANOX model is used to calculate look-up tables (LUTs) to account
for the non-linear chemistry in a dispersive ship plume in the global CTM. First, we
perform a sensitivity analysis to determine the critical (environmental) parameters that
need to be included in the LUT. Once the most critical dependencies are known, we10

can calculate LUTs for the fraction of NOx remaining and integrated net ozone produc-
tion efficiency (NOPE). In these LUTs we save the fraction of NOx remaining and the
integrated NOPE as a function of critical environmental parameters at the end of the
PARANOX simulation, that we set at 5 h (see discussion in Sect. 3.3). Values for the
environmental parameters are taken from GEOS-Chem simulations at the location and15

time of the ship emissions.

3.1 Fraction of NOx remaining and integrated NOPE

We apply PARANOX to simulate the in-plume effects for various environmental con-
ditions, and calculate the fraction of NOx remaining and the integrated NOPE. The
fraction of NOx remaining is determined by dividing the mass of the emitted NOx, chem-20

ically evolved to NO, NO2, NO3, N2O5, HONO, HO2NO2 or PAN (excluding HNO3), in
the plume at time t by the mass of emitted NOx in the plume at time t=0. The fraction
of NOx remaining will be used to reduce the amount of NOx upon release at time t in
the global CTM with the coarse spatial resolution.
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An important concept in O3 production by NOx emissions is the Net Ozone Pro-
duction Efficiency (NOPE). The NOPE (ω) is defined as the cross-plume integral of
net number of ozone molecules produced divided by the cross-plume integral of ship
emitted NOx consumed at any point in time. In PARANOX, we label the emitted NOx
molecules, so that we can distinguish between O3 molecules produced (or lost) from5

ship NOx and O3 molecules produced from in-plume entrainment of ambient NOx. In
this study we take the loss of NOx to be equal to the production of HNO3, leading to

ω=
PO3

−LO3

PHNO3

(3)

HNO3 is the main sink for NOx and is removed by deposition. PARANOX does
not take deposition into account, but the global CTM eventually solves removal by10

deposition, as we will see in Sect. 4.
The NOPE described above should be regarded as an “instantaneous NOPE”. When

using the ship plume model as a pre-processor to calculate effective ship emissions
we need to assess the NOPE during the entire plume expansion. For this reason we
introduce the “integrated NOPE”. This integrated NOPE (Ω) is determined by the ratio15

of the total net ozone produced (by the ship emitted NOx) and the total (ship emitted)
NOx lost (HNO3 produced), averaged over all rings, between t′ =0 and t:

Ω=

∫t
t′=0{PO3

−LO3
}dt′∫t

t′=0PHNO3
dt′

(4)

in which t is the end time of the model (order of several hours).

3.2 Sensitivity analysis20

The fraction of NOx remaining and the integrated NOPE depend on atmospheric
composition and meteorological conditions. Before calculating the fraction of NOx

17798

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/17789/2011/acpd-11-17789-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/17789/2011/acpd-11-17789-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 17789–17823, 2011

Ship plumes in the
GEOS-Chem global
chemistry transport

model

G. C. M. Vinken et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

remaining and integrated NOPE for our look-up tables, we identified the dependen-
cies that have the strongest influence.

Figure 2 shows the fraction of NOx remaining after 5 h as a function of the most
important environmental parameters for an initial release at 12:00 h local time. Higher
temperatures lead to lower fractions of NOx remaining, as shown in Fig. 2a. Figure 2b5

shows that the fraction of NOx remaining decreases with O3 concentrations, because
these favor OH formation (via Reaction R1), that in turn lowers the NOx lifetime. For
increasing ambient NOx concentrations, the fraction of (ship) NOx remaining initially
decreases (Fig. 2c). For ambient concentrations above 1–2 ppbv, the fraction of NOx
remaining increases, as O3 is titrated and OH concentrations decrease. In Fig. 2d it is10

shown that higher values of J(NO2) lead to lower fractions of NOx remaining. Higher
values of J(NO2) represent more sunlight and a more photochemically active regime,
leading to lower NOx lifetimes. Figure 2e shows that the fraction of NOx remaining

decreases with J(O(1D))
J(NO2) , reflecting an increase in OH produced via Reaction (R1). The

solar zenith angle at the time of emission (θ0) is an important parameter in determining15

the fraction of NOx remaining, as illustrated by Fig. 2f. For a value of θ0 = 10◦ (noon
at low latitudes), the plume started expanding at a time when the sun was high, and
photolysis was strong, leading to a short instantaneous NOx lifetime, as reflected by the
low fraction of NOx remaining. The apparent jump in the fraction of NOx remaining at
θ0 =90◦ marks the difference between a plume that expanded in darkness and a plume20

that expanded in sunlight for 5 h. Figure 2g shows that the fraction of NOx remaining
also depends on the solar zenith angle 5 h after release, and the effect is similar to the
sensitivity to θ0.

Figure 3 shows the integrated NOPE after 5 h as a function of the most important
environmental parameters for an initial release at 12:00 p.m. Figure 3a shows the25

sensitivity of the integrated NOPE to temperature, and can be explained by the subse-
quent changes in H2O concentrations. The integrated NOPE decreases strongly with
increasing background O3 concentrations, as is shown in Fig. 3b. Additional simula-
tions show that this is due to a combination of lower O3 production, higher O3 loss and
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increased NOx loss as in Fig. 2b. Figure 3c indicates that for higher NOx concentra-
tions, O3 production becomes less efficient. When ambient NOx concentrations exceed
2 ppbv, O3 loss (via titration) exceeds O3 production and the NOPE may become neg-
ative. In Fig. 3d, we see that the integrated NOPE increases as a function of J(NO2),
as high values of J(NO2) increase photochemical ozone production via Reaction (R5).5

The NOPE decreases for increasing J(O(1D))
J(NO2) ratios, reflecting enhanced photolysis loss

through Reaction (R1), as illustrated by Fig. 3e. As expected, the solar zenith angles
are important parameters for the integrated NOPE. For example, Fig. 3f, θ0 = 10◦ im-
plies a strong integrated NOPE. In contrast, when the plume expansion started at night
(θ0 > 90), the integrated NOPE is negative, reflecting O3 loss. The sensitivity of the10

integrated NOPE to the solar zenith angle 5 h after release (θ5) differs more from that
of θ0 than for the fraction of NOx remaining. If the plume was in daylight at the end
of the 5 h, the NOx concentrations are lower due to expansion and the plume is more
efficient at producing ozone, hence this leads to a higher integrated NOPE, as can be
seen by comparing Fig. 3f and g.15

3.3 Look-up table

We proceed and calculate two look-up tables (LUTs), storing the fraction of NOx re-
maining and the integrated NOPE as a function of 7 parameters after 5 h: temperature,

J(NO2), J(O(1D))
J(NO2) , (ambient) O3 concentrations, (ambient) NOx concentrations and the

solar zenith angles at t = 0 and t = −5 h. These parameters were identified by the20

sensitivity analysis and Figs. 2 and 3.
Our sensitivity analysis pointed out that the combination of low wind speed, lowma-

rine boundary layer height, and high emissions is important in causing a saturation
effect. This effect causes the fraction of NOx to increase with decreasing wind speeds,
with decreasing marine boundary layer heights and with increasing emissions. If such25

situations occur frequently in GEOS-Chem it would be important to include these pa-
rameters in the LUT. In this study we adopt a relative modest NOx emission strength
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of 20 g s−1, in line with most estimates. Table 3 shows the current estimates used in
literature. The fluxes at the high end of the distribution, reported by Franke et al. (2008)
and Schlager et al. (2008), hold for “fairly large container ships”, which is unlikely to
represent the global fleet average emission strength. Furthermore we analyzed the
ensemble of GEOS-Chem simulations and concluded that low wind speed events com-5

bined with a low MBL occur infrequently (less than 4 %). This led us – in combination
with modest NOx emission strength of 20 g s−1 – to decide to not include wind speed
and MBL in the LUT.

The run time of PARANOX is an important parameter in the PARANOX model.
Choosing it too short might lead to a too high fraction of NOx remaining and thus too10

much ozone production when diluted back into the global model. Choosing it too long
exposes our simulations to transport of the plume-in-grid outside of the grid cell, espe-
cially for situations with strong winds. Another parameter influenced by the run time is
the size of the plume. We chose 5 h in our runs as this will also allow the plumes to
be well dispersed for higher mixing depths and the fast chemistry will generally have15

evolved within this timeframe (as shown in Fig. 1, enhanced background values occur
off the Californian coast in May within 3 h).

4 Implementation and results

In most CTMs, the ship emissions are instantly diluted in the grid cell, thereby neglect-
ing the non-linear chemistry in the early stages of the exhaust plume. In our approach,20

we use the LUTs calculated by PARANOX, containing the fraction of NOx remaining
and integrated NOPE, to account for the effects of plume dispersion and non-linear
chemistry, by releasing reduced NOx emissions and net O3 produced and HNO3 into
the large-scale global model.
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4.1 GEOS-Chem

The chemistry transport model used in this study is GEOS-Chem version v8-03-02
(http://acmg.seas.harvard.edu/geos/) (Bey et al., 2001). We use GEOS-5 assimilated
meteorological observations for the NASA Global Modeling and Assimilation Office
(GMAO) to drive GEOS-Chem. The model has been run for tropospheric ozone-NOx-5

VOC-aerosol chemistry on a resolution of 2◦ ×2.5◦, using a vertical grid containing 47
levels.

We perform a spin-up of one year (2004) and run the actual simulations for the year
2005. Since version v8-01-04, ship emitted NOx molecules in GEOS-Chem are emitted
as 1 molecule HNO3 and 10 molecules O3, based on the observations presented in10

Chen et al. (2005), to correct for the overproduction of O3 by instantly diluting the NOx
emissions. We use the ICOADS global ship emissions inventory (Wang et al., 2008)
and substitute this base inventory over Europe with the more detailed EMEP inventory
(Vestreng et al., 2007). Neither inventory includes daily variation in the ship emissions,
but the EMEP inventory includes seasonality.15

4.1.1 Adaptations to GEOS-Chem

The sensitivity analysis showed that the fraction of NOx remaining and integrated
NOPE critically depend on 7 environmental parameters. We obtain these values from
the GEOS-Chem simulation at the model time. Based on these values we calculate the
fraction of NOx remaining and the integrated NOPE (from linear interpolation between20

the closest reference values in the LUT). These calculated fraction of NOx remaining
and integrated NOPE are then used to release reduced NOx emissions (and O3 and
HNO3 produced), in order to appropriately simulate the effects of original emissions
that took place 5 h earlier and have been subject to non-linear chemistry and dilution.
In this approach we assume that the environmental parameters used in the LUT have25

not changed dramatically over the last 5 h. The changes in the photolysis values are
modeled using the solar zenith angles which are calculated at each model time.
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4.1.2 Additional simulations

For better understanding of the improved model and the effect of ship emissions, we
adapted the GEOS-Chem model to also include instant dilution of the ship emitted
NOx molecules, and we adapted the standard model to include no ship emissions at
all. The instant diluting model reflects how other global CTMs usually treat ship NOx5

emissions, while comparison with the model with no ship emissions at all gives an
indication of the effect of ship emissions on global atmospheric chemistry. We call
the original model (v8-03-02, which releases every ship NOx molecule as 1 molecule
HNO3 and 10 molecules O3) the standard model.

4.2 Observations10

In order to test our adaptations and extensions to the model we compare model simu-
lations with measurements from dedicated campaigns, performed over the Pacific and
Atlantic Ocean. We used data from the Pacific Exploratory Mission-West-A (PEM-West
A) (Hoell et al., 1996) the Pacific Exploratory Mission-West-B (PEM-West B) (Hoell
et al., 1997) and North Atlantic Regional Experiment (NARE) campaigns. PEM-West A15

was conducted over the North Pacific from 16 September till 21 October 1991, during a
period of minimum outflow from Asia. PEM-West B was conducted from 7 February till
14 March 1994, during a period of enhanced outflow from Asia. NARE was conducted
over the North Atlantic during September 1997 (Ryerson et al., 1999).

From the PEM-West A and PEM-West B measurement campaigns, we used the NO20

and O3 measurements which were performed onboard a DC-8 aircraft. During PEM-
West A and PEM-West B, NO was recorded using the chemiluminescence technique
(Kondo et al., 1996).

We regridded observations for each 2◦ ×2.5◦ grid cell, using the median of the ob-
servations to suppress influence from outliers. In contrast with the in-plume measure-25

ments reported by Chen et al. (2005), the PEM-West A and PEM-West B measure-
ments used here represent the marine background concentrations (influenced by ship
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emissions). Outliers in the PEM-West A and PEM-West B measurements could repre-
sent in-plume measurements and not the background concentrations.

For PEM-West A and PEM-West B, we limited the comparison with GEOS-Chem
to grid boxes having observational data and being east of 145◦ E. This presumably
reduces the influence of outflow from anthropogenic sources in Asia. For NARE we5

limited the comparisons to a latitude and longitude range of 37–50◦ N and 35–50◦ W,
following Kasibhatla et al. (2000). This is also done to avoid the most intense conti-
nental outflow periods during this campaign. For all comparisons we compare average
concentrations in the bottom 8 model levels (0 till 1.2 km) to the aircraft measurements
below 1.2 km.10

4.3 Comparison with observations

Figure 4 shows Box & Whisker plots of simulated and observed NOx concentrations in
the marine boundary layer for the PEM-West B, PEM-West A and NARE campaigns.
The figure shows that NOx concentrations simulated with the our LUT approach are in
between the values simulated with the instant dilution and no ship emissions model for15

all campaigns. For PEM-West B, our new approach simulated NOx concentrations are
closest to observations. It is obvious that the standard model and model with no ship
emissions simulate too little NOx, and the instant diluting model strongly overestimates
the amount of NOx. Temporal mismatches are likely to contribute to the differences
between simulated and observed values. It is obvious that over both oceans, the stan-20

dard model simulates too little NOx, and that instant diluting model always simulates
too much NOx.

Figure 5 shows a comparison of simulated and observed O3 concentrations in the
marine boundary layer for the PEM-West A and PEM-West B campaign. O3 observa-
tions for the NARE campaign were not available in Kasibhatla et al. (2000), and we25

did not include simulations for this campaign. For both PEM-West A and PEM-West
B, the standard model and the instant diluting model simulate the highest O3 con-
centrations. For spring conditions (PEM-West B), the standard model simulates the
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highest O3 concentrations, as a consequence of its continuous O3 production, also
during darkness. The simulation without any ship emissions produces the smallest O3
concentrations, and the difference of 1 ppbv with our new approach suggests that the
overall effect of ships on springtime O3 over the North Pacific is only small.

Both comparisons show that our new approach reduces NOx and O3 concentrations5

compared to the instant diluting approach, and simulates concentrations that are in
better agreement with observations.

4.4 Comparison different GEOS-Chem simulations

Figure 6 shows the differences between the monthly mean (24 h mean) global NOx
and O3 concentrations for January 2005 for the new LUT approach simulations and the10

instant diluting model simulations, for the lowest model layer (0–0.12 km).
Simulations using the new approach show NOx concentrations that are lower by

0.1–0.2 ppbv (50 %) than the instant diluting simulation above ship track areas over the
oceans, reflecting the in-plume NOx destruction that is neglected in the instant diluting
model. Above continental polluted areas (where chemistry is identical between the15

new approach and instant diluting), the new approach simulation leads to higher NOx
concentrations (by ∼0.1 ppbv), but the relative differences over these polluted areas are
negligible. The relative difference plot (Fig. 6, bottom right panel) confirms that the new
approach simulation shows up to 60 % less NOx in areas with frequently traveled ship
tracks. On average NOx concentrations in the new approach simulation are 44 % lower20

than in the instant diluting simulation over a latitude and longitude range of 20–40◦ W
and 40–50◦ N in the North Atlantic in January 2005.

Figure 7 shows the difference plots in the monthly mean global NOx concentrations
for July 2005. In July the new approach simulates lower NOx concentrations over
the oceans (about 60 % less than the instant diluting simulation in ship tracks). NOx25

concentrations in the new approach simulation are on average 60 % lower than in the
instant diluting simulation in the 20–40◦ W and 40–50◦ N box in the North Atlantic.
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Figure 8 shows the differences in the monthly mean global O3 concentrations for
January and July 2005. In January, the new approach simulates less O3 (about 1 to
1.5 ppbv) over the oceans compared to the instantly diluting model, and 0.5 to 1 ppbv
(2–4 %) less O3 over large regions of the Northern Hemisphere. Over coastal waters
in western Europe, our new approach simulates 0.5 to 1 ppbv lower O3 concentrations.5

For comparison, Huszar et al. (2010) finds O3 concentrations lower by 0.4 to 0.7 ppbv
over these areas during winter.

In July, as a result of lower NOx concentrations, the new approach simulation shows
lower O3 concentrations (up to 5 ppbv) over the oceans. Relative differences decrease
over strongly polluted areas (e.g. North Sea or coastal China). In July the new ap-10

proach simulates 25 % lower NOx concentrations in the North Sea, and only 3 % lower
O3 concentrations.

Figure 9 shows the differences in the monthly mean global NOx and O3 concentra-
tions for July 2005. The new approach simulation shows higher NOx concentrations
than the no ship emissions simulation. NOx concentrations in the new approach simu-15

lation are on average 7× higher (44 pptv) over the averaged region in the North Atlantic
in July. Over the averaged region in the North Atlantic, ships contribute 4 ppbv (15 %)
to summertime O3 concentrations.

5 Conclusions

We presented a computationally efficient approach to take the non-linear chemical20

effects that occur during the dispersion of NOx emitted by ships into account in coarse-
gridded global 3-D chemistry transport models (CTMs). Our approach uses a plume-
in-grid treatment of ship emissions, with simulations from a plume dispersion model
that takes the effects of non-linear chemistry fully into account. In addition to reduced
NOx emissions, the secondary compounds O3 and HNO3, produced in the 5 h after25

emission, are released into the global model.
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To simulate the in-plume effects, we use the 10-ring Gaussian plume dispersion
PARANOX model with state-of-science chemical rate constants, updated emissions,
photolysis constants, and dispersion parameters relevant for the marine boundary
layer. We evaluated simulations by the PARANOX model against in situ aircraft ob-
servations of NOx, O3, and (inferred) OH concentrations within fresh ship plumes off5

the coast of California in May 2002, and find that PARANOX captures the essence of
ship-plume chemistry.

A sensitivity analysis showed that plume-in-grid simulations depend critically on am-
bient temperature, ozone concentration, NOx concentration, the solar zenith at the
time of initial, and actual (5 h after) release, and photolysis rate constants for NO2 and10

O(1D).
Our approach couples the plume dispersion model PARANOX to a global model,

here the 3-D GEOS-Chem CTM, in a computationally efficient manner. For every grid
cell with non-zero ship NOx emissions, the global model chemical simulations provide
the relevant environmental parameters, and we subsequently retrieve the matching15

fraction of NOx remaining and secondary species from the look-up table. We then use
the fraction of NOx remaining to reduce the original ship NOx emissions, and release
the O3 and HNO3 produced during plume dispersion into the GEOS-Chem background
state.

We adapted the GEOS-Chem model to also include options to simulate ship emis-20

sions with the widely used “instant dilution” approach, and without any ship emissions
at all. Together with the standard model (that emits ship NOx molecule as 1 HNO3
and 10 O3 molecules), and the improved model with the plume-in-grid approach, this
provides an ensemble that allowed for a comprehensive intercomparison, as well as
an evaluation against observations from (historical) aircraft campaigns over the Pacific25

Ocean (PEM-West A and PEM-West B) and over the North Atlantic (NARE).
We found that our improved version of GEOS-Chem simulates up to 0.1 ppbv more

NOx over the North Atlantic in July compared to simulations without ship NOx emis-
sions, indicating that ships contribute up to 90 % to total nitrogen oxide concentrations
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over this region. Compared to simulations using the instant dilution approach, our NOx
concentrations are 0.05–0.15 ppbv lower, indicating that models using instant dilution
overestimate NOx over the North Atlantic by approximately 50 %. These conclusions
are supported by a comparison of simulated and observed NOx concentrations in the
lower marine atmosphere (PEM-West B). We found that our improved model matches5

the observed NOx concentrations best, whereas the instant diluting model overesti-
mates NOx by a factor of 2, and the models without ship emissions underestimate NOx
by a factor of 0.7.

Our improved model simulates up to 4 ppbv more O3 over the North Atlantic dur-
ing summer than the model without ship emissions. Ozone concentrations simulated10

with the improved model are 3–5 ppbv (10–25 %) lower than with the instant dilution
approach over the Atlantic Ocean, clearly indicating that instant dilution not only over-
estimates nitrogen oxides, but also ozone. Over the strongly polluted North Sea, the
improved simulations show smaller ozone reductions of 1–2 ppbv (<5 %) compared to
the instant diluting approach, suggesting that accounting for non-linear in-plume chem-15

istry is most relevant for pristine, unpolluted areas.
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Table 1. Most critical O3/NOy/HOx reactions in PARANOX for both day and nighttime. We use
RH as simplified notation for Volatile Organic Compounds (VOCs) (R represents an organic
group).

(R1)∗ O3 + hν + H2O → x1 OH + x2 O3 + O2
(R2) NO2 + OH + M → HNO3 + M
(R3) O3 + NO → NO2 + O2
(R4) NO + HO2 → NO2 + OH

(R5) NO2 + hν
O2−→ NO + O3

(R6) O3 + NO2 → NO3 + O2
(R7) NO2 + NO3 + M → N2O5 + M

(R8) CH4 + OH
O2−→ CH3O2 + H2O

(R9) CH3O2 + NO
O2−→ HCHO + HO2 + NO2

(R10) CO + OH
O2−→ HO2 + CO2

(R11) NO3 + hν
O2−→ NO2 + O3

(R12) N2O5 + H2O aer.−→ 2HNO3

(R13) RH + OH
O2−→ RO2 + H2O

(R14) RO2 + NO → RO + NO2

∗ This reaction is a net reaction of the loss of O3 by photolysis to O(1D), followed by three possible reactions. The
O(1D) can react with H2O forming 2 OH molecules, the O(1D) can react with N2 forming O(3P) and N2 or the O(1D)
can react with O2 forming O(3P) and O2. From these last two possibilities, the O(3P) can react with O2 producing O3.
In Eeaction (R1) x1 and x2 are stochiometric coefficients, quantifying the relationship of reactants and products in this
net reaction (x1 + x2 = 1). These stochiometric coefficients are calculated in PARANOX and depend on temperature,
air density and H2O concentrations.
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Table 2. Ambient concentrations used in the PARANOX simulation for comparison with ITCT
2k2 observations (Chen et al., 2005)∗.

Species O3 NOx HNO3 CO SO2 PAN CH3CHO CH3OH

Ambient
Concentration (ppbv) 40.5 0.150 0.005 130 0.4 0.16 0.1 0.25

∗ During the measurements the wind speed was between 9 and 11 m s−1, in this comparison we set the wind speed to
10 m s−1. The height of the marine boundary layer determined from aircraft measurements was 350 m. The ambient
temperature was 290 K. We set the stability class to “moderately stable”, following a recent study by Kim et al. (2009).
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Table 3. Summary of NOx ship emissions strengths currently used in literature.

Study NOx emission strength (g s−1)

Charlton-Perez et al. (2009) 33
Franke et al. (2008) 145a

Schlager et al. (2008) 184a

Kim et al. (2009) 6.25b

Chen et al. (2005) 13.4
Song et al. (2003) 4–20
von Glasow et al. (2003) 19.1
Eyring et al. (2005) 9.31c

This study 20

a The emission strengths reported by Franke et al. (2008) and Schlager et al. (2008) hold for “fairly large container
ships”.
b Based on Chen et al. (2005).
c Calculated using annual emissions of cargo ships.
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Fig. 1. Observed and simulated concentrations averaged over the cross-section of a ship
plume released at 12.00 hours local time as function of time since release for the species: (a)
NOx; (b) O3; (c) OH and (d) the NOx instantaneous lifetime as function of time. The solid line
indicates the PARANOX simulation with ambient concentrations given in Table 2. The dashed
line represents the background concentration and the squares represent the observations taken
during the ITCT 2K2 aircraft campaign on 8 May 2002, with the bars indicating measurement
errors. The OH concentrations in (c) were inferred from H2SO4 measurements (Chen et al.,
2005). The NOx instantaneous lifetime was calculated as the NOx concentration divided by the
production rate of HNO3 at any point in time.
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Fig. 2. PARANOX simulations of the fraction of NOx remaining after 5 hours for a plume re-
leased at 12.00 hours local time as a function of: (a) Temperature; (b) ambient O3 concentra-
tion; (c) ambient NOx concentration; (d) J(NO2); (e) J(NO2)

J(O(1D))
; (f) θ0 and (g) θ5. The simulation

in panel (f) and (g) were not released at 12:00 h, but for different initial solar zenith angles,
corresponding to a variety of release hours at different latitudes. The shaded areas in panel
(f) and (g) corresponds to simulations during darkness. A NOx emissions strength of 20 g s−1
has been used. Ambient meteorological conditions are a neutral stability class, wind velocity of
8 m s−1, temperature of 295 K and marine boundary layer height of 400 m. Ambient concentra-
tions for O3 and NOx were set to 40 ppbv and 100 pptv, respectively.
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Fig. 3. PARANOX simulations of the integrated net ozone production efficiency (NOPE) after
5 h for a plume released at 12:00 h local time as a function of: (a) temperature; (b) ambient
O3 concentration; (c) ambient NOx concentration; (d) J(NO2); (e) J(NO2)

J(O(1D))
; (f) θ0 and (g) θ5.

The shaded area in panel (f) and (g) corresponds to simulations during darkness. Ambient
meteorological conditions and concentrations as in Fig. 2.
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Fig. 4. Box & Whisker plot of simulated and observed median NOx concentrations (in pptv)
for the PEM-West B campaign (left), the PEM-West A campaign (middle) and the NARE cam-
paign (right). The box shows the data between the upper and lower quartiles (25th and 75th
percentile), with the median represented by a horizontal line; whiskers go out to the 5th and
95th percentile of the data. PEM-West B measurements were taken during 7 February till 14
March 1994, PEM-West A measurements were taken during 16 September till 21 October 1991
and NARE measurements were taken during September 1994. Simulations were performed
for the year 2005. The PEM-West A and PEM-West B data was obtained from the Atmo-
spheric Chemistry Division, National Center for Atmospheric Research, University Corporation
for Atmospheric Research (available at http://cdp.ucar.edu/). For the NARE campaign we use
statistics reported in Kasibhatla et al. (2000). We converted all NO measurements into NOx
concentrations using the NO

NOx
ratio derived from GEOS-Chem simulations.
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Fig. 5. Box & Whisker plot of simulated and observed median O3 concentrations (in ppbv) for
the PEM-West B campaign (left) and the PEM-West A campaign (right).
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New Approach - Instant Dilution
NOx January 2005

Fig. 6. Difference plots between monthly mean global NOx concentrations simulated with
GEOS-Chem for January 2005 for the instant diluting model and the new LUT approach model
simulations, for the lowest model layer (0–0.12 km).

17820

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/17789/2011/acpd-11-17789-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/17789/2011/acpd-11-17789-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 17789–17823, 2011

Ship plumes in the
GEOS-Chem global
chemistry transport

model

G. C. M. Vinken et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

New Approach - Instant Dilution
NOx July 2005

Fig. 7. Difference plots between monthly mean global NOx concentrations simulated with
GEOS-Chem for July 2005 for the instant diluting model and the new LUT approach model
simulations, for the lowest model layer (0–0.12 km).
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New Approach - Instant Dilution
O3 January 2005

O3 July 2005

Fig. 8. Absolute difference plots between monthly mean global O3 concentrations simulated
with GEOS-Chem for January and July 2005 for the instant diluting model and the new LUT
approach model simulations, for the lowest model layer (0–0.12 km).
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New Approach - No Ship Emissions
NOx July 2005

O3 July 2005

Fig. 9. Absolute difference plots between monthly mean global NOx and O3 concentrations
simulated with GEOS-Chem for July 2005 for the no ship emissions model and the new LUT
approach model simulations, for the lowest model layer (0–0.12 km).
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