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Abstract

An in-situ derivatization thermal desorption method followed by gas chromatography
and time-of-flight mass spectrometry (IDTD-GC-TOFMS) was developed for determi-
nation of polar organic compounds. Hydroxyl and carboxyl groups of compounds such
as anhydrous sugars, alcohols and phenols, fatty acids and resin acids are targets5

of the derivatization procedure. Derivatization is based on silylation with N-Methyl-N-
trimethylsilyl-trifluoroacetamide (MSTFA) during the step of thermal desorption. The
high temperature of 300 ◦C during desorption is utilized for the in-situ derivatization on
the collection substrate (quartz fibre filters) accelerating the reaction rate. Thereby, the
analysis time is as short as without derivatization. At first the filter surface is dampened10

with derivatization reagent before insertion of the sample into the thermal desorption
unit. To ensure ongoing derivatization during thermal desorption the carrier gas is sat-
urated with MSTFA until the desorption procedure is finished. The method introduced
here was compared with direct thermal desorption gas chromatography time-of-flight-
mass spectrometry (DTD-GC-TOFMS) and with solvent extraction (SE) procedures15

followed by gas chromatography and mass spectrometry. Comparisons were carried
out with field samples originating from ambient aerosol collected on quartz fibre fil-
ters. Moreover, the methods have been applied on NIST Standard Reference Material
Urban Dust (SRM 1649a).

1 Introduction20

During the last decade direct thermal desorption (DTD) (someone like to prefer the
term “thermal extraction”) methods were developed for quantification of semi volatile
organic compounds (SVOC) adsorbed on ambient particulate matter (PM) (Falkovich
and Rudich, 2001; Waterman et al., 2000). The advantage of DTD is the reduction of
analyte losses and memory effects by desorption of the sample within the GC injec-25

tor. In recent years an increasing number of samples had to be analysed for studying
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aerosol composition. Since a growing variety of organic compounds becomes more
and more important for source apportionment (Dutton et al., 2009; Sklorz et al., 2007;
Vedal et al., 2009), aerosol ageing studies and investigations on characteristics of par-
ticles responsible for climatic effects (Donahue et al., 2009) direct thermal desorption
hyphenated with GC-MS can be a useful tool to deal daily sampling on long time se-5

ries (Schnelle-Kreis et al., 2005a) or with high time resolution. Some research groups
developed methods for direct thermal desorption for analysis of organic aerosol com-
pounds in the past (Bates et al., 2008; Ding et al., 2009; Falkovich and Rudich, 2001;
Gil-Moltó et al., 2009; Hays et al., 2003; Ho et al., 2008; Schnelle-Kreis et al., 2005b;
van Drooge et al., 2009).10

A recent development in thermal desorption techniques is the Thermal Desorption
Aerosol GC-MS (TAG) (Lambe et al., 2010; Williams et al., 2006, 2010). Particle frac-
tions are collected by humidifying and impaction into a thermal desorption cell. After
a defined sampling time the organic matter is transferred to the gas chromatograph by
thermal desorption. A high time resolution of one hour per sample and the chromato-15

graphic separation are the advantages of the TAG system.
Another development for thermal desorption of precipitated particulate matter is the

methylation by tetramethylammonium hydroxide (TMAH) and its derivatives (Beiner et
al., 2009; Fabbri et al., 2002) for quantification of organic acids. The applicability for
other polar compounds is currently under investigation.20

Polar organic substances are playing a major role in characterization of diverse atmo-
spheric processes and also during formation of aerosols. The main organic combustion
product of wood is the anhydrous sugar levoglucosan as a decomposition product of
cellulose. This compound as well as its homologues mannosan and galactosan, de-
composition products of hemi cellulose, are ubiquitous constituents of the atmosphere25

(Simoneit et al., 1999, 2004). Further wood combustion products originating from lignin
breakdown or colophony can be observed. Most of them are of polar nature (Bari et
al., 2009; Fine et al., 2001, 2002, 2004; Nolte et al., 2001). Another main source of
polar organic compounds in the atmosphere are biogenic emissions. Not only sugars
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from plants, fungi and bacteria can be observed (Medeiros et al., 2006; Medeiros and
Simoneit, 2007), but also huge amounts of unsaturated hydrocarbons are continuously
evaporated by vegetation (Guenther et al., 1995; Kourtchev et al., 2005). Once or-
ganic substances are released to the atmosphere as gas or particle-bound they are
exposed to UV radiation, radicals and oxidants. Depending on particle properties (e.g.5

pH value, possible reaction agents) reaction mechanisms and reaction velocities are
affected. In ageing studies these facts are taken into account to investigate the forma-
tion of secondary organic aerosol (Hallquist et al., 2009). All of these reactions steadily
increase the polarity of the reactants. Hence it is essential to integrate a derivatization
step for observation of the polar organic tracers described and their behaviour imme-10

diately after combustion processes or in the atmosphere (Edney et al., 2003; Oliveira
et al., 2007), e.g. supported by chamber experiments (Chiappini et al., 2006; Edney
et al., 2005). Investigation of polar organic compounds is of great scientific interest
due to their effect on particulate properties impacting climate processes. An increasing
oxidation rate leads to acidification and growing of particles. The ongoing ageing is15

responsible for transformation of particles to cloud condensation nuclei (CCN).
In this work an in-situ derivatization thermal desorption method followed by gas chro-

matography and time-of-flight mass spectrometry (IDTD-GC-TOFMS) is introduced
combining short sampling time, powerful chromatographic separation and determina-
tion of polar organic substances. Good comparability of the thermal desorption method20

with a solvent extraction method can be ascertained. For inter comparison NIST Stan-
dard Reference Material Urban Dust SRM 1649a (National Institute of Standards and
Technology, USA) was employed to validate the method for analysis of polycyclic hy-
drocarbons (Bates et al., 2008; Falkovich and Rudich, 2001; Gil-Moltó et al., 2009; Ho
et al., 2008; van Drooge et al., 2009; Waterman et al., 2000, 2001). Levoglucosan,25

mannosan and galactosan were determined in the standard reference material and
compared to results already published by Kuo et al. (2008), Larsen et al. (2006) and
Louchouarn et al. (2009). Comparison of different methods for analysis of ambient
aerosol samples was carried out, too, (Ho and Yu, 2004, 2008; Ma et al., 2010; van
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Drooge et al., 2009) concerning polar substances, polycyclic aromatic hydrocarbons
(PAH) and oxidized polycyclic hydrocarbons (o-PAH). PAH and even more o-PAH are
delicate analytes due to generate artefacts during sampling, sample preparation and
analysis (Liu et al., 2006). Therefore, analysis methods for these substance classes
have to be validated properly. The direct thermal desorption (DTD) method presented5

here as a reference method was already introduced in former papers by Schnelle-Kreis
et al. (2005a,b, 2007). Here the accuracy of this method is demonstrated briefly.

2 Experimental

2.1 Sampling of ambient aerosol

Prior to sampling quartz fibre filters were baked for at least eight hours at 550 ◦C to10

remove all organic matter. The sampler was located at the aerosol characterization site
of the Helmholtz Zentrum München at the University of Applied Sciences, Augsburg,
next to the inner city of Augsburg, Germany (UAS, urban background). Samples were
taken from 1 March 2010 to 14 March 2010.

For chemical analysis PM2.5 samples were collected with a low volume sequential15

sampler (Partisol-Plus Model 2025, Rupprecht & Patashnick, NY, USA) on quartz fibre
filters (T293, Munktell, Grycksbo, Sweden) at a flow rate of 16.7 l min−1. Sampling time
was 24 h, thus airborne particulate matter of 24 m3 of air was collected on each filter.
The samples were stored in glass containers at −18 ◦C until analysis. Filters for solvent
extraction were extracted directly after sampling.20

2.2 Basics of in-situ derivatization and thermal desorption (IDTD)

The enhanced IDTD method involves the option to quantify polar constituents of or-
ganic particulate matter. The method presented allows derivatization of the polar or-
ganic fraction of filter samples in-situ on the filter during thermal desorption. Deriva-
tization and desorption of polar organic compounds occurs directly from particulate25
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matter on the filters. The advantages of a direct thermal desorption system employed
for this study are: (1) direct placement of samples in the GC liner, so called in-injector
thermal desorption avoiding sample transfer lines frequently causing cold spots, (2) the
possibility of automatic liner exchange, (3) rapid heating rates of the injector and (4)
replacement of the GC liner for every sample.5

The derivatization procedure consists of two steps and is fully automated with an
applicable sampling robot. The first step is the addition of the derivatization reagent
N-Methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) for complete moistening of filter
and particulate matter. The second step is very important for quantitative silylation of
polar organic compounds by MSTFA. The carrier gas is saturated with derivatization10

reagent by switching to a second pathway leading over a cartridge filled with MSTFA
during the thermal desorption process (Fig. 1). The high temperature of 300 ◦C during
desorption increases derivatization rate sufficiently without additional catalyst.

The in-situ derivatization thermal desorption GC-TOFMS (IDTD-GC-TOFMS) was
employed for the main anhydrous sugars levoglucosan, galactosan and mannosan oc-15

curring in ambient aerosol and further highly polar organic compounds like resin acids
and lignin combustion products. Analysis of levoglucosan is possible by many different
methods published in a variety of papers. An overview of detection and quantifica-
tion of levoglucosan in atmospheric aerosols is given by the review of Schkolnik and
Rudich (2006). As a conclusion of these studies we can find that the choice of solvent20

or solvent mixture is most crucial for methods using solvent extraction (Louchouarn
et al., 2009). The polarity of the extraction solvent constitutes a limiting factor for the
extraction yield of levoglucosan. To determine all substance classes being of interest
for studying ambient aerosol it may be necessary to extract different polar fractions
by different solvents. The advantage of the described in-situ derivatization thermal25

desorption method is minimization of the working steps, avoiding handling with dif-
ferent solvent mixtures and making even highly polar substances ascertainable. An
overview of the compound classes analysed is shown in Fig. 2 in terms of single ion
chromatograms.
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2.3 Sample preparation, in-situ derivatization and thermal desorption

For analysis of particulate matter collected the filters were cut by a special tool into filter
aliquots which were stripes of the dimension 13.5 mm×2 mm. One filter stripe (sam-
ple aliquot of 0.55 m3 of sampled air) was spiked with two internal standard mixtures
(isotope-labelled reference compounds) for quantification. The first (non polar) internal5

standard consisted of fifteen deuterated PAH, two deuterated o-PAH and four deuter-
ated alkanes. D8-9,10-anthracenedione and D10-benz[a]anthracene-7,12-dione were
synthesized in our laboratory (Liu et al., 2006) (see Table 1 for detailed description
and concentrations). The second (polar) internal standard mixture contained 13C6-
levoglucosan (Omicron Biochemicals, USA), 13C6-vanillin (Larodan, Sweden) and D31-10

palmitic acid (CIL, USA). Samples were placed into goose-neck glass-liners for thermal
desorption which were sealed with PTFE caps. Further treatments were carried out by
the sampling robot. Prior to analysis liners were opened and 10 µl MSTFA (Macherey-
Nagel, Germany) was added in each liner to moisten the filter surface.

For analysis of the NIST Standard Reference Material Urban Dust 1649a portions15

of 0.06 mg were thermally desorbed. Due to the small amount required the urban
dust was mixed and homogenized first with sodium sulphate (w/w, 1/1000) which was
annealed and ground before. The GC injection liners were loaded with 60 mg of this
mixture. Isotope-labelled standards were added to this mixture. The liners were sealed
with PTFE caps until analysis. As described for filter samples MSTFA was injected right20

before analysis.
Liners were placed into a direct (in-injector) thermal desorption unit (Optic 3, Atas

GL, Netherlands) mounted on the gas chromatograph. An automated sampling robot
(Focus, Atas GL, Netherlands) exchanged the complete GC liners placed in the injec-
tor which was automatically closed and opened by a liner exchanging unit (Linex, Atas25

GL, Netherlands). For each sample a freshly deactivated GC liner was used. Deacti-
vation was done by annealing the liners at 550 ◦C for at least twelve hours followed by
a derivatization treatment of the glass surface with chlorotrimethylsilan (TMCS, Merck,
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Germany) for further twelve hours. A glass wool plug above the goose-neck prevented
particles from the filter to enter the capillary column.

After liners were placed into the cold injector (60 ◦C) a steady flow of carrier gas (he-
lium) removed the air. During this venting step of 60 s carrier gas flow was 0.7 ml min−1,
split flow was 50 ml min−1. After 180 s carrier gas flow was increased split less to5

4 ml min−1. The carrier gas was lead to a bypass with a cartridge filled with MSTFA
before entering the injector. This bypass was opened and closed via two 3-port/2-way
solenoid valves being controlled by the Optic software and hardware unit (Atas GL,
Netherlands). During opened bypass the carrier gas was saturated with MSTFA. The
injector was heated up to 300 ◦C with a heating rate of 2 ◦C s−1. During 16 min of reac-10

tion and desorption time the carrier gas was continuously saturated with derivatization
reagent (Fig. 1). Subsequently the bypass was closed and the column flow was set to
0.7 l min−1 with a split flow of 50 l min−1.

2.4 Gas chromatography and time-of-flight mass spectrometry

Desorbed molecules were focused at 70 ◦C on the head of the capillary column, BPX5,15

25 m, 0.22 mm ID, 0.25 µm film (SGE, Australia) which was installed in an Agilent 6890
gas chromatograph (Agilent, USA). The thermal desorption step was followed by heat-
ing up the GC oven to 130 ◦C with a rate of 80 ◦C min−1. Then the rate was lowered to
8 ◦C min−1 until a temperature of 330 ◦C was reached followed by an isothermal time of
30 min.20

Identification and quantification of target compounds were carried out on a Pega-
sus III TOFMS using Chroma TOF software package (LECO, USA) being capable of
peak deconvolution. The data acquisition range was m/z 35 to 500 with an acquisition
frequency of 25 spectra per second which is necessary for reliable peak deconvolution.

Analytes which were not available as standard in analytical grade were identified25

by their mass spectra and the retention time index. In those cases quantification was
achieved with an adequate surrogate standard on semi quantitative basis. Surrogates
are specified in Table 1.
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Calibration of thermal desorption was carried out applying standard addition to refer-
ence filters (PM samples). These filters were spiked with internal standard and deriva-
tization standard, respectively. Standard mixtures with native organic compounds were
added to the reference filters in different concentration levels (for calibration ranges see
Table 2).5

2.5 Calibration of thermal desorption

The calibration of the thermal desorption method was carried out applying standard
addition to reference filters (PM samples). These filters were spiked with internal stan-
dard and derivatization standard, respectively. Standard mixtures with native organic
compounds were added to the reference filters in different concentration levels (for10

calibration ranges see Table 2).

2.6 Direct thermal desorption (DTD)

DTD was described in detail elsewhere (Schnelle-Kreis et al., 2005a,b, 2007). The
pre-treatment of filters and liners for DTD was identical as described above without
adding the isotope-labelled standard mixture of polar compounds. The vent time before15

thermal desorption was shorter (one minute) and the carrier gas was not treated with
derivatization reagent during thermal desorption process.

2.7 Solvent extraction of non-polar compounds

The method for solvent extraction of non-polar compounds was described elsewhere
(Liu et al., 2006; Sklorz et al., 2007). Extraction was carried out utilizing soxhlet ex-20

traction with dichloromethane as solvent. Therefore, filters or a mixture of SRM 1649a
and sodium sulphate were placed in fritted soxhlet sleeves made of glass. Soxhlet
extraction time was 16 h with at least six cycles per hour. Extracts were dried over pre-
baked sodium sulphate and filtrated to remove filter residues. Extracts were concen-
trated to 1 ml and additionally cleaned up and fractionated on a liquid chromatography25
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column packed with silica (Promochem, Germany) deactivated with three percent of
water. The first fraction eluted with hexane/dichloromethane (9:1, v/v) (all solvents:
Merck, Germany) containing the non-polar components like alkanes was not anal-
ysed. The second and third fraction eluted with hexane/dichloromethane (1:1, v/v)
and dichloromethane/methanol (19:1, v/v) containing PAH and o-PAH were combined5

for analysis. The mixtures were concentrated to adjust the concentrations of the ana-
lytes to the same range as applied for DTD (one injection equates to 1 m3 of sampled
air). Samples were analysed by GC-HRMS.

The chromatographic separation for solvent extracted (SE) samples was carried out
on a Varian GC 3400 (Varian, USA) assembled with a retention gap (guard column),10

deactivated fused silica, 2.5 m, 0.22 mm ID (SGE) and a BPX5 column, 25 m, 0.22 mm
ID, 0.25 µm film (SGE). The sector field mass spectrometer MAT95 (Thermo Scientific,
Germany) was operated in multiple ion detection mode (MID) for target analysis.

2.8 Solvent extraction of polar compounds

Solvent extraction of polar compounds was carried out with dichloromethane/methanol15

(1:1, v/v) in an ultrasonic bath. Prior to extraction the samples were spiked with inter-
nal standard mixtures. Ultrasonication was carried out three times with five millilitres
of solvent for fifteen minutes each. The three extracts were combined and filtered over
PTFE syringe membrane filters (0.2 µm, Sartorius, Germany). Solvent was evaporated
to dryness. Derivatization was started by adding MSTFA to the samples. Reaction20

time was 3 h at 80 ◦C. Samples were measured with the same GC-TOFMS equipment
as described above for IDTD-GC-TOFMS which was also used for thermal desorption.
The injector employed was also capable of liquid injection (here one injection equates
to 0.5–1 m3 of sampled air). The GC method was programmed as follows: injector tem-
perature: 300 ◦C, oven temperature: 100 ◦C for 1 min. Heating rates were 25 ◦C min−1

25

to 175 ◦C followed by a rate of 5 ◦C min−1 to 330 ◦C with an isothermal of 15 min at
330 ◦C at the end of the run.
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Calibration for liquid extraction samples was carried out by evaporating different stan-
dard dilutions to dryness. MSTFA was added directly to the dried standard. The further
procedure was like the sample treatment.

3 Results and discussion

3.1 Derivatization5

MSTFA as silylation reagent for the IDTD method has the advantage that it is not
necessary to be removed from the sample before GC-MS analysis. The products
of MSTFA reactions exhibit high vapour pressures. On non-polar capillary columns
MSTFA has characteristics like many other solvents being used for solvent injection
in GC-MS. Thus short retention times with sharp solvent peaks without carry over are10

achievable. At usual conditions (e.g. temperature of 80 ◦C) MSTFA is reacting relatively
slow. Sterically hindered molecules exhibit poor reaction yields with MSTFA. For that
reason a catalyst like chlorotrimethylsilan (TMCS) which acts as Lewis acid may be
used to accelerate the reaction. Combinations such as BSTFA (N,N′-bistrimethylsilyl-
trifluoroacetamide) and TMCS (99/1, v/v) or MSTFA and TMCS (99/1, v/v) are widely15

used for derivatization particularly for determination of levoglucosan and other polar
compounds in atmospheric aerosol (Nolte et al., 2001; Simoneit et al., 1999; Zdra-
hal et al., 2002). Due to a large polar organic fraction and inorganic salts ambient
aerosol samples also contain water. Water is also involved in reactions with silylation
reagents. This leads to two essentials for derivatization reaction with ambient aerosol:20

first, a sufficient surplus of derivatization agent is necessary and second, TMCS has
to be excluded for in-situ reactions in the gas chromatography system. Poor column
life time could be a result of high reaction yields of HCl formed by water and TMCS. To
accelerate the reaction an increase of temperature can be applied instead of catalysts.
In the method presented the high temperatures of thermal desorption increase reac-25

tion speed and yields. A verification of derivatization yields was done by comparison
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of responses of isotope-labelled standards generated with the IDTD method and with
directly derivatized standard solution as used for the here described calibration curves
of SE methods. Therefore, a recovery efficiency standard (D42-eicosane) was added to
the samples prior to injection. Assuming that derivatization reactions in solution were
complete (100 %) the yields for IDTD were calculated relative to yields of derivatiza-5

tion in solution. The derivatization yields of vanillin (111 %), levoglucosan (97 %) and
palmitic acid (107 %) suggest that reactions of both methods are comparable.

Due to possible degradation reactions of polar organic compounds at high temper-
atures the first derivatization step (the moistening of the filter with MSTFA) was intro-
duced as described before to start the reaction and to protect the compounds until the10

MSTFA-saturated helium enters the injection port of the gas chromatograph. The en-
richment of carrier gas with volatile derivatization reagent has several advantages. (1)
A steady flow of MSTFA during thermal desorption protects derivatized polar organic
compounds from degradation until the transfer to the gas chromatograph is completed.
(2) Derivatization products are removed immediately from the reaction medium. (3)15

Equilibrium can be prevented and a high yield of conversion is possible. (4) The surplus
of MSTFA is maintained until derivatization and thermal desorption are finalized. (5) An
improvement of response of components suspected to be sensitive for artefact forma-
tion at thermal desorption conditions can be recognized. For instance, low volatile PAH
like benzopyrenes and perylene showed a higher response when the MSTFA saturated20

carrier gas flow was switched on during thermal desorption even without moistening of
the filters with MSTFA before thermal desorption. The explanation for this effect is the
deactivation of active surfaces e.g. on the quartz fibres. Figure 3 shows an example for
a low volume ambient aerosol sample (200 l of sampled air) spiked with isotope labelled
standard substances when measured with and without MSTFA-saturated carrier gas.25

The example was taken from a series of PM1 filter samples with sampling on hourly
basis. The PM deposits on the filters were quite low. Therefore, a larger part of the fil-
ter sample was applied for thermal desorption (108 mm2 in contrast to 27 mm2 for 24 h
samples). A two-fold response improvement was found for some compounds when
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working with MSTFA saturated carrier gas. This was especially the case for the re-
active compounds benz[a]pyrene and perylene without affecting quantification results.
The positive effect (resulting in a lower limit of quantification (LOQ)) was verified by
eighteen additional samples of PM1 filter samples collected hourly.

Nevertheless, MSTFA may also be responsible for some artefacts like adducts with5

aldehydes (Blau and King, 1977; Halket and Zaikin, 2003; Little, 1999). Derivati-
zation adducts are formed by enols originating from aldehydes with an α-hydrogen
atom. Electron impact mass spectra therefore show ions with fragments at m/z 228
(C7H13O2NF3Si+) and m/z 184 (C5H9ONF3Si+). For aromatic aldehydes like vanillin,
coniferyl aldehyde and syringyl aldehyde, however, no formation of adducts was ob-10

served.

3.2 Calibration

Calibration curves of IDTD were very similar to the solvent extraction method. Precision
is better for calibration curves of SE due to the fact that standard solutions were directly
used for calibration. Whereas for thermal desorption methods calibration reasonably15

is carried out by standard addition to reference filters. Thus response differences due
to matrix effects are minimized. For that reason some calibration regressions exhibit
a considerable offset. The intercept depends on the concentration of components on
the reference filters. Regression curve data are specified in Table 2.

Calibrations were done with the according isotope-labelled standards and the native20

compounds with high purity as far as possible (Table 1). Only three different isotope-
labelled polar substances were applicable, namely 13C6-vanillin, 13C6-levoglucosan
and D31-palmitic acid. As most substances analysed here were available in sufficient
purity, only an isotope-labelled internal surrogate standard had to be applied. However,
some substances described here (e.g. dehydroabietic acid, syringyl aldehyde, divanil-25

lyl) were not available in sufficient purity. Moreover, no isotope-labelled analogues
were available. Thus, only semi-quantitative results using surrogates were obtained for
these compounds. Applied surrogates are specified in Table 1, too. Due to different
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responses of compounds caused by different extraction and derivatization yields the
range of application of isotope-labelled compounds as internal standard for further
substances is limited. Moreover, those compounds should exhibit equal chromato-
graphic properties and similar fragmentation characteristics when treated by electron-
impact ionization. For these reasons only compounds very similar to the anhydrous5

sugars levoglucosan, mannosan and galactosan can be quantified properly with 13C6-
levoglucosan as internal standard. D31-palmitic acid was used mainly for acids, alde-
hydes and ketones. Even some deuterated PAH were used as internal standard for
some polar compounds characterized by a two-ring (divanillyl) or three-ring structure
(isopimaric acid). 13C6-vanillin was used as standard only for its native form. Experi-10

ments with vanillic acid and vanillic acid methyl ester were not successful in receiving
an adequate calibration curve with 13C6-vanillin as internal standard.

Levoglucosan showed good linearity in calibration curves over the whole working
range of 3.5–350 ng Levoglucosan per analysis. The slope is similar to that of the
calibration curve of the solvent extraction method shown in Table 2. It also shows the15

intercept of the IDTD method caused by standard addition to a reference sample. The
precision of both methods is quite good: 6 % for thermal desorption and 4 % for SE.
The limit of detection is somewhat higher for IDTD compared to SE (0.6 ng and 0.1 ng,
respectively).

Other polar compounds than levoglucosan exhibit good linear fittings, too. However,20

sensitivity of some polar compounds is quite poor, especially for small molecules like
succinic acid, malic acid, or guaiacol. Therefore, Table 2 shows the calibration data
of malic acid as an example for these compounds with a relative low slope of 0.033
compared to 0.228 for the solvent extraction method. This short chain multifunctional
acid is also discussed in the comparison of the methods applied for ambient aerosol25

samples. Anyhow, correlation of quantitative results from IDTD with the solvent extrac-
tion method is quite good. Precision for malic acid for both methods was near 10 %.
Some compounds in low concentrations exhibit higher variation coefficients up to 17 %,
especially syringic acid (16 %) and vanillic acid methyl ester (17 %).
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Polycyclic aromatic hydrocarbons (PAH) and oxidized PAH (o-PAH) are not affected
by the derivatization procedure. Most calibration regression curves are showing good
linearity with similar sensitivities for IDTD and SE. No generation of artefacts were
observed neither when comparing the in-situ derivatization procedure with the usual
thermal desorption procedure nor when comparing both thermal desorption methods5

with a solvent extraction procedure. Moreover, the calibrations of the thermal desorp-
tion methods were almost applicable for solvent extraction methods. Only anthracene
shows variation coefficients higher than 10 % induced by the poor response of an-
thracene in GC-MS. Other PAH exhibit variation coefficients below 10 %. This is be-
cause of the application of the respective isotope-labelled standards for each PAH10

(Table 1). For o-PAH similar observations were made. 9,10-Anthracenedione and
benzo[a]anthracene-7,12-dione have low variation coefficients (2 % and 9 %, respec-
tively). For these two o-PAH the according isotope-labelled standards were applied.
Especially 9H-fluoren-9-one and cyclopenta[def]phenanthrenone show higher varia-
tions though adequate isotope-labelled surrogates were used. D10-phenanthrene and15

D12-benzo[a]anthracene were used in these cases due to best regression fittings.

3.3 Comparison of methods based on the analysis of SRM 1649a

The DTD method was employed in studies already published by Schnelle-Kreis et
al. (2005a, b, 2007). The standard deviation of results (n= 5) for all compounds with
DTD was smaller than 20 % except for perylene and anthracene which were near the20

limits of detection. This is due to their low content in the reference material and the
small amount of about 60 µg which was used for thermal desorption (this means a total
mass of anthracene of 26 pg and 39 pg of perylene, respectively). Similar effects were
described by van Drooge et al. (2009). More crucial seems the fact that the concen-
trations of benzo[a]pyrene, an important marker for several emission sources and with25

high carcinogenic potential, were overestimated by 40 % of the certified value. This
phenomenon was not observed when using the IDTD method. We suggest that the
deactivation of substrate may be also responsible for lower affection of some PAH as
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described for the quartz fibres before. Especially benzo[a]pyrene and perylene seem
to be susceptible for degradation of spiked internal standards.

Nevertheless, the results are satisfying with respect to the low amounts of SRM in
analysis. Other studies used at least 500 µg (Gil-Moltó et al., 2009), 900 µg up to 1.9 mg
(Ho et al., 2008), or 3 mg (Waterman et al., 2000) of urban dust for thermal desorption.5

Only van Drooge et al. analysed lower SRM 1649a quantities (van Drooge et al., 2009)
ranging from 60 µg to 550 µg. Results are visualized in Table 3 and Fig. 4.

The concentration of levoglucosan contained in SRM 1649a was already measured
and published (Kuo et al., 2008; Larsen et al., 2006; Louchouarn et al., 2009). Al-
though the standard reference materials were not certified for levoglucosan it is pos-10

sible to use them for laboratory inter comparison. In this study a determination of
levoglucosan and its analogues mannosan and galactosan was carried out the same
way as for filter samples with IDTD. Measured values for levoglucosan were compara-
ble with values already published (Table 4). Concentrations of mannosan and galac-
tosan have only been published by Louchouarn et al. (2009). Our results for mannosan15

were comparable with the published, whereas the concentrations of galactosan were
more than two times higher (10.8 µg g−1 in this study and 5.0 µg g−1 found by Lou-
chouarn et al., respectively). The main difference of the methods is the manner of
extraction. Louchouarn et al. employed a pressurized fluid extraction with an accel-
erated solvent extraction system. Due to the similarity of the anhydrous sugars we20

doubt that this difference could be an extraction artefact. The observed ratio of lev-
oglucosan/mannosan/galactosan was similar as found for ambient aerosol by Ma et al.
(15:3:1 v/v/v) (Ma et al., 2010).

3.4 Comparison of the methods based on ambient aerosol samples

A comparison of the in-situ derivatization thermal desorption method and an ultrasonic25

extracting method followed by a derivatization step in solution (SE) was carried out.
Correlations of quantitative results are demonstrated. This is visualized by plotting
the result of IDTD analysis against concentrations determined by solvent extraction
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(x-axis). A slope higher than one and a positive offset are indicating higher concentra-
tions resulting from thermal desorption whereas a slope smaller than one and a neg-
ative offset are caused by higher concentrations found by solvent extracted samples.
Therefore, a good comparability is indicated by a regression with a slope near one and
an axis intercept at the point of origin. The comparability is not influenced by slope and5

offset, but by the precision of both methods indicated by the correlation coefficient.
Both methods show good comparability for most PAH (Fig. 5a). The correlations

indicate good linearity with a slope of nearly one or slightly higher with the excep-
tion of phenanthrene and perylene. These compounds showed higher concentrations
when analysed by solvent extraction. Usually phenanthrene and anthracene exhibit10

higher variations due to their low boiling point and low concentration in the particulate
phase. Nevertheless, correlation of DTD and SE was quite good. The data of fluoran-
thene and pyrene exhibited the highest correlation of all PAH analysed, whereas for
benzo[a]anthracene, chrysene, triphenylene and the benzofluoranthenes up to 25 %
higher concentrations were determined with IDTD. Retene exhibited a good com-15

parability but a somewhat lower correlation coefficient. Experiences indicate higher
variations of retene when analysed by thermal desorption methods. Benzo[a]pyrene
which is known to be more reactive showed no difference in behaviour compared to
benzo[e]pyrene. These benzopyrenes showed higher concentrations when analysed
by thermal desorption. The lower concentrations of perylene when analysed by IDTD20

may be a result of low concentrations of perylene in ambient aerosol samples being
also indicated by a poor correlation coefficient. Indeno[1,2,3-cd]pyrene showed good
comparability but with somewhat higher variations. Benzo[ghi]perylene showed con-
centrations more than 30 % higher when analysed by IDTD.

Comparability of the analytical methods is also demonstrated for oxidized PAH25

(Fig. 5b). Variations of the results were somewhat higher than for PAH. For o-PAH
only two isotope-labelled standards were applied. The higher variation coefficients of
calibration curves indicate a lower precision of analysis of o-PAH for both methods.
An influence on analysis of field samples is therefore not avoidable. 9H-fluoren-9-one
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and 11H-benzo[b]fluoren-11-one showed good correlation and a slope near unity for
the comparison of IDTD and SE. Despite of its high variation coefficient of the cali-
bration curve fitting 9H-fluoren-9-one showed good comparability. On the other hand
higher values of other o-PAH determined were observed when being analysed by the
in-situ derivatization thermal desorption. 9,10-Anthracenedione, 1,4-naphthalic an-5

hydride, cyclopenta[def]phenanthren-4-one and 11H-benzo[a]fluoren-11-one showed
similar correlation coefficients but concentrations were at least 30 % higher when anal-
ysed with IDTD compared to SE. Neither a loss of analytes by solvent extraction nor
a generation of o-PAH from PAH at thermal desorption conditions can be excluded. An
underestimation of analyte concentrations determined by solvent extraction seems to10

be possible as a result of a different extraction efficiency of spiked standards and native
sample compounds.

For selected polar organic compounds, especially wood combustion tracers, IDTD
was applied to ambient aerosol samples, the results being compared with SE. For all
compounds with concentrations above the limit of detection (LOD) in most collected15

ambient aerosol samples the correlation to solvent extracted ones is demonstrated
(Fig. 5c). A good correlation and a slope near unity were found for levoglucosan. The
correlations for its isomers galactosan and mannosan were not as good by far. Due to
sterical advantages of levoglucosan in forming silylation products it can be assumed
that derivatization yields were higher for levoglucosan compared to those of mannosan20

and galactosan.
The resin derived compounds dehydroabietic acid and dehydroabietic acid methyl

ester were other compounds being present in all ambient aerosol samples. These
compounds are reaction products of wood combustion generated by dehydrogenation
and oxidation of resin acids originating from colophony of conifers (Leithead et al.,25

2006; Nolte et al., 2002). Both substances were quantified using D10-pyrene as inter-
nal standard. Isopimaric acid was used as surrogate for external calibration of dehy-
droabietic acid. Pyrene was used for external calibration of dehydroabietic acid methyl
ester already exhibiting a protected carboxylic group and therefore not being affected
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by derivatization. The results for dehydroabietic acid, dehydroabietic acid methyl ester
and abietic acid showed up to two times higher values when analysed by IDTD. Corre-
lations are not even roughly as good as for substances with according isotope-labelled
internal standard but were still acceptable. But correlation coefficients were in the same
range like the other resin acids abietic acid and isopimaric acid. These acids were cali-5

brated using respective standards. Here the lower correlation coefficients were a result
of low concentrations in ambient aerosol.

Beside levoglucosan especially for the relatively small acids syringic acid, phthalic
acid and malic acid a good consistency of the two methods could be observed. On the
other hand twofold higher concentrations of the lignin combustion products acetosy-10

ringone, vanillic acid and divanillyl were found when analysed by IDTD-GC-TOFMS,
as was the case for dehydroabietic acid. An interesting fact is the lack of consistency
for syringic acid and vanillic acid. These similar molecules exhibited different results
when analysed with IDTD and SE. Both acids were calibrated and analysed by applying
D31-palmitic acid as internal standard (Table 1).15

Experiments with different isotope-labelled standards substantiate the suspicion that
in some cases extraction efficiency was poor when using ultrasonic-assisted extraction
in dichloromethane/methanol (1/1, v/v). The use of this solvent mixture is a compro-
mise to achieve sufficient extraction yields of all analytes. Otherwise different fractions
have to be extracted by different solvents requiring additional work for sample work-up.20

Despite of better precision of calibration curves of SE as shown in Table 2 it must be
noticed that calibration regression fittings were calculated on two different ways. The
standard addition as used for IDTD for calculation of regression curves already com-
prises the extraction efficiencies, whereas the calibration data of the SE method are
based on derivatized standard compounds. Indeed, IDTD calibration curves for vanillic25

acid, acetosyringone, isopimaric acid and dehydroabietic acid showed less sensitivity
compared to SE. In these cases a correction by recovery calculation is not possible
due to non reliable isotope-labelled standards. PAH also showed a tendency to be
underestimated in concentration when analysed by the SE method. This deviation
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increased with increasing boiling point of the PAH. Due to a high number of according
isotope-labelled standards it is not as present as for other substances by far.

The correlation experiments showed a good consistency of the analysis methods for
malic acid, mannosan, levoglucosan, phthalic acid, syringic acid and isopimaric acid,
9H-fluoren-9-one, 11H-benzo[b]fluoren-11-one and the most PAH. A good consistency5

for other substances was opposed by the use of internal surrogate standards which
were not isotope-labelled analogues of the analytes. Dehydroabietic acid methyl ester
demonstrates that this is not only a drawback of polar substances even though mea-
sured concentrations of the methyl ester were somewhat lower than those of the free
acid. On the other hand derivatization yields were similar for both methods.10

4 Conclusions

A fast in-situ derivatization thermal desorption technique was developed for GC-MS.
This method is able to deal with daily ambient aerosol sampling. The feature of
analysing polar compounds gets more and more important to characterize ambient
aerosol supporting source apportionment studies and aerosol ageing studies, even15

those employing chamber experiments (Böge et al., 2006; Chandramouli et al., 2003;
Edney et al., 2005). As an amplification of this method GCxGC-techniques (Gold-
stein et al., 2008; Ma and Hays, 2008; Schnelle-Kreis et al., 2005b) could deal
with enlarged data quantities and reduces peak co-elution significantly. Although

the LecoCromaTOF®-Software has a powerful deconvolution algorithm peak sepa-20

ration becomes a problem for chromatograms including additional silylation products.
Nevertheless, one dimensional gas chromatography in combination with derivatization
techniques provides more relevant information of the chemical properties of ambient
aerosol than without derivatization.

A positive side effect demonstrated is the minimization of matrix effects by deactiva-25

tion of active quartz fibres caused by the use of MSTFA during thermal desorption. An
improvement of LOD/LOQ for PAH was shown and could also be suggested for further
analytes.
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The advantages of isotope-labelled standards in GC-MS are well known. They gain
an even higher importance for thermal desorption methods. The response of organic
compounds depends on the composition of the particle matrix and on the quartz fi-
bres. Compared to solvent extraction not only a fraction of this matrix but the whole
sample composition affects the analysis. This always should be kept in mind when ap-5

plying thermal desorption techniques. It is strictly recommended to employ a large set
of isotope-labelled standards. Even compounds like PAH and dehydroabietic methyl
ester do not exhibit responses proportional to reasonable surrogates, as shown in this
paper. Nevertheless, the measured concentration of these compounds may be more
affected by sampling artefacts than by the analysis methods employed. We clearly10

demonstrated that in-situ derivatization thermal desorption gas chromatography time-
of-flight mass spectrometry shows a good linearity and sensitivity over nearly one order
of magnitude for analysis of the important and relatively stable biomass marker levoglu-
cosan.
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Table 1. Analytes, internal standards and surrogates employed for DTD- and IDTD-GC-
TOFMS. A surrogate is only specified when no native standard was available for calibration.
Thus, only semi-quantification was achievable for these analytes. Benzofluoranthenes were
not chromatographically separated (sum of benzo[b]-, benzo[j]- and benzo[k]fluoranthene).

Analyte Internal Standard Surrogate m/z used for Concentration
quanti-fication of internal

standard (ng)

Phenanthrene Phenanthrene-d10 178/188 3.45
Anthracene Anthracene-d10 178/188 0.461
Fluoranthene Fluoranthene-d10 202/212 0.681
Pyrene Pyrene-d10 202/212 1.68
Benzo[a]anthracene Benzo[a]anthracene-d12 228/240 0.962
Chrysene Chrysene-d12 228/240 0.962
sum Benzofluoranthenes Benzo[b]fluoranthene-d12 Benzo[b]fluoranthene 252/264 0.802
Benzo[e]pyrene Benzo[e]pyrene-d12 252/264 0.802
Benzo[a]pyrene Benzo[a]pyrene-d12 252/264 1.04
Perylene Perylene-d12 252/264 1.12
Indeno[1,2,3-cd]pyrene Indeno[1,2,3-cd]pyrene-d12 276/288 0.721
Dibenzo[ah]anthracene Dibenzo[ah]anthracene-d14 278/292 0.842
Benzo[ghi]perylene Benzo[ghi]perylene-d12 276/288 2.00
Coronene Coronene-d12 300/312 0.641

9H-Fluoren-9-one Phenanthrene-d10 180/188 3.45
9,10-Anthracenedione 9,10-Anthracenedione-d8 180/188 1.89
1,8-Naphthalic anhydride 9,10-Anthracenedione-d8 154/162 1.89
Cyclopenta[def]phenanthrenone Benzo[a]anthracene-d12 204/240 0.962
11H-Benzo[a]fluoren-11-one Benzo[a]anthracene-d12 230/240 0.962
11H-Benzo[b]fluoren-11-one Benzo[a]anthracene-d12 230/240 0.962
Benzo[a]anthracene-7,12-dione Benzo[a]anthracene-7,12-dione-d10 258/268 1.92
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Table 1. Continued.

Analyte Internal Standard Surrogate m/z used for Concentration
quanti-fication of internal

standard (ng)

Malic acid Palmitic acid-d31 233/344 60.8
Vanillin Vanillin-13C6 194/200 15.6
Galactosan Levoglucosan-13C6 217/220 60.8
Mannosan Levoglucosan-13C6 217/220 60.8
Levoglucosan Levoglucosan-13C6 217/220 60.8
Phthalic acid Levoglucosan-13C6 295/338 60.8
Vanillic acid methyl ester Palmitic acid-d31 224/344 12.6
Vanillic acid Palmitic acid-d31 297/344 12.6
Syringic acid Palmitic acid-d31 327/344 12.6
Syringyl aldehyde Palmitic acid-d31 Acetosyringone 224/344 12.6
Acetosyringone Palmitic acid-d31 238/344 12.6
Syringylacetone Levoglucosan-13C6 239/338 60.8
Retene Benzo[a]anthracene-d12 Benzo[a]anthracene 219/240 0.962
Isopimaric acid Benzo[a]anthracene-d12 241/240 0.962
Dehydroabietic acid methyl ester Pyrene-d10 Pyrene 299/212 1.68
Dehydroabietic acid Pyrene-d10 Isopimaric acid 239/212 1.68
Abietic acid Palmitic acid-d31 256/344 12.6
7-Oxodehydroabietic acid Benzo[a]anthracene-d12 Isopimaric acid 253/240 12.6
Divanillyl Pyrene-d10 Pyrene 239/212 1.68
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Table 2a. Validation parameters obtained from the calibration curves of IDTD-GC-TOF MS.
Calibration range means lowest and highest standard concentrations used for the calibration
curve; a= interception, b= slope (area ratio/mass ratio).

Analyte Calibration a b R2 Precision LOD LOQ
range (ng) (ng) (ng)

Phenanthrene 0.790–39.5 0.044 1.148 0.999 3 % 0.019 0.057
Anthracene 0.212–10.6 −0.132 1.789 0.983 15 % 0.558 1.67
Fluoranthene 0.283–14.1 0.050 1.403 0.998 5 % 0.058 0.174
Pyrene 0.392–19.6 0.007 1.315 1.000 1 % 0.001 0.004
Benzo[a]anthracene 0.290–14.5 −0.217 1.871 0.997 7 % 0.087 0.260
Chrysene 0.277–13.8 0.018 0.534 0.998 5 % 0.016 0.049
sum Benzofluoranthenes 0.098–4.89 0.017 0.805 1.000 2 % 0.001 0.002
Benzo[e]pyrene 0.134–6.71 −0.021 1.523 1.000 2 % 0.002 0.005
Benzo[a]pyrene 0.130–6.49 −0.010 1.384 0.999 4 % 0.005 0.016
Perylene 0.070–3.52 −0.092 1.510 0.996 7 % 0.005 0.014
Indeno[1,2,3-cd]pyrene 0.069–3.44 0.139 0.850 0.996 6 % 0.005 0.015
Dibenzo[ah]anthracene 0.072–3.60 0.859 1.288 0.986 7 % 0.032 0.097
Benzo[ghi]perylene 0.073–3.63 0.030 1.833 0.999 3 % 0.000 0.001
Coronene 0.072–3.60 −0.065 1.175 0.996 7 % 0.007 0.020

9H-Fluoren-9-one 0.362–18.1 −0.100 0.826 0.977 17 % 0.090 0.269
9,10-Anthracenedione 0.280–14.0 −0.012 0.485 1.000 2 % 0.001 0.002
1,8-Naphthalic anhydride 0.414–20.7 0.215 0.613 0.993 9 % 0.115 0.34
Cyclopenta[def]phenanthrenone 0.075–3.74 −0.058 0.479 0.987 17 % 0.007 0.022
11H-Benzo[a]fluoren-11-one 0.081–4.06 0.016 0.157 0.988 12 % 0.002 0.007
11 H-Benzo[b]fluoren-11-one 0.079–3.93 0.010 0.638 0.990 11 % 0.007 0.022
Benzo[a]anthracene-7,12-dione 0.37–18.5 −0.704 3.026 0.995 9 % 0.214 0.64
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Table 2a. Continued.

Analyte Calibration a b R2 Precision LOD LOQ
range (ng) (ng) (ng)

Malic acid 0.976–97.6 0.143 0.033 0.931 10 % 0.377 1.132
Vanillin 0.057–5.67 −0.016 1.077 0.985 10 % 0.006 0.018
Galactosan 0.221–22.1 0.046 1.288 0.992 11 % 0.010 0.031
Mannosan 1.05–105 0.101 0.575 0.981 14 % 0.261 0.78
Levoglucosan 3.42–342 0.405 0.495 0.994 6 % 0.607 1.82
Phthalic acid 0.604–60.4 −0.003 0.239 0.983 14 % 0.036 0.11
Vanillic acid methyl ester 0.054–5.44 −0.040 2.539 0.986 17 % 0.007 0.022
Vanillic acid 0.054–5.38 0.016 1.170 0.987 13 % 0.003 0.010
Syringic acid 0.053–5.34 −0.002 2.371 0.980 16 % 0.010 0.030
Syringyl aldehyde 0.036–3.64 0.019 2.081 0.992 10 % 0.001 0.004
Acetosyringone 0.036–3.64 0.019 2.081 0.992 10 % 0.001 0.004
Syringylacetone 1.17–117 −0.050 2.951 0.996 9 % 0.281 0.844
Retene 0.290–14.5 −0.217 1.871 0.997 7 % 0.087 0.260
Isopimaric acid 0.142–14.2 0.043 0.155 0.997 12 % 0.125 0.376
Dehydroabietic acid methyl ester 0.392–19.6 0.007 1.315 1.000 1 % 0.001 0.004
Dehydroabietic acid 0.142–14.2 0.074 0.267 0.997 9 % 0.117 0.351
Abietic acid 0.022–2.20 0.023 0.557 0.983 14 % 0.005 0.014
7-Oxodehydroabietic acid 0.142–14.2 0.043 0.155 0.997 12 % 0.125 0.376
Divanillyl 0.392–19.6 0.007 1.315 1.000 1 % 0.001 0.004
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Table 2b. Validation parameters obtained from the calibration curves of SE-GC-TOFMS. Cali-
bration range means lowest and highest standard concentrations used for the calibration curve;
a= interception, b= slope (area ratio/mass ratio).

Analyte Calibration a b R2 Precision LOD LOQ
range (ng) (ng) (ng)

Phenanthrene 0.790–39.5 −0.048 1.190 1.000 2 % 0.159 0.48
Anthracene 0.212–10.6 −0.353 1.542 0.991 10 % 0.261 0.782
Fluoranthene 0.283–14.1 −0.112 1.384 0.996 6 % 0.117 0.352
Pyrene 0.392–19.6 0.003 1.345 0.997 6 % 0.067 0.202
Benzo[a]anthracene 0.290–14.5 0.107 1.461 0.995 8 % 0.132 0.40
Chrysene 0.277–13.8 −0.002 0.549 0.998 5 % 0.024 0.073
sum Benzofluoranthenes 0.098–4.89 −0.070 0.778 0.995 7 % 0.011 0.033
Benzo[e]pyrene 0.134–6.71 −0.147 1.601 0.994 7 % 0.037 0.110
Benzo[a]pyrene 0.130–6.49 −0.082 1.359 0.991 8 % 0.078 0.234
Perylene 0.070–3.52 −0.135 1.313 0.984 12 % 0.024 0.072
Indeno[1,2,3-cd]pyrene 0.069–3.44 −0.051 0.793 0.998 6 % 0.002 0.007
Dibenzo[ah]anthracene 0.072–3.60 −0.099 1.394 0.948 14 % 0.227 0.682
Benzo[ghi]perylene 0.073–3.63 −0.058 1.952 0.998 5 % 0.005 0.014
Coronene 0.072–3.60 -0.323 1.298 0.996 6 % 0.016 0.047

9H-Fluoren-9-one 0.362–18.1 −0.058 0.524 0.998 5 % 0.011 0.032
9,10-Anthracenedione 0.280–14.0 −0.100 0.548 0.997 6 % 0.018 0.053
1,8-Naphthalic anhydride 0.414–20.7 −1.115 0.327 0.969 9 % 0.381 1.14
Cyclopenta(def)phenanthrenone 0.075–3.74 −0.123 0.932 0.985 15 % 0.022 0.065
11H-Benzo[a]fluoren-11-one 0.081–4.06 −0.018 0.204 0.987 13 % 0.005 0.015
11H-Benzo[b]fluoren-11-one 0.079–3.93 −0.045 0.580 0.982 18 % 0.014 0.043
Benzo[a]anthracene-7,12-dione 0.37–18.5 −0.866 2.631 0.991 9 % 0.428 1.28
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Table 2b. Continued.

Analyte Calibration a b R2 Precision LOD LOQ
range (ng) (ng) (ng)

Malic acid 0.976–97.6 −0.033 0.228 0.995 10 % 0.098 0.293
Vanillin 0.057–5.67 0.004 1.353 0.999 4 % 0.000 0.001
Galactosan 0.221–22.1 −0.054 5.112 0.990 14 % 0.043 0.130
Mannosan 1.05–105 −0.009 1.200 0.996 9 % 0.066 0.198
Levoglucosan 3.42–342 −0.003 0.558 0.999 4 % 0.100 0.301
Phthalic acid 0.604–60.4 −0.014 0.376 0.994 12 % 0.015 0.045
Vanillic acid methyl ester 0.054–5.44 −0.035 8.223 0.998 6 % 0.003 0.008
Vanillic acid 0.054–5.38 0.005 4.595 0.998 4 % 0.002 0.006
Syringic acid 0.053–5.34 −0.028 3.504 0.998 6 % 0.002 0.005
Syringyl aldehyde 0.036–3.64 −0.001 3.941 0.989 9 % 0.006 0.019
Acetosyringone 0.036–3.64 −0.001 3.941 0.989 9 % 0.006 0.019
Syringylacetone 1.17–117 −0.018 0.307 0.995 10 % 0.035 0.104
Retene 0.290–14.5 -0.653 2.035 0.982 19 % 0.686 2.06
Isopimaric acid 0.142–14.2 0.058 0.237 0.996 6 % 0.026 0.078
Dehydroabietic acid methyl ester 0.392–19.6 −0.047 1.432 1.000 3 % 0.013 0.038
Dehydroabietic acid 0.392–19.6 0.003 1.345 0.997 6 % 0.067 0.202
Abietic acid 0.022–2.20 0.007 0.563 0.938 9 % 0.003 0.008
7-Oxodehydroabietic acid 0.142–14.2 −0.047 1.615 0.994 10 % 0.019 0.056
Divanillyl 0.392–19.6 −0.035 8.223 0.998 6 % 0.003 0.008
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Table 3. Concentration of PAH in NIST Standard Reference Material 1649a (Urban Dust).

SE-GC-MS DTD-GC-MS IDTD-GC-MS Certified Values
Mean value mass
of urban dust (µg) 14.8 62.5 46.3

Mean conc. SD Mean conc. SD Mean conc. SD Mean conc. Confidence
(95 %)

(pg µg−1) (pg µg−1) (pg µg−1) (pg µg−1)

Phenanthrene 4.52 0.52 5.10 0.64 5.36 0.53 4.14 0.37
Anthracene 0.53 0.04 1.99 0.40 0.98 0.17 0.43 0.08
Fluoranthene 6.21 0.33 6.19 1.24 6.07 0.93 6.45 0.18
Pyrene 5.32 0.26 5.47 0.99 5.15 0.81 5.29 0.25
Benzo[a]anthracene 1.97 0.32 2.21 0.50 1.93 0.25 2.21 0.07
Chrysene 4.70 0.53 4.47 0.40 4.28 0.69 4.41 0.08
Benzo[b]fluoranthene 8.65 0.62 12.51a 1.12 11.71a 1.18 6.45 0.64
Benzo[k]fluoranthene 2.16 0.13 1.93 0.03
Benzo[e]pyrene 3.07 0.25 3.35 0.57 2.83 0.75 3.09 0.19
Benzo[a]pyrene 2.16 0.29 3.51 0.61 2.60 0.41 2.51 0.09
Perylene 0.68 0.11 1.27 0.53 0.44 0.10 0.65 0.08
Indeno[1,2,3-cd]pyrene 2.73 0.31 3.11 0.52 2.87 0.77 3.18 0.72
Dibenzo[a,h]anthracene 0.62 0.09 b 0.88 0.23 0.29 0.02
Benzo[g,h,i]perylene 4.11 0.28 3.79 0.28 3.95 0.47 4.01 0.91

a Sum of benzo[b]fluoranthene, benzo[j]fluoranthene and benzo[k]fluoranthene.
b Not quantified.

15287

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/15255/2011/acpd-11-15255-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/15255/2011/acpd-11-15255-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 15255–15295, 2011

In-situ derivatization
thermal desorption

GC-TOFMS

J. Orasche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 4. Concentration of levoglucosan, mannosan and galactosan in NIST Standard Refer-
ence Material 1649a (Urban Dust). A comparison with other publications.

Levoglucosan Mannosan Galactosan
Method n Mean conc. SD Mean conc. SD Mean conc. SD

(pg µg−1) (pg µg−1) (pg µg−1)

This study IDTD-GC-TOF MS 3 165 1.4 20.5 1.0 10.8 1.8
Larsen et al. (2006) PFEa GC-MS 3 162 8 – – – –
Louchouarn et al. (2009) PFEb GC-MS 4 160.5 4.7 17.3 1.0 5.0 0.3
Kuo et al. (2008) PFEb GC-MS 11 163.9 11.8 – – – –

a Pressurized fluid extraction with ethyl acetate, derivatization with BSTFA/TMCS, derivatization with BSTFA/TMCS
(99/1, v/v) (Larsen et al., 2006).
b Pressurized fluid extraction with CH2Cl2/CH3OH (9/1, v/v), derivatization with BSTFA/TMCS (99/1, v/v) (Kuo et al.,
2008).
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Fig. 1. In-situ derivatization and thermal desorption unit.
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Fig. 2. Multiple ion chromatograms reflecting different groups of polar and non-polar analytes
from a sample collected at the chemical characterization site at the UAS (urban background):
(a) polycyclic aromatic hydrocarbons (PAH) (m/z 178+202+228+252+276+278), (b) oxidized
PAH (o-PAH) (m/z 126+158+180+196+230+258), (c) anhydrous sugars (m/z 204+217), (d)
resin acids (m/z 239+241+253), (e) lignin degradation products (m/z 194+209+224+238+
279+297+327), (f) alkanes and fatty acids (m/z 57+117).
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Fig. 3. The effect of filter matrix and MSTFA on sensitivity of PAH analysis. Or-
ange line: 108 mm2 filter of sampled PM1 (equivalent to 200 l aerosol) analysed without
MSTFA. Green line: 108 mm2 filter of sampled PM1 (equivalent to 200 l aerosol) analysed
with MSTFA-saturated carrier gas during thermal desorption. The mass trace m/z 264 is
shown for the isotope-labelled internal standards of (a) benzo[b]fluoranthene (0.802 ng), (b)
benzo[k]fluoranthene (1.04 ng), (c) benzo[e]pyrene (0.802 ng), (d) benzo[a]pyrene (1.04 ng),
(e) perlyene (1.12 ng). Below the mass trace m/z 252 is shown for the corresponding native
compounds with the exception that (a) benzo[b]-, (f) benzo[j]- and (b) benzo[k]fluoranthene
could not be separated.
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Fig. 4. Box plots for visualization of variations of the different methods applied to Standard
Reference Material Urban Dust 1649a. The zero point on the scale refers to the certified
values normalized to zero. Variations are calculated relative to the normalized certified values
(1= 100 %). The extreme outliers of the results of anthracene and dibenzo[ah]anthracene are
not visualized.
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Fig. 5a. Correlation of IDTD and SE for analysis of PAH in ambient aerosol samples (blue:
linear regression, red: line through origin, slope 1).
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Fig. 5b. Correlation of IDTD and SE for analysis of o-PAH and dehydroabietic acid methyl ester
in ambient aerosol samples (blue: linear regression, red: line through origin, slope 1).
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Fig. 5c. Correlation of IDTD and SE for analysis of polar substances in ambient aerosol sam-
ples (blue: linear regression, red: line through origin, slope 1).
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