
The probability density function and geometric mean of the square/line characteristic distance 

ratio 

Abstract 

We consider two distances, one between two random points in a square with sides a and a, and 

the other between two random points on a line of length a. We analytically determine the 

probability density function for their ratio. The distribution is near log-normal and has a 

geometric mean of exp(π/3+1/3*ln2-7/12) or 2.0035…. We verify these calculations with a 

Monte Carlo simulation. 

1. Introduction 

We wish to determine the length of the line that accommodates the same degree of horizontal 

variability in atmospheric constituents as a square does. 

We introduce the relevant part of Philip’s (2007) work (Sect. 2); define our own problem (Sect. 

3); note the similarities between Philip’s and our problems (Sect. 4); solve our problem (Sect. 5); 

calculate the geometric mean of the resulting density function (Sect. 6); and verify the results 

with a Monte Carlo simulation (Sect. 7).  

2. Philip’s work 

Here we introduce the part of Philip’s (2007) work (both problem and solution) relevant to ours.  

2.1 Problem 

He lets the two random points be (X1, Y1, Z1) and (X2, Y2, Z2). He assumes that X1and X2 are 

independent and evenly distributed in the interval (0, a). The same is assumed for Y1 and Y2 in (0, 

b) and for Z1 and Z2 in (0, c). 

We are only interested in the special case where a=b=c. Therefore, b and c in his equations are 

replaced with a below; suffix (a as in fa, ga, ha, ka) is omitted. 

He considers the probability distribution function (P) for four events. 
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He lets the corresponding density functions be 



dvvdKvk

duudHuh

dssdGsg

dttdFtf

/)()(

/)()(

/)()(

/)()(

≡

≡

≡

≡

. 

All variables in his formulation above are independent of each other, except  

2
vu = . 

2.2 Solution 

See his paper for complete derivation of the density functions. In brief, he derives F(t) from the 

geometry. f(t) is its derivative by definition. g(s) is the convolution of the probability density 

function f 

∫ −= dttftsfsg )()()( . 

h(u) is the convolution of f and g 

∫ −= dssgsufuh )()()( . 

Once h(u) is yielded, k(v) is given by replacing u with v
2
. More precisely,  
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This is because K(v)=H(u). K(v) and H(u) refer to an identical event (examine the definitions 

above, while noting u=v
2
).  

Resulting analytical solutions relevant to our work are  
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These are his equations (1), (2) and (6), after replacing b with a. Note g(s) takes either one of the 

two forms above depending on the value of s.  

3. Our problem 

We define 
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As t goes from 0 to a
2
, τ goes from ∞ to ln(a

-2
). As s goes from 0 to 2a

2
, σ goes from -∞ to 

ln(2a
2
).  

We also define, for a non-negative number R, 

∞≤≤≡ RR 0),ln( 2υ . 

As R goes from 0 to ∞, υ goes from -∞ to ∞. 

With these variables, we consider the following four probability distributions. 
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Let the corresponding density functions be 
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4. Similarities between Philip’s and our problems 

In Philip’s formulation (Sect. 2.1), the distance between two random points in an axaxa cube is 

expressed as 2

21

2

21

2

21 )()()( ZZYYXX −+−+− . K(v) is the probability that this distance is 

smaller than v. One can view its density function k(v) as the ultimate goal of his work, and f(t), 

g(s) and h(u) as tools for deriving k(v).  

Likewise, in our formulation (Sect. 3), the square/line ratio of characteristic distances is 

expressed as 2

21

2

21
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21 )(/)()( ZZYYXX −−+− . Κ(R) is the probability that this ratio is 

smaller than R. Our goal is to analytically solve for its density function κ(R). We use φ(τ), γ(σ) 

and η(υ) as tools.  

 

5. Solution to our problem 

We take three steps. First, γ(σ) and φ(τ) are derived based on their analogy to g(s) and f(t), 

respectively. Second, the convolution of γ(σ) and φ(τ) yields η(υ). Third, replacing υ in η(υ) with 

lnR
2
 yields κ(R). The first and third steps are straightforward (Sect. 5.1 and 5.3, respectively). 

The second step is painful and is broken down to three sub-steps (Sect. 5.2.1, 5.2.2 and 5.2.3). 

5.1 First step: γ(σ) and φ(τ)   

G(s) and Γ(σ) refer to an identical event (examine their definitions above, while noting σ=lns). 

Therefore,  
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Because g(s) takes either one of the two forms depending on the value of s (Sect. 2.2), so does 

γ(σ). 
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F(t) and Φ(τ) refer to converse events (examine their definitions above, while noting τ=lnt
-1

). 

Therefore, 

)()( tF−=Φ τ . 

Therefore, 

2
)(

))(()()(
)(

a

t

a

t
ttf

dt

tFd
t

dt

d

d

dt

d

d
−==

−
−=

Φ
=

Φ
≡

τ

ττ

τ
τϕ

 

= √/56
� − /56

�� ,        ln ��−2� ≤ 7 

In the next step, φ shows up in the form of φ(υ-σ)   
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5.2 Second step: η(υ) 

Just like h(u) is the convolution of f and g, η(υ) is the convolution of φ and γ 

∫ −= σσγσυϕυη d)()()(  

Depending on the value of υ, η(υ) can be written as η1(υ), η2(υ) or η3(υ) 
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We pursue η(υ) for these three cases individually.  

5.2.1 η1(υ) 
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5.2.2 η2(υ) 

η2(υ) is the sum of η21(υ) and η22(υ) below. 
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η21(υ) is a special case of η1(υ), and is obtained by integrating up to ln(a
2
) instead of υ +ln(a

2
). 
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Therefore, 
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5.2.3 η3(υ) 

η3(υ) is the sum of η31(υ) and η32(υ) below. 
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η31(υ) is the same as η21(υ). 
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η32(υ) is a special case of η22(υ), and is obtained by integrating up to ln(2a
2
) instead of υ +ln(a

2
). 



)1548)522220)21ln(10((
30

1

32/52/

22/32/22/2/342

2/2/2
2

2/3

2/22/6
2

2/6

2/

2/2/2/32

222/32/32/6

6

)
4

))arcsin(42())(()((

)()()(

2/

)ln(2

)ln(

)ln(2

)ln( 4

2

3

2

2/2

2/
2/

2

)ln(2

)ln(
232

)1012

)243081516(2

)22(120

))(2ln(30)11ln(40

)arcsin()34(20

)2(15)2(2020(
30

1
2

2

2

2

2

2

ππ

σσυ

σσυσσυσ

σσυ

σ

σ

σσυ

σ

υ

σ

συσ

σσυυυ

σπ

σσγσυϕυη

υυ

σσσ

σ

συ
σ

υ
σ

ππσ

+−++−+=

−

=

−
−

++−−+−=

−=

−

−−

+−

+−−+−−−

+−−−

+−−+−+

−+

+++−

∫

∫

ee

d
a

e

a

aee

e

a

a

e

a

e
e

a

e
e

d

eeae

eeaeeaeeaaaea

eeaea
e

a
ea

eaeea
e

a
ea

e

a
eaeea

eaeeaeae
a

a

a

a

a

a

a

 

Therefore,  

υ

ππ

ππ

υηυηυη

υυ

υυ

υυ

<−+++=

+−++−++

+−+−=

+=

−

−

−

2ln),10)422)21ln(10((
30

1

)1548)522220)21ln(10((
30

1

))2048()1538((
30

1

)()()(

2/

2/

2/

32313

ee

ee

ee

 

 

5.3 Third step: κ(R) 

Η(υ) and Κ(R) refer to an identical event (examine their definitions above, while noting υ =lnR
2
). 

Therefore,  
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To express the probability density function on a log scale, 
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6. Geometric mean 



Let the geometric mean ratio be E. Then  
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To obtain E, we first calculate 
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Then, we get ε as the sum of integrals of the form 
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According to l'Hôpital's rule, both υυ −
e and 2/υυ −

e approach 0 as υ approaches ∞. Therefore, 
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6.2 Second step: ε  

ε can be written as 
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We pursue ε for these two terms individually.  

6.2.1 ε1 
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6.3 Third step: E  

Finally, E is given as 
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Thus, the geometric mean is an irrational number, approximately 2.00. 

 



7. Verification with a Monte Carlo simulation 

We compare κ(R) with frequency distribution, M, from our Monte Carlo simulation. We 

calculated the distance between two randomly selected points on a square box with the corners at 

(0,0), (1,0), (1,1) and (0,1), and the distance between two randomly selected points on a line 

segment between (0,0) and (1,0). We took their ratio. We did this ten million times. 

Logically, for a Monte Carlo simulation with n iterations (n is ten million for our case) and an 

abscissa interval (the bin width of histogram) w,  

M= κ(R)*n*w. 

The frequency distribution, Mlog, given against log-equal intervals wlog is 

Mlog= Rκ(R)*n*wlog . 

Our verification strategy is to plot the simulation results (M and Mlog), plot the analytical solution 

(κ(R)*n*w and Rκ(R)*n*wlog), and see if these two agree with each other. 

 

 

 

They do. These figures also reveal that the distribution is more similar to log-normal (right 

panel) than to normal (left panel). 

As for the geometric mean, our simulation (n=1e7), when repeated 1e5 times, returned a 

geometric mean of 2.0035…, with a one geometric standard deviation range of 2.0027-2.0043. 

This is consistent with the analytical solution (2.0035…) and verifies that the solution is indeed 

different from 2.000. 
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Figure 1. Results of the Monte Carlo simulation and theoretical calculation 

of the frequency distribution of the distance ratio. The same comparison is 

shown on a linear (left panel) and logarithmic (right) scale. 
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