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Abstract

The interaction between breezes and synoptic gradient winds creates persistent con-
vergence zones nearby coastlines. The low level convergence of moist air promotes
the dynamical and microphysical processes responsible for the formation of clouds and
precipitation.5

Our work focuses on the winter seasons of 1998–2011 in the Eastern Mediterre-
nean. During the winter the Mediterrenean sea is usually warmer than the adjacent
land, resulting in frequent occurence of land breeze that opposes the commom syn-
optic winds. Using rain-rate vertical profiles from the Tropical Rainfall Measurement
Mission (TRMM) satellite, we examined the spatial and temporal distribution of aver-10

age hydrometeor mass in clouds as a funtion of the distance from coastlines.
Results show that coastalines in the Eastern Mediterrenean are indeed favored ar-

eas for precipitation formation and discharge. The intra-seasonal and diurnal changes
in the distribution of hydrometeor mass indicate that the land breeze is most likely the
main responsible mechanism behind our results.15

1 Introduction

The global hydrological cycle is of great importance to our wellbeing. Understanding
this cycle is crucial when dealing with water resources management, agriculture, global
demographics and politics. Precipitation processes play a key component in the hydro-
logical cycle. Although 75 %–80 % of global precipitation occurs over oceans (see http:20

//ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/hyd/bdgt.rxml) the precipitation-evaporation
budget is positive over land and negative over oceans, making precipitation our main
source of fresh water. Additionally, the latent heat released in precipitation processes
is a major driver of the global atmospheric circulation, and hence affects climate varia-
tions around the globe (Trenberth et al., 2009). Understanding the dynamic and micro-25

physical processes behind precipitation formation is of great importance in semi-arid
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climate regions which are especially sensitive to rainfall variations, such as the East-
ern Mediterranean (EM), South Western US and Eastern Africa. Moreover, due to
their highly non-linear nature, precipitation processes (especially cold rain processes)
are still far from being resolved and our current understanding is limited (Levin and
Cotton, 2009)5

In this work we examine coastal precipitation formation and discharge from clouds,
explained by land breezes as major contributors for mesoscale convergence, in both
meteorological and climatological time scales.

1.1 Previous studies

Sea breeze (SB) and Land breeze (LB) are basically the same physical effect but with10

opposite temperature gradients (Schmidt, 1947; Fisher, 1960, 1961). In the SB case,
a local cool and dense air mass forms over a water body, and creates a flow towards
the hotter, lighter inland air mass. The LB is exactly opposite, with the denser, cooler
air originating over land.The SB and LB breezes are confined mainly up to heights of
1–1.5 km, which corresponds to the boundary layer of the atmosphere. An analytical15

analysis (Schmidt, 1947) showed the thermally induced SB to be a stronger effect than
LB, but this of course depends on local, low level temperature distributions over sea
and land during day and night, and may vary from one location to another. Moreover,
for both SB and LB, the vertical profiles of horizontal winds contain an upper level return
flow opposed to the low level flow as expected from continuity considerations.20

Interaction between breezes and synoptic gradient winds can contribute to low level
convergence, and therefore to cloud and precipitation formation. Intergrating the mass
conservation equation for incompressible fluids with respect to height, we get:

w(D)=−
∫ D

0

(
∂u
∂x

+
∂v
∂y

)
dz (1)

Where w is the updraft vertical velocity, u is the zonal velocity, v is the meridonial25

velocity and D is an arbitrary height that can be taken to be the top of the planetary
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boundary layer. Hence, horizontal convergence of low level winds in the boundary
layer result in upward vertical transport (updrafts) of mass and momentum at the top
of the layer. In the common case of which the level of free convection (LFC) is above
a low level inversion layer (i.e. conditional instability), these updrafts can break through
the inversion, supplying heat and moisture to the upper atmosphere. Furthermore, up-5

draft velocities are proportional to condensation rate of cloud droplets (release of latent
heat) and maximum supersaturation, promoting convection processes in the cloud. In
convective clouds for instance, updraft velocities are proportional to supersaturation by
the relation (Fukuta, 1993):

(S−1)∝w
3
4 (2)10

Where (S−1) is the maximum supersaturation in the cloud and w is the updraft vertical
velocity. The power 3

4 is derived analytically by considering the minimal time it would

take a cloud to reach the maximum supersaturation (t ∝w− 1
4 ) and assuming a bal-

ance between dry adiabatic supersaturation generation (∝w) and droplet diffusional
growth (∝ S−1

t ). Theory and simulations show that higher supersaturation/updrafts15

can increase both diffusional growth rates and coalescence of droplets (Mordy, 1959;
Leighton and Rogers, 1974; Rogers and Yau, 1989; Nelson, 1971), which are crucial in
the initiation and growth of warm precipitation (involves only liquid water). This is also
pronounced in mixed phased clouds, where the supersaturation of vapor relative to ice
is much higher than relative to water, and diffusional ice growth is more rapid (Stickley,20

1940; Byers, 1965). Additionally, stronger updrafts transport more droplets above the
freezing level of the cloud, promoting the highly efficient accretion/riming (i.e. growth by
coalesence of ice particles and supercooled droplets) processes that initiate cold rain
(Houghton, 1950, 1968; Ludlam, 1952; Hindman and Johnson, 1972; Reinking, 1975).
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Observations indeed show that low level convergance promotes cloud convec-
tion. Frequent nocturnal thunderstorms (Neumann, 1951) observed near the Eastern
Mediterranean coastline were explained by: (i) the convergence of synoptic gradient
winds with LB (ii) the convergent effect coastline curvature may play on low level winds,
with concave coastlines favoring LB convergence and convex coastlines favoring SB5

convergence. Similar effects of cloud formation as a result of low level convergence
were observed (Purdom, 1976) nearby other land-water interfaces such as rivers and
lakes. Furthermore, breeze fronts were seen to interact with preexisting convection
lines and thunderstorms, greatly intensifying the mesoscale convection. Radar obser-
vations of LBs opposing gradient winds (Meyer, 1971; Schoenberger, 1984) showed10

frontal zones of nocturnal cumulus form nearby coastlines and propagate further off-
shore at a speed dependent on the temperature difference between the land and sea.
These LB fronts usually dissipated after sunrise (i.e. land heating) and were most pro-
nounced when the gradient winds and the LB were of comparable magnitudes. An
example for such a LB front is shown in Fig. 1, where a nearly stationary line of precip-15

itating clouds formed off the coast of Israel.
Observations (Atkins and Wakimoto, 1997) and numerical studies (Baker et al.,

2001; Nicholls et al., 1991) over the Florida Peninsula put emphasis on the impor-
tance of converging synoptic gradient winds and SB. The convergence was seen to
induce vertical heat and moisture fluxes, initiating moist deep convection processes20

and later on precipitation in the peninsula. Non-linear interactions between the factors
above, soil moisture and coastline curvature may determine the locations of intense
precipitation (Baker et al., 2001). Additional numerical studies of coastline effects are
presented in the Sect. 1.2.

As follows from the thermally driven nature of breezes, their effects are expected to25

have significant diurnal variability. Java Island in the SE pacific is an extreme case for a
breeze dominated diurnal precipitation regime (Qian, 2008). The Island is surrounded
with warm waters and experiences daytime (nighttime) precipitation concentrated over
the land (sea). The high mountain range along the Island’s interior produces daytime
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(nighttime) anabatic (katabatic) winds that flow in phase with the local breeze, intensi-
fying the diurnal cycle.

Orographic forcing, also discussed in this work, is considered to be another strong
influence on cloud and precipitation formation (Smith, 1989, 2006; Houze, 1993). Hori-
zontal moist winds that approach a topographic obstacle are forced to rise and cool with5

a vertical velocity proportional to the horizontal wind velocity and obstacle height gradi-
ent. The forced updrafts induce the formation of clouds and precipitation as discussed
above. The location of maximum precipitation with respect to the obstacle depends
mainly on the ratio between the microphysical processes and advection time scales,
and can range from 50 km upwind (e.g. with very weak horizontal winds of ∼2 m s−1)10

the peak height location to slightly downwind (Pathirana et al., 2005). Moreover, grav-
ity wave dynamics may create an upwind tilt in the condensation pattern. Generally,
most of the precipitation falls on the upslope of the obstacle, with a maximum near
its peak. The flow reaching the lee-side receives little precipitation due to adiabatic
descent (warming) and depletion of moisture. In the case of an unstable, convective15

atmosphere, topographic obstacles are considered especially efficient in depleting the
cloud’s water content.

In some cases, orographic forcing near coastal areas may combine with local
mesoscale breezes and create a coupled effect. A previous study in central Israel
(Rosenfeld, 1986) concluded that clouds “feel” the presence of an orographic obstacle20

15 km upwind the mean flow, not far from the coastlines.

1.2 Eastern mediterranean

The last IPCC report (Climate Change 2007 Synthesis report, Sects. 3.2, 3.3. Avail-
able at: http://www.ipcc.ch/) predicts that the Mediterranean region will experience a
hotter and drier climate, among others due to the predicted expansion of the Hadley25

circulation derived from global warming (Lu et al., 2007). Such climate changes may
have devastating implications on water resources for the already water stressed coun-
tries in the region. According to Köppen’s climate classification (Goldreich, 2003),
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Mediterranean climates are characterized by hot, dry summers and cold, wet winters
with most of the rainfall concentrated in the months D-J-F.

During the Northern Hemisphere winter, the southward drift of the subtropical high
enables cold air from Europe to penetrate into the Mediterranean where cold low pres-
sure systems are formed (Alpert et al., 1990a, b). These systems may further intensify5

through processes of low-level baroclinic instability i.e. large thermal contrast between
the sea and cold air above and lee cyclogenesis near southern Turkey. Some of these
cyclones reach the EM and are called Cyprus lows, acquiring their name from their
mean geographic location. The passage of a Cyprus low is dominated by westerly
winds along the central part of the Eastern Mediterranean coast (Zangvil and Druian,10

1990) and constitutes as the most common synoptic setting under which precipitation
develops in the EM, yielding about 95 % of the rainfall in the central and northern parts
of Israel (Goldreich, 2003). The common setting of a Cyprus low is shown in Fig. 2,
from which it can be seen that the gradients winds tend to flow inland except near
western Turkey. Another type of synoptic system that can produce precipitation in the15

eastern Mediterranean is the “Red Sea Trough”. It will not be discussed hereafter due
to very low rainfall related to these systems.

During the winter months (November–March), EM Sea Surface temperatures are
usually warmer than the adjacent land by 2–10 ◦C, making LB a common phenomena
during the winter (Neumann, 1951; Goldreich, 2003; Levy et al., 2008). The LB mag-20

nitude varies both diurnally: maximum (minimum) Land-Sea Temperature Difference
(LSTD) at sunrise (afternoon), and seasonally: maximum (minimum) LSTD during De-
cember (March). The cyclones reaching the EM also display significant intra-seasonal
variability (Goldreich et al., 2004, 2006; Alpert et al., 1990b). November and Decem-
ber are considered transition months from autumn to winter and experience relatively25

shallow upper level troughs and weak (shallower) vortices. On the other hand, the pe-
riod of January till March is considered “classic” winter, with deep upper level troughs
and intense vortices. The EM may be a classic case where the interaction between LB
and synoptic winds promotes convection and precipitation formation, because most of
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the rain in the region is attributed to frontal and post frontal convective clouds. Typi-
cally during the winter season in Israel, rain only forms in clouds that reach a minimum
height of 3 km ( around −5 ◦C). Rain clouds often develop vertically to heights higher
than 5 km (−20 ◦C), making cold rain the dominant precipitation process (Rosenfeld,
1986). An area of low level convergence with high updrafts over the Mediterranean5

Sea would be favorable for cloud and precipitation formation by supplying moisture
to the mid-atmosphere and speeding up mixed phase and cold rain processes (see
Sect. 1.1). Ground based radar observations near the Israeli coastline show a 1:1 to
3:1 sea to land rainfall ratio during winters (Levin et al., 2004), with the ratio peak in
November, suggesting a stronger contribution of LB in the early stages of winter. Fur-10

ther evidence for LB effect is manifested through diurnal variation of lightning activity
(Altaratz et al., 2003), showing a clear maximum of flashes over sea (land) during mid-
night (afternoon). A similar trend exists for the diurnal variability of rain rates (Kutiel
and Sharon, 1980), with inland precipitation peaking afternoon, and coastal precipita-
tion peaking around midnight with a second peak around noon.15

The interaction between westerly gradient winds and land breeze was studied us-
ing a 2-D non-Hydrostatic numerical simulation (Khain et al., 1993). They conclude
that this interaction is the main cause for precipitation in the model. The magnitude of
background gradient winds and LSTD directly affect the intensity and location of pre-
cipitation with respect to the coastline. As would be expected, stronger gradient winds20

shift precipitation towards inland and larger LSTD shifts precipitation towards the sea.
Furthermore, a convective convergence zone located offshore, coupled with precipita-
tion downdrafts of cold air located slightly onshore, may result in positive feedback and
enhancement of the land breeze circulation. This feedback was shown to be crucial in
sustaining the breeze circulation (Khain and Sednev, 1996; Khain et al., 1996). The25

optimal values of precipitation yield over land occur when the convergence zone is lo-
cated 10–20 km offshore. It is important to note that topography was excluded from the
model.

15666

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/15659/2011/acpd-11-15659-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/15659/2011/acpd-11-15659-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 15659–15696, 2011

Coastal precipitation
formation and

discharge

R. H. Heiblum et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In this work we perform a long term study of precipitation in the coastal region, both
spatially and temporally. More than 13 yr of high resolution space-borne radar data
collected by the Tropical Rain Measurement Mission (TRMM) satellite are used. Fur-
thermore, the coastline mesoscale dynamics effect on the precipitation is separated
from the orographic forcing. Section 2 discusses the methods used to retrieve and5

analyze the observational data. In Sect. 3 the results of the study are presented and
in Sect. 4 we discuss the results in light of physical mechanisms reviewed in previous
works and other dynamical theories.

2 Methods

High resolution precipitation data (∼5×5 km2 footprint) was acquired from NASA’s10

Tropical Rainfall Measurement Mission (TRMM) database (for data see: http://mirador.
gsfc.nasa.gov). TRMM satellite has been in orbit since 1997 and is equipped with both
active and passive remote sensing instruments. Its main advantage compared to other
precipitation measuring satellites is the first of a kind 13.8 GHz precipitation radar in-
stalled onboard, which enables us to obtain high resolution vertical profiles (250 m) of15

precipitation. TRMM spatially covers 35◦ N to 35◦ S in a non-sun-synchronous orbit,
providing complete temporal statistics for the tropics and sub-tropical regions.

2.1 TRMM 2B31

The TRMM product used in this work was the level 2 combined 2B31 product (Haddad
et al., 1997; Kummerow et al., 2000). 2B31 combines both precipitation radar (PR)20

and Thermal Microwave Imager (TMI) data to obtain the precipitation vertical profile
estimation. The product output is adapted to the PR vertical profile with a ∼5 km foot-
print (∼4 km before August 2001). The total swath is 250 km and the vertical profile
ranges from the surface up to 20 km above the earth’s ellipsoid, with a resolution of
250 m (i.e. total of 80 vertical levels). The algorithm is based on comparing the total25
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integrated column attenuations given by the PR and TMI, in order to reduce the uncer-
tainty of the a prioi selected drops size distribution (DSD) for the PR algorithm. The
combined approach gives importance to the PR and TMI as their ambiguities warrant.
The fine resolution of the PR is expected to compensate for the ambiguity of the TMI
(e.g. detecting freezing levels and vertical distribution) and the robustness of the TMI5

should reduce errors made by the radar when integrating quantities (PR is very sen-
sitive to hydrometeor size). Due to the wavelength of the PR, 2B31 is inherently less
sensitive to weak rain and drizzle (<0.7 mm hr−1) which are common in cases of cer-
tain stratiform clouds. Like all passive microwave imagers, the TMI performs best over
homogeneous water bodies. Hence, over land the algorithm is dominated by PR mea-10

surements (Adler et al., 2009). For more on the algorithm see references (Haddad et
al., 1997; Iguchi et al., 2000).

Many validation studies have been conducted for the PR, TMI and combined level 2
products. Validation results vary on spatial and seasonal temporal scales (Wolff et al.,
2005; Adeyewa and Nakamura, 2003), showing weaker performance in estimating ac-15

cumulated rainfall compared to lower resolution, rain-gauge calibrated TRMM products
such as the 3B42 (Adeyewa and Nakamura, 2003; Nicholson et al., 2003; Kummerow
et al., 2000). Nevertheless, the products have successfully been able to capture diur-
nal precipitation and climatological trends (Yang and Smith, 2006; Shin et al., 2000).
Moreover, the combined 2B31 product tends to give improved results and lower biases20

compared to the PR and TMI products alone (Masunaga et al., 2002; Wolff et al., 2005;
Wolff and Fisher, 2008), especially at marine and coastal areas.

2.2 Region of interest and distance from coastlines

We focus the study on the East Mediterranean (EM), the region of interest (ROI) spans
from 30◦ N–36◦ N (TRMM’s northern limit) and 30◦ E–38◦ E (see Fig. 3). 2B31 data was25

collected for 13 winter seasons (November–March) from 1998 till 2011. The data was
spatially sorted into a 5 km×5 km uniform grid that corresponds best to TRMM level 2
data. High resolution (2 min of a degree ∼=3.5 km) coastline and topography data was
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taken from NCEP/NCAR (see: http://dss.ucar.edu/datasets/), and linearly interpolated
to fit the ROI grid. Using all datasets, we sorted the TRMM data as function of distance
to the nearest coastline (i.e. the normal from the coastline to each grid pixel). All
results in this work are displayed with respect to distance from the nearest coastline,
with positive (negative) distances corresponding to rain over land (sea). The error was5

taken to be ±7 km, which is the diagonal between two pixels.
Two additional sub-regions were defined in order to focus on orographic effects

nearby coastal areas (see Fig. 3). One named “Lebanon” and corresponds to the
Lebanese region which is characterized by two extreme high mountain ridges, one of
them located in close proximity to the coastline. The first ridge (referred to as Mount10

Lebanon ridge) peaks around 20–25 km inland, followed by successive second ridge
(referred to as Anti-Lebanon ridge) located 60 km inland. Both Lebanon ridges are
of comparable heights (average of ∼1.5 km), and are separated by a high elevation
plateau. The second sub-region named “Israel”, and corresponds to the central part
of Israel. This sub-region consists of two high mountain ridges as well, although not15

as steep as in Lebanon and not located as close to the coastline. The first mountain
ridge (referred to as Judea ridge) reaches its highest elevation (average of ∼600 m) 45–
50 km inland. Judea ridge is followed by a sharp drop in elevation down to the Jordan
Valley and a rapid rise afterwards to the second mountain ridge (referred to as Jordan
ridge). Jordan ridge reaches its highest elevation (average of ∼700 m) 100–110 km20

inland. The distinct differences (i.e. ridges’ height and proximity to coastlines) between
both sub-regions may help us better estimate the role orographic forcing has on pre-
cipitation processes compared to other precipitation promoting dynamical effects.

2.3 Precipitation mass

Vertical profiles of rain rates [mm hr−1] were translated in this study into column Inte-25

grated Hydrometeor Mass (IHM, [kg m−2]) with the use of the drops size distribution
(DSD) parameter in the 2B31 product (Haddad et al., 1997). Integrated Hydrometeor
Mass (IHM) was taken for several reasons. First, using information from all vertical
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levels allows more robust analysis of larger statistics compared to if only one vertical
level was considered. Second, we get a measure of the total amount of hydrometeors
formed throughout the vertical profile. Finally, using integrated mass minimizes data
variability in comparison to other parameters, such as surface rain rate or maximum
rain rate in the column. IHM values in this work are not normalized by the number5

of rain days, and can not be considered an accurate measure for accumulated rain at
the surface. Nevertheless, we found that IHM and simultaneous surface rain rate are
linearly correlated with R2 = 0.806, and therefore can assume that IHM is proportional
to rain rates at the surface.

2.4 Intra-seasonal variability10

From reasons discussed above (see Sect. 1.2), we divided the data analysis to two sub-
seasons, one autumnal (November–December) and one wintery (January–March).
Preliminary analysis of the data confirmed that there indeed is a distinct difference
in IHM quantities and spatial distribution between the two sub-seasons. Moreover,
we analyzed EM 850 hPa wind and 500–1000 hPa layer thickness data from NCEP15

reanalysis (see: http://www.esrl.noaa.gov/psd/data/gridded/) which correspond to the
rain events during the study time span. The wind average increases during the winter
season, from 5.1 [m s−1] during November–December, to 6.8 [m s−1] during January–
March, further indicating that pressure systems in the EM are more intense during the
second part of winter. The 500–1000 mb thickness is proportional to the average virtual20

temperature between the two pressure levels i.e. Hypsometric equation (Wallace and
Hobbs, 2006a). The average thickness decreases from 5607 [m] during November–
December to 5550 [m] during January–March, indicating that the atmosphere is cooler
during the January–March sub-season.
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3 Results

Figure 4 shows the IHM average per grid pixel for the entire EM, icluding all 13 winter
seasons. TRMM overpasses with no rain were not included in the averaging, because
we are interested in average IHM values that represent rainclouds in this region. It is
important to stress that the results are not normalized by the number of counts per5

pixel. Hence, IHM values represent the characteristic hydrometeor profile per precipi-
tation event and not accumulated measures such as accumulated rain.

A band of high IHM relative to the rest of the domain clearly follows the coastlines,
and appears to be centered slightly offshore. The band represents an area of enhanced
precipitation formation, with vertically developed clouds and high rain rates throughout10

the vertical profile. Pixels with extremely high IHM (>0.8 kg m−2) at the south eastern
part of the domain should be neglected due to poor statistics. We can explain the
highlighted band of IHM distribution in Fig. 4 by two main dynamical mechanisms.
The convergence of LB and gradient winds, and orographic lifting. The proximity of
mountains to the coastlines in some parts of the domain might imply that the band15

is of orographic nature, however, the band exists near flat terrain (e.g. southern part
of the EM and parts of the Cyprus Island) coastal regions as well, favoring a land-
sea difference mechanism. Hence, further analysis is needed to differentiate between
the two mechanisms. In the next sections we shall focus on the spatial and temporal
patterns of IHM in the EM and its sub-regions.20

3.1 Eastern mediterranean

Mean IHM (Integrated Hydrometeor Mass) as a function of the distance to the coast-
lines for the whole EM region is shown in Fig. 5. It is apparent that the highlighted IHM
band effect (as shown in Fig. 4) is distributed like a Gaussian, and centered slightly off-
shore. Therefore, after the data was sorted with respect to distance from the nearest25

coastline (into 30 bins), a Gaussian fit was applied and is used as an objective tool to
determine the IHM peak characteristics. The fit is in the form of Eq. (3):
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fit(x)=a ·e−( µ−x
σ )2

+b (3)

Where x is the distance from the nearest coastline. The fitted Gaussian mean (µ)
is used to describe the location of the effect with respect to the coastlines, standard
deviation (σ) to describe the spatial extent of the effect, amplitude (a) to describe the
magnitude of the dynamical effect, and baseline (b) to describe the background IHM5

values far from the coastlines. Gaussian main peak height (see Fig. 5) is the highest
IHM value reached by the fitting curve.

There are pronounced intra-seasonal differences which emphasize the argument
that IHM values represent the characteristic precipitation profile and not accumu-
lated rainfall. Taking the coastal cities of Tel-Aviv (Israel), Larnaka (Cyprus), and10

Lattakia (Syria) as representing examples, accumulated rainfall increases from 205,
128, 255 mm during November–December to 276, 165, 351 mm during January–
March (data taken from the World Meteorological Organization (WMO) website, http:
//worldweather.wmo.int), an increase of 34 %, 28 %, and 37 %, respectively. This is
in contrary to IHM values in the EM, for which the November–December peak is15

∼0.50 kg m−2 compared to ∼0.35 kg m−2 for January–March, a decrease of more than
30 %. Lower temperatures which imply reduced liquid water content (LWC) in the sec-
ond part of the winter can partly explain this. Along with that, the peak height relative
to the baseline IHM is slightly higher in November–December (0.25 kg m−2) compared
to January–March (0.2 kg m−2). The mean (standard deviation) of the November–20

December Gaussian is −9±7 (37) km, whereas for January–March we get −3±7 (40)
km. It is apparent that peaks for both sub-seasons are located offshore, suggesting
that most of the precipitation in the EM forms over the sea.

The method of single Gaussian fitting as done for the whole EM does not describe
well some important features in the data, such as the double peak in November–25

December and the large right tail of the January–March Gaussian, resulting in an un-
derestimation of the January–March STD. Since the whole EM IHM data is included in
this analysis, it is influenced by many local effects together (e.g. orographic and surface
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friction effects), which cannot be decoupled. For this purpose we shall examine two
sub-regions separately, Lebanon and Israel.

3.2 Lebanon

As seen above, it is necessary to analyze smaller regions of well specified topogra-
phy in order to decouple the orographic and LB effects on precipitation formation. The5

spatial distribution of the IHM in “Lebanon” sub-region (see Fig. 3) is shown in Fig. 6.
We assume the distribution is a simplified superposition of two Gaussians (i.e. we add
another Gaussian term to Eq. 3), one most likely related to the convergence of LB and
gradient winds (LB peak), and the other related to orographic lifting (orographic peak).
The average topography profile as a function of the distance from the coast is displayed10

in Fig. 6 as well. The results for November–December show that the two Gaussian as-
sumption fits the data with high correlation (R2 =0.94). Fitting analysis reveals that the
LB:orographic amplitude Gaussian ratio is 2:1, with a main peak height of 0.56 kg m−2.
The LB peak mean (standard deviation) is −22±7 (22) km compared to 5±7 (9) km
for the orographic peak. Meaning that the LB effect dominates offshore precipitation15

formation and affects a larger area than the narrow orographic effect, which dominates
onshore precipitation formation.

The orographic peak in hydrometeor mass is located around 20 km before the peak
elevation of the Mount Lebanon ridge (located around 20–25 km from the coast), and
seems to correspond to the location with the highest gradient in topography (see the20

green curve in Fig. 6). The third Gaussian was not applied to the third peak located
at −100 km because it is probably related to coastline effects in proximity of Eastern
Cyprus.

During the January–March sub-season, although not as clearly separated, two
Gaussians are successfully fitted (R2 =0.98) to the sorted data curve. The fitting anal-25

ysis LB:orographic amplitude ratio now 1:2, suggesting that the IHM distribution is now
dominated by the orographic peak. The LB peak mean (standard deviation) shifts to
−28±7 (10) km compared to −8±7 (33) km for the orographic peak. Although both
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peaks’ locations shift offshore compared to November–December (6 km and 13 km for
the LB and orographic peaks, respectively), the weight of the distribution shifts to-
wards the land, as indicated by the amplitude ratio and switch in standard deviation
magnitudes. January–March IHM values are lower, as expected, with peak IHM value
of 0.38 kg m−2, and consistent with the whole EM. As previously discussed, if LB in-5

teraction with gradient winds and orographic lifting are considered to be the physical
mechanism behind the highlighted IHM band, we would expect to see a diurnal pat-
tern. Nighttime experiences the largest SST-Land temperature difference, so we would
expect to see the strongest and furthest offshore IHM signal during the night. Radia-
tive surface heating (though limited due to cloud shading) of land and mountain slopes10

should result in an opposite effect, with a maximum IHM signal over land during the day.
To support the idea that diurnal variations are due to mesoscale dynamics and not syn-
optic scale forcing, we checked the diurnal variation of IHM far away from coastlines
(more than 100 km offshore) and saw no clear pattern over the sea. Hence, our basic
assumption is that the diurnal occurrence of EM winter storms is distributed randomly.15

The time evolution of the IHM distribution with respect to the coastline in Lebanon is
displayed in Fig. 7. To reduce the noise, we used a moving ±3 h span average e.g. the
data from 6 (Local Time) is an average of the data collected between 03:00 and 09:00
(see Fig. 7 caption for more details on diurnal analysis).

Considering the November–December sub-season, the separation to two peaks is20

clearly seen throughout the diurnal cycle. The offshore LB peak displays two modes
of high IHM values: (i) during nighttime hours (23:00–05:00±3 h) (ii) during daytime
hours (12:00–18:00±3 h). The latter mode does not fit the land-sea temperature differ-
ence diurnal evolution. Moreover, the distribution spreads offshore to its largest extent
during daytime and not nighttime as expected. The orographic peak IHM values re-25

main more stable throughout the diurnal cycle, showing maximum values during the
nighttime (00:00–5:00±3 h). Far inland IHM (>25 km) reaches its highest values dur-
ing daytime hours (10:00–16:00±3 h). The −100 km offshore peak which is attributed
to Cyprus’s coastline shows no diurnal cycle.
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January–March shows different behavior than November–December. The separa-
tion to LB and orographic peaks is less obvious, and can only be distinguished during
the morning hours. The LB and orographic peaks reach their minimum magnitude dur-
ing the afternoon. Both peaks (LB and orographic) intensify during the nighttime and
morning hours (00:00–12:00±3 h). Compared to the “noisier” first sub-season, the to-5

tal distribution is neatly confined between −50 km and 50 km throughout the day. The
far inland peak disappears during late winter.

3.3 Israel

The “Israel” sub-region (see Fig. 3) spatial distribution of the IHM is shown in Fig. 8.
Rainfall occurs less in this region compared to the northern Lebanon region that is10

closer to the cyclones’ centers. This results in poorer statistics and “noisier” data.
Therefore, we reduced the number of sorting bins to 25 in order to reduce fluctuations in
the data. Results from Israel sub-region suggest that both Judea and Jordan mountain
ridges effect the IHM distribution considerably. Hence, we used three Gaussians in the
analysis: LB, Judea and Jordan (i.e. we added a third Gaussian term to Eq. 3).15

Similar to Lebanon, the LB Gaussian dominates during November–December,
reaching IHM=0.52 kg m−2. The LB:Judea:Jordan Gaussian fitting amplitude ratio is
5:2:4 during this sub-season. The three peaks are located at −20±7 (38) km, 28±7
(13) km and 75±7 (14) km, the LB peak having the largest spatial extent. Fitting cor-
relation is R2 = 0.93. As seen for Lebanon, orographic peaks are located 20–30 km20

before the mountain ridges, and correspond to the largest topographic height gradi-
ents. Secondary peaks located farther offshore at −80 km, −120 km are “artifacts” of
the curvature of the coastline towards Egypt. i.e. Israel sub-region includes LB effects
of Egypt as well. The peaks appear only during the November–December sub-season,
when Egypt LB is at its maximum.25

Similar to Lebanon sub-region, the January–March sub-season shows less separa-
tion between Gaussians, with the LB and Judea orographic peaks nearly combining
to a single peak. The three peaks are located at −28±7 (21) km, 11±7 (29) km and
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78±7 (24) km, with Judea orographic peak maximum IHM value of 0.37 kg m−2. The
LB and Judea peaks shift towards the sea by 8 km and 17 km (compared to November–
December location), respectively, similar to the shift seen for the Lebanon sub-region.
Jordan peak shows no change in its location. The strongest intra-seasonal change is
the decrease in LB peak amplitude, reflected by the LB:Judea:Jordan amplitude ratio5

of 3:5:3. Furthermore, the orographic Gaussians widen considerably (∼100 %), while
the LB Gaussian losses ∼50 % of its spatial spread.

Diurnal patterns of IHM for “Israel” sub-region are shown in Fig. 9. Contrary to
Lebanon, both winter sub-seasons show a IHM diurnal cycle that partly fits the land-sea
temperature difference diurnal evolution. During November–December, the peak of the10

IHM distribution propagates offshore as the night progresses, reaching a maximum ex-
tent around 08 : 00±3 h. The offshore peak stays intact and intensifies during daytime
hours (12:00–18:00±3 h), exhibiting identical behavior to the Lebanon sub-region off-
shore peak during November–December. The Judea and Jordan orographic peaks (at
∼30 km and ∼80 km inland) show maximum values during the afternoon (12:00-18:0015

±3 h) as well. Secondary offshore peak at −80 km is attributed to Egypt’s coastline,
and not discussed here.

As seen in Fig. 8, LB and Judea orographic peak spread out and merge during
January–March. The combined peak intensifies and widens during the evening and
night and reaches an offshore maximum extent around 06:00–07:00±3 h. During the20

daytime the LB peak clearly decreases while onshore IHM values dominate the dis-
tribution. The Jordan peak is weaker and reaches its maximum values and spatial
spread during the morning hours (06:00–10:00±3 h). A pronounced feature of both
sub-seasons is the IHM local minima located at the rain shadow of the Judea ridge.

4 Summary and discussion25

Precipitation data in this work is represented by Mean Integrated Hydrometeor Mass
(IHM [kg m−2]), which serves as a measure of the average instantaneous precipitation
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formation throughout the atmospheric vertical column. The use of IHM is conceptually
different from most precipitation studies, which focus on accumulated rainfall [mm].
Considering the inherent algorithm differences the TRMM 2B31 product has for sea
versus land areas, we looked into numerous TRMM validation and algorithm studies
(see Sect. 2.1) and found no apparent bias in transition between land and sea areas.5

Moreover, we tested 2B31 data for different regions around the globe and found no
consistent bias in coastal areas. Therefore, to our current knowledge, the 2B31 product
is suitable for this work.

Results from the entire EM and its sub-regions support the idea that low level con-
vergence of LB and synoptic winds at the sea-land interfaces have a dominant affect10

on precipitation formation in the region. The high topographic ridges (Mount Lebanon,
Judea and Jordan) in the region also affect IHM distributions. For both Israel and
Lebanon sub-regions, the orographic IHM peaks are located 20–35 km before the
mountain ridges’ highest elevation, strengthening the assumption that the inland peaks
are indeed caused by orographic forcing. The orographic peaks correspond to the15

largest elevation gradients, and therefore to the largest orographic forced vertical ve-
locities (see Sect. 1.1). There was no notable effect to the Anti-Lebanon ridge (located
in Lebanon sub-region, 60 km from the coast). This may be due to depletion of much
of the water content (rain shadow effect) after passing the first ridge, and due to the
smaller height gradient between both ridges. Values of IHM are distributed like Gaus-20

sians with respect to EM coastlines, with their means located −30 km offshore to 30 km
onshore. As implied by the shape of the distributions, we fitted a Gaussian for each
effect (LB, orographic) separately.

Spatially and quantitatively, LB effect on IHM distributions change considerably dur-
ing the winter in both sub-regions, as can be summarized to three points: (i) Gaus-25

sian amplitudes are larger during November–December compared to January–March.
(ii) The peaks are located farther offshore during January–March. (iii) January–March
sub-season experiences narrower distributions (Gaussian STD values). The oro-
graphic IHM distributions generally show opposite intra-seasonal changes to that of
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the LB peaks: (i) Amplitudes increasing from November–December to January–March.
(ii) Peak locations shift towards the sea. (iii) Widening of the distributions.

Although our analysis roughly divided the IHM distributions to LB and orographic
Gaussians, it is likely that the orographic tagged Gaussians (excluding the Jordan ridge
Gaussian) account for a combination of orographic forcing, LB, and surface friction5

effects. From basic theory (Wallace and Hobbs, 2006b) we learn that the drag force is
proportional to the square of the wind speed and drag coefficient CD (CD grows at wind
speeds larger than 5 m s−1). Increased surface roughness in transition from sea to land
may also play a role in low level convergence near coastlines. Frictional effects seem
to be much more pronounced in the IHM distributions during January–March (stronger10

winds result in larger drag force), when no distinct spatial separation can be made
between LB and orographic effects. During November–December, the separation is
clearer and therefore each Gaussian is likely attributed to a single effect. The fact that
the mean locations of the Gaussians actually display an intra-seasonal shift offshore
and not onshore could be the result of the arguments above. (e.g. Judea ridge peak in15

Israel located at 11 km during January–March may consist of both orographic effects
around 30 km inland, and LB and frictional effects near the coastline. The LB peak at
−28 km represents cases of strong LB development far from the coast).

The diurnal cycles of IHM distributions show differences between Israel and Lebanon
sub-regions. During the whole winter season in Israel (with the exception of the after-20

noon hours in November–December), diurnal patterns can be described by a see-saw
pattern. Evening to morning hours exhibit an offshore transition of the IHM peak, while
late morning to evening hours exhibit a transition of the IHM peak towards inland. The
pattern fits the diurnal evolution of strong LB at night and weak LB during the day, and
the effects of inland solar heating during the day that can de-stabilize the atmospheric25

profile over the land (especially over mountains). It is apparent however, that the off-
shore LB Gaussian during November–December is highly affected from the intense
afternoon offshore peak (see Fig. 9), a fact which opposes our current proposed the-
ory. To our knowledge, the afternoon peak has not been previously reported. Lebanon
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sub-region diurnal cycle (November–December, see Fig. 7) combined with year-by-
year analysis further confirm the credibility of the diurnal pattern. Therefore, a following
work is planned to look into this diurnal feature.

Excluding the November–December afternoon offshore peak discussed above,
Lebanon sub-region IHM peaks intensify during the nighttime in November–December5

and during the late night and morning hours in January–March. The diurnal cycles for
both sub-seasons could be partially explained by LB effect, however, the cycle is fun-
damentally different than the cycle in Israel in two ways: (i) Israel and Lebanon diurnal
cycles are out of phase. (ii) Lebanon region exhibits a strong coupling between the off-
shore (LB) and onshore (orographic) peaks. The main differences between Israel and10

Lebanon sub-regions are the location and magnitude of their topographic obstacles,
combined with stronger winds in Lebanon (closer to the low pressure vortex). Hence,
it is likely that Lebanon’s IHM diurnal pattern is dominated by interaction of synoptic
winds with topography.

The results of the spatial and temporal analysis are to the most consistent with higher15

SST-Land temperature differences during the first part of the winter, increasing LB and
“pushing” the main convergence zone further offshore while the orographic influence
is rather local. During the second part of winter, deeper vortices that produce stronger
synoptic winds combine with weaker LB. Consequently, the convergence zone is dis-
placed towards the land and clouds that form over the sea are advected more ef-20

ficiently inland, resulting in larger Gaussian STD values. Additionally, the stronger
winds increase frictional drag and possible interactions with topographic obstacles, fur-
ther favoring precipitation formation over land. These interactions could also affect the
streamlines (most importantly vertical motion) of the flow upstream the ridges (Baines,
1987; Grossman and Durran, 1984; Hughes and Ofosu, 1987), an additional explana-25

tion for the intra-seasonal offshore shift of the Gaussians’ mean locations. Neverthe-
less, for January–March we see that the “weight” of IHM distributions is concentrated
more inland than for November–December.
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Intra-seasonal decrease in baseline IHM values can be partially attributed to
changes in atmospheric vapor content. Precipitable Water (The total atmospheric wa-
ter vapor contained in a vertical column of unit cross-sectional area, [kg m−2]) data
was obtained from NOAA-NCEP Global Data Assimilation System (GDAS), for details
see: (Parrish and Derber, 1992; Saha et al., 2010). Average Precipitable Water values5

for the EM region are 18 kg m−2 during November–December and 14.5 kg m−2 during
January–March, a decrease of ∼19 %. Thus, about half of the decrease in IHM base-
line values is due to lower vapor content, while the other half is due to other dynamical
and meteorological intra-seasonal changes.

The question is raised whether the highlighted IHM band (see Fig. 4) reflects the10

average precipitation intensity at the ground? Given the persistent westerly winds, we
would expect to see an inland shift of the surface rain rate distribution. With the use
of the surface rain rate parameter from the 2B31 product, we repeated the analysis as
done for IHM and saw no consistent shift of the Gaussian locations towards the land
or sea. Moreover, by considering low end values of TRMM detectable rain rates that15

correspond to a minimal drop size of ∼0.7 mm (Feingold and Levin, 1986) and terminal
fall speed of ∼5 m s−1 (Wobus et al., 1971), combined with high end values for the
precipitation profile center of gravity (2.5 km) and horizontal wind speed (10 m s−1), we
obtain a horizontal distance shift of 5 km, exactly TRMM’s footprint. Hence, even if an
inland shift exists, the resolution of our dataset is too coarse to detect it.20

It is interesting to see if similar effects are as dominant in other regions of the world.
Southern California (Los Angeles area) was chosen as an example because of the
similar synoptic setting during the winter (Conil and Hall, 2006). Similar to the EM,
peak IHM values are distributed along the coastline (see Fig. 10), probably due to a
combination of mesoscale breezes and orographic effects. We expect to see similar25

distributions in other coastal areas around the globe as well.
In this work we focused on convective precipitation processes as affected by dynam-

ical effects of sea-land thermal differences and topographic obstacles. Other factors
such as surface fluxes, surface friction and aerosols also influence the IHM distribution
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in the EM region and require further study. One cannot but ponder on the influences
anthropogenic effects (e.g. aerosol, heat island, land use effects) may have on this
water depraved region. A numerical study of aerosol effect on rain delay in Israel indi-
cates that high aerosol loading in rainclouds may successfully shift rainfall from sea to
land (Noppel et al., 2010). Finally, we have shown the benefits of using TRMM in high5

resolution mesoscale studies.
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Fig. 1. Radar image of rain clouds off the coast of Israel, 6 January 2011 at 05:00 local time.
The rain clouds in this approximate location dissipated a few hours after sunrise. The image
serves as an example of a stationary precipitation line formed offshore, and is likely attributed
to an offshore LB front. Image taken from the Israeli Meteorological Service (IMS) website, at
http://www.ims.gov.il.
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Fig. 2. Typical synoptic setting of Cyprus low in the EM, 29 January 2008. Mean sea level pres-
sure isobars are displayed and labeled in hPa units. Image provided by the NOAA/OAR/ESRL
PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/.
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Fig. 3. Study area ROI and additional sub-regions. The colorbar represents topographic height
above sea-level [m]. It should be noticed both that sub-regions include two successive mountain
ranges nearly parallel to the coastline, but with Lebanon’s mountains being higher and closer
to the coast.
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Fig. 4. Mean IHM [kg m−2] per pixel, EM winter seasons 1998–2011. Black topography con-
tours with vertical resolution of 300 m are added. A clear band of high IHM follows the EM
coastlines.
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Fig. 5. Mean IHM [kg m2] as a function of the distance from the nearest EM coastline, left
figure corresponds to November–December months, and right figure to January–March. The
data was sorted into 30 bins according to distance from nearest coastline and averaged (Blue
astrix curve). A single Gaussian fit was applied to the sorted data curve (red curve), with the
mean, standard deviation, peak height and correlation coefficient added in the upper left part
of the figures. The November–December, January–March counts per bin are 11049, 20929,
respectively.
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Fig. 6. Same as Fig. 5, but for “Lebanon” sub-region and with the addition of topography profile
(dashed green curve) and superposition of multiple Gaussians. Gaussians are numbered from
left to right, with #1 being the Gaussian peak which corresponds to LB mechanism. The two
ridges reach their highest elevations at 21 km and 60 km inland. The November–December,
January–March counts per bin are 2602, 4727, respectively.

15692

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/15659/2011/acpd-11-15659-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/15659/2011/acpd-11-15659-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 15659–15696, 2011

Coastal precipitation
formation and

discharge

R. H. Heiblum et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 7. Integrated Hydrometeor Mass time evolution with respect to coastline for November–
December (left figure) and January–March (right figure), in the “Lebanon” sub-region. Colorbar
scale represents IHM [kg m−2], notice that colorbars are scaled differently for each sub-season
in order to enhance the diurnal variance. Data was sorted as a function of distance from nearest
coastline and local time. Y-axis numbers are the center local time of the ±3 h averaging time
span, running from 00:00 (midnight) to 24:00. To interpret the Y-axis: 0–5 should be considered
nighttime hours, 6–11 morning hours, 12–17 daytime hours and 18–23 evening hours. Pixel
width reflects the density of counts, narrow pixels being denser. The November–December,
January–March mean counts per bin are 647, 1176, respectively.
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Fig. 8. Same as Fig. 6, but for “Israel” sub-region. Data was sorted into 25 bins. Judea and
Jordan ridges reach their highest elevation at 46 km, 110 km respectively. The November–
December, January–March counts per bin are 1072, 2139, respectively.
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Fig. 9. Same as Fig. 7, but for “Israel” sub-region. Data was sorted into 25 bins. The
November–December, January–March mean counts per bins are 269, 531, respectively.
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Fig. 10. Same as Fig. 6, but for Southern California (Lon: −125 to −117, Lat: 32 to 35.5) and
without Gaussian fitting. The coast is followed by high topography that peaks around 65 km
inland.
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