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Abstract

Geophysical time series often feature missing data or data acquired at irregular times.
Procedures are needed to either resample these series at systematic time intervals or
to generate reasonable estimates at specified times in order to meet specific user re-
quirements or to facilitate subsequent analyses. Interpolation methods have long been
used to address this problem, taking into account the fact that available measurements
also include errors of measurement or uncertainties. This paper inspects some of the
currently used approaches to fill gaps and smooth time series (smoothing splines, Sin-
gular Spectrum Analysis and Lomb-Scargle) by comparing their performance in either
reconstructing the original record or in minimizing the Mean Absolute Error (MAE) be-
tween the underlying model and the available data, using both artificially-generated
series or well-known publicly available records. Some methods make no assumption
on the type of variability in the data while others hypothesize the presence of at least
some dominant frequencies. It will be seen that each method exhibits advantages and
drawbacks, and that the choice of an approach largely depends on the properties of
the underlying time series and the objective of the research.

1 Introduction

Time series analysis finds applications in a wide range of disciplines, from science
to engineering and from marketing to econometrics; it naturally plays a critical role in
geophysics, meteorology, hydrology, or the exploitation of remote sensing data. A time
series is a finite, ordered set of couples of numerical expressions {(¢;,x;);i =0,1,..., n},
one providing a time reference and the other corresponding to the value of a measure-
ment or observation acquired at that time. For conciseness, the sequence {x;} is often
referred to as being the time series. Records collected by analog instruments typically
yield continuous time series, but most frequently these series exist as finite sets of
discrete records, either because they have been acquired in this way or because a
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continuous record has been digitized at a given temporal resolution. This paper only
considers discrete time series.

Analyzing time series is simplified when the temporal sampling occurs at equally
spaced time steps, and a host of techniques have been developed for complete and
regular series. Researchers may also want to analyze related but independently ac-
quired time series, and thus need to resample them on a common timeline, e.g.,
Mahecha (2010). Yet, actual time series turn out to be incomplete or unsuitable for
standard analyses, either because some of the records may be missing (e.g., due to
instrument failure or inadequate observing conditions), or because the records were
originally acquired at unevenly distributed times. In addition, one might be interested
in determining the likely value of the variable of interest at a time that may not coincide
with a particular measurement or observation. For these reasons, it is useful to be able
to generate reasonable estimates of the values of the variable of interest for arbitrary
time references, including to replace missing values.

Multiple processes may simultaneously influence the values x; recorded in the time
series, although not all of them may be of interest. In many (but not all) practical
cases, the broad, slow variations that offer some degree of predictability are of greater
interest than the fast changes, which often appear as random, unpredictable events of
lesser consequence, such as uncertainties in the measurements. By analogy with such
fields as acoustics and radar, the interesting variations in the time series are called the
“signal” and all other variations are referred to as “noise”. It is clear that the presence
of noise can interfere with the goal of accurately filling the gaps in a time series.

The standard approach to estimate the values of the variable of interest at arbitrary
times, to separate the signal from the noise or to understand past or forecast future
values of the series, calls for the determination of a mathematical model that captures
the essential (physical or statistical) properties of the system. Although each of these
three issues might be addressed separately, using different tools, it is apparent that
the determination of an optimal underlying model should prove beneficial to address
all these issues in a systematic and coherent manner.
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The work described below has been motivated by interest in describing the phenol-
ogy of terrestrial vegetation over wide areas, using satellite remote sensing measure-
ments in the solar spectral region as the main source of information. Nowadays, such
global data sets have been accumulated daily or weekly for periods of up to one or
more decades. The accuracy of these measurements has improved in time, thanks
to technological advances, nevertheless geophysical processes such as the ubiqui-
tous cloud cover or the limited availability of solar radiation at high latitudes in winter
seasons still result in a significant patchiness in the records.

Various researchers have addressed aspects of these questions (see, e.g., Mof-
fat et al., 2007), but recent advances in the treatment of irregular time series (see,
e.g., Hocke and Kampfer, 2009; Kondrashov and Ghil, 2006) suggested to conduct
an evaluation of some of the methods recently published or updated before pursuing
a particular approach and investing considerable resources in the processing of large
satellite databases. The purpose of this paper is thus to compare the performance of
a few published modern methods to deal with the presence of gaps and noise in satel-
lite data records and to report on such findings, which might be of interest to a wider
scientific audience.

2 Outline of published approaches
2.1 Choosing an approach

Estimating the likely values of a time series at arbitrary times, for instance to replace
missing data, is a particular case of the general problem of interpolation. The simplest
approach might be to fit piece-wise linear functions between successive values of the
time series. However, this method yields a very jagged series that may be continuous
but not differentiable at each point in the original time series. It is also unlikely to provide
reliable estimates: the values generated in this manner are always strictly bounded by
the existing values in the time series and therefore tend to underestimate the “true”
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values, on average.

Another simple approach consists in fitting the Lagrange form of the interpolation
polynomial through every record in a time series. For each data value x; this process
involves definition of a basis polynomial function which matches that point at given t;
and it is equal to 0 for all remaining f. Further all basis functions are summed into a
final form of the polynomial that provides a unique, smooth, differentiable solution ev-
erywhere. However, when the number of points in the time series increases, so does
the order of the polynomial, which starts fluctuating wildly, not only between the obser-
vations but also outside the range of the time series, thereby making it inappropriate
for most applications, including forecasting. In this case, the interpolated values may
not be realistic and could take arbitrarily large values.

In both of these approaches, the interpolation problem has a solution and it is unique,
but severe undesirable side effects limit or void its applicability. These simple underly-
ing models (piece-wise linear functions or Lagrange polynomials) force the solution to
match exactly each original record, which might excessively constrain the problem, es-
pecially given that original measurements or observations always include some level of
uncertainty (e.g., due to the finite precision and accuracy of the instruments, calibration
limitations, human errors, etc.).

A natural response to this issue is to relax the requirement on the model to match ex-
isting records and only insist that it takes on values that are “reasonably close” to these
records whenever they are available, and to use a relatively smooth model formulation
to catch the bulk of the variability of the time series. In the context of polynomials, this
means using low-order functions. This approach clearly requires defining a measure
of “goodness of fit” and a criterion to decide how close is “close enough”. Also, since
it might be unrealistic to globally fit a long time series exhibiting arbitrary fluctuations
with a single smooth function, the interpolation may be performed on a local basis.
Cubic splines have been developed and used in this context; their performance will be
evaluated below.
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An advantage of the methods discussed so far is that they make no assumptions
about the underlying nature of the processes responsible for the variability exhibited
in the time series. As a result, they can be applied to series of arbitrary complexity
and work equally well if these underlying processes themselves change in time. The
price to pay for this flexibility is that these approaches do not “learn” from the available
records what might be the nature and properties of the processes responsible for the
variations and thus exhibit little or no inherent forecasting skill.

An entirely different approach to this problem then consists in assuming that each
of the relevant underlying processes can be represented by its own model, and that
the entire time series can be reconstructed by a combination or superposition of these
elementary models. To guarantee the uniqueness of the solution, it is generally suf-
ficient to select those constituent models from amongst a set of mutually orthogonal
functions. Fourier (1822) appears to be one of the first researchers who developed
the solution of a physical problem (the propagation of heat in a condensed medium) in
the form of a superposition of trigonometric functions, opening the way to what is now
known as spectral analysis. This method has proven extremely powerful and has been
successfully applied in many fields of science, but works best to analyze time series
that are clearly combinations of elementary periodic signals. When the fluctuations are
aperiodic, and especially when they include random or unique events, the number of
frequencies required to represent the time series becomes very large and the approach
loses some of its appeal.

This drawback can be overcome, however, by selecting the elementary functions
from a different set (or base), such as Legendre or Tchebicheff polynomials, or even
as Empirical Orthogonal Functions (EOFs), which are an extension of the so-called
Principal Component (or Factor) Analysis of the time series. In this latter case, the
elementary functions are not explicitly prescribed a priori but are derived directly from
the dataset itself.

Significant progress has been achieved over the last decade, so a modern ap-
proach in each of these categories will be tested below. The Lomb-Scargle method,
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specifically designed to retrieve the periodogram of time series acquired at unequally
distributed instants is a modern application of the Fourier approach to arbitrary time-
dependent records. It estimates the power spectrum of the time series without requir-
ing the original data to be provided on a regular time grid or to be complete in any
sense of the word. This method has been recently updated and applied to geophysi-
cal (or astrophysical) problems by Hocke and Kampfer (2009). The Singular Spectrum
Analysis (SSA) proposed by Kondrashov and Ghil (2006) is a modern example of an
approach capitalizing on the exploitation of orthogonal functions (EOFs, in this case)
derived from the data themselves rather than imposing at the outset the form of the
base models (e.g., trigonometric functions).

A key comparative advantage of these latter methods is that by “learning” about the
underlying processes that control the evolution of the system and thus of the time se-
ries, these approaches may be quite suitable and efficient to predict the future evolution
of that system, assuming of course that the same underlying processes will continue to
play a similar role in the future. It will be seen that these methods are computationally
much more demanding than the simpler approaches mentioned earlier.

2.2 The smoothing spline method

The polynomial smoothing spline method provides an attractive way of smoothing noisy
data values observed at n arbitrarily located points over a finite time interval (Hutchin-
son and de Hoog, 1985). Described by Reinsch (1967), it is an extension of Whittaker
(1923) spline. This method makes no assumptions on the underlying causes of the
variations or on the mathematical structure of the series.

The smoothing spline constructs a continuous curve from segments of cubic poly-
nomials joined together at knot points in such a way that the first and second deriva-
tives of the resulting curve are continuous throughout. This method is applicable to a
wide range of datasets because it is both flexible (i.e., it makes few assumptions) and
adjustable through a single smoothing parameter A, which controls the “stiffness” or
“flexibility” of the spline curve. For small values of A, the spline remains close to the
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data points, and in the limit case 1 — 0, the function simply interpolates the data. A
contrario, larger values of 1 increase the “stiffness” of the curve and in the limit case
A — oo, the spline becomes a linear least square fit. This simple method is robust and
computationally inexpensive, so it is suitable to process large data sets.

Craven and Wahba (1979) proposed an objective method to determine an “optimal”
value of the smoothing parameter, based on the minimization of the Generalized Cross
Validation (GCV) procedure, which is a direct measure of the predictive error of the fit-
ted line. GCV is calculated by removing each data point in turn, and forming a weighted
sum of the square of the discrepancy of each omitted data point from a line fitted to
all other data points (Hutchinson, 1998). The weights are evaluated as the inverse of
the standard deviation applicable at each data point. To ensure reliable results with the
GCV procedure, the time series should include at least 25 to 30 observations, accord-
ing to Wahba (1990), and the noise level should not be highly correlated with the signal
(Hutchinson, 1998). In this study, the smoothing parameter was evaluated dynamically
using the IMSL routine CSSMOOQTH, as implemented in the IDL environment.

2.3 The Singular Spectrum Analysis method

Kondrashov and Ghil (2006) proposed an approach to fill gaps in time series based on
the Singular Spectrum Analysis (SSA) technique originally developed by Broomhead
and King (1986) and Broomhead et al. (1987). This method incorporates elements from
a wide range of mathematical fields including classical time series analysis, multivariate
statistics and geometry, dynamical systems, as well as signal processing (Golyandina
et al., 2001). It aims at describing the structure of the time series as a sum of simpler,
elementary series describing features such as a trend, various oscillations and noise.
The workflow of the SSA gap-filling and smoothing algorithm proceeds in four phases:

1. The first phase of the process, called embedding, involves the transformation of
a one-dimensional scalar time series {x;};i =1,2,...,n, into a multidimensional
trajectory matrix of lagged vectors X =[Xj, ..., X, 1, where n' =n-m+1 and each
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lagged vector is defined as X; = (x;,..., xj+m_1)T; j=1,..., n'. Each one of these
vectors corresponds to a partial view of the original time series, seen through a
window of length m. Choosing the most appropriate value for m, (1<m<n), is
a matter of balancing the retrieval of information on the structure of the underly-
ing time series, which would require larger values, and the degree of statistical
confidence in the results, which is enhanced by using shorter but more numerous
windows that repeatedly capture the notable features of the series (Ghil et al.,

2002). The trajectory matrix X is thus a rectangular Hankel matrix of the form

Xq Xo X3 X
Xo X3 Xy A

X=1 X3 X4 X5 ... Xpio (1)
Xm Xme1 Xmy2 - Xn

. The second step consists in the Singular Value Decomposition (SVD) of the tra-

jectory mTatrix X of size mx n’, which is “decomposed” into a product of matrices
X=UzV

where U is a unitary matrix of size mx m, Z is a rectangular diagonal matrix of size
mxn and V is a unitary matrix of size nx n. The elements of Z, called singular
values, are the square roots of the eigenvalues of the covariance matrix C = xx"
of size mx m. The rows of U are the eigenvectors of XX’ and are often referred
to as the left singular vectors or the Empirical Orthogonal Functions (EOFs) of the
matrix X. The columns of V' are the eigenvectors of X' X. If all eigenvalues are
distinct, the solution is unique. Furthermore, if the eigenvalues are organized in
decreasing order of magnitude, then any subset of the d eigenvectors (or EOFs),
1 < d < m, for which the eigenvalues are strictly positive provides the best repre-
sentation of the matrix X as a sum of matrices X,, k=1,..., d (Golyandina et al.,
2001). The triplets composed of an eigenvalue and its associated left and right
eigenvectors are called eigentriples of the trajectory matrix X.
14267
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3. The third step involves the partitioning of these d eigentriples into p disjoint sub-
groups and summing them within each group, such that X = fop, where, ideally,
the matrices X, also have the structure of a Hankel matrix and thus correspond to
the trajectory matrices of the hypothesized simpler series that combine to make
the original time series. If these component series can each be described by
distinct subsets of eigentriples, they are said to be separable by the SVD. In this
case, the original time series can be described as a superposition of a trend,
some harmonic oscillations and noise, for instance (Golyandina et al., 2001).

4. In practice, such an ideal situation rarely occurs and the component time series
do not exactly match completely separate subsets of the eigenvectors of X. The
last step of the SSA algorithm, known as “diagonal averaging”, aims at trans-
forming the matrices X,, into Hankel matrices, which then become the trajectory
matrices of the underlying time series, in such a way that the original time series
can be reconstructed as a sum of these components. The entire procedure aims
at defining in some optimal way what those components are.

The SSA gap filling method can be generalized to process spatio-temporal data or to
regenerate missing values in multivariate time series. Here, only univariate time series
were considered. We have implemented the code written in R by Lukas Gudmunds-
son, available from https://r-forge.r-project.org/projects/simsalabim/, and processed
the time series described below using different window lengths and a variable num-
ber of leading EOFs.

The first step of SSA iterative gap filling algorithm includes centering the original
time series on zero by subtracting the mean value of all its elements and zeroing the
missing data values.

The inner loop of the SSA procedure (decomposition, grouping and reconstructing)
is performed first on this centered, zero-filled time series. The missing values are re-
placed by computed values of the leading EOF and on this basis the first estimate of
the first reconstructed component is generated. At the next iteration, the SSA algorithm
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is performed again to produce a second estimation of the first component on the basis
of the new time series with zeros replaced by the first estimation of the first leading
component. Zero values replaced by the first estimate are now replaced by the second
estimate of the first leading component. The convergence test between current esti-
mation of the first component and the previous estimate is then carried out. If this test
is positive then the inner loop stops and the first reconstructed component is returned.

In the outer loop the next leading EOF is added to the first reconstructed component.
Then again the inner loop is performed until the convergence criterion is met, until the
best estimate of the second reconstructed component is returned. The third leading
EOF is added in the same way and this process is carried out until the outer loop
reaches the fixed number of analyzed EOFs.

Two main parameters are necessary to implement the SSA gap filling algorithm:
window length m and maximum number of leading EOFs 1, which create the n-th
reconstructed component. The optimum combination of these parameters can be ob-
tained by the cross-validation procedure, in which a fixed amount of available data is
removed, then the SSA algorithm is performed and the RMSE (Root Mean Square Er-
ror) between original dataset and each of the reconstructed components is calculated.
This experiment is repeated several times with the same set of parameters to obtain
mean values of RMSE over all experiments. Then the entire procedure is repeated
with the same number of leading EOFs, but with different values of the window length
(Kondrashov and Ghil, 2006). The values of parameters m and n corresponding to
the case with the smallest RMSE among all cross-validation experiments is deemed
optimal for the purpose of regenerating missing data.

The SSA gap filling algorithm is suitable for reconstructing time series with highly
anharmonic oscillation shapes (Vautard et al., 1992) or nonlinear trends (Ghil et al.,
2002). It can be economical in the sense that a small number of SSA eigenmodes may
be sufficient to reconstruct the original time series. This is an advantage over tradi-
tional spectral methods based on the classical Fourier analysis, which typically require
many trigonometric functions with different phase and amplitudes to provide a credible
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result. On the other hand, the high computational requirements of the SSA gap-filling
algorithm may be a drawback in operational applications involving large numbers of
time series. Other limitations of this method have been reported when the gaps in time
series are long and continuous (Kondrashov and Ghil, 2006).

2.4 The Lomb-Scargle method

Hocke and Kampfer (2009) used the Lomb-Scargle method to compute the periodo-
gram of unevenly sampled time series and reconstructed the missing values in an
astrophysical series from the amplitude and phase information of the dominant fre-
quencies.

In practice, the first two steps of this procedure involve removing the mean value of
original time series from each individual observation and applying a Hamming window
to enhance spectral information. The Lomb-Scargle periodogram is then calculated,
yielding a result equivalent to a linear least-squares fit of sine and cosine model func-
tions to the observed time series (Lomb, 1976; Press et al., 1992; Hocke and Kampfer,
2009).

Once the periodogram has been retrieved, the signal is reconstructed by considering
only its most significant components, i.e., those associated with a power larger than
a given threshold. The latter can be estimated either on the basis of a confidence
level analysis or simply set to a fixed fraction of the largest peak in the periodogram.
The reverse Hamming window procedure is applied and the final result is of course a
continuous and complete series, which can be resampled at any desired frequency.

While the Hamming window procedure improves the performance of the algorithm in
the bulk of the time series, it also results in poorer results near either end of the series
than away from these borders. This can be remedied, however, by applying a Kaiser-
Bessel window instead (Harris, 1978), as it features an adaptable shape parameter.

The optimal value of this shape parameter is obtained iteratively by calculating the
RMSE for each smoothed and gap filled time series against the original one and se-
lecting the parameter value corresponding to the smallest RMSE. For the purpose of
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this analysis, we have converted Hocke’s 2007 MatLab code (available as on-line sup-
plement from http://www.atmos-chem-phys.org/9/issue12.html) to the IDL language.
According to (Hocke and Kampfer, 2009), this approach should be suitable to process
either periodic or non-periodic time series.

3 Methodology
3.1 Choosing a quality fit criterion

An important methodological issue that requires careful attention is the selection of a
measure of “goodness of fit” between the models and the data (time series), and of a
criterion to judge when this measure is “good enough” for the stated purpose.

The root mean square error (RMSE, or deviation RMSD) has traditionally been used
in this context because it enjoys well-understood and desirable statistical properties.
This measure is defined as the square root of the mean square error, or the square
root of the sum of the squares of the differences between the model predicted values
y; = y(t;) and the observations x; = x(t;) recorded in the time series:

1 n ) 1/2

AMSE - |1 > 0% | @
where n is the number of points in the time series. The square of the deviations be-
tween the model and the records prevents errors of different signs to compensate each
other, and enhances the role of large deviations compared to smaller ones. How-
ever, Willmott and Matsuura (2005) have argued that the Mean Absolute Error (MAE)
provides a better indicator of the quality of the fit or the performance of the model in
representing a given data set. MAE is defined as follows:

1 n
MAE = [; Zly, —xil] 3
/=
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Both statistics measure the difference between modeled values and the corresponding
observations, assuming the latter are reliable, with larger values indicative of a worst
fit; they differ in the emphasis they give to particular situations: RMSE penalizes large
individual differences while MAE focuses on the mean overall performance. More im-
portantly, RMSE values are not representative of mean or typical errors only: they

range between MAE and n'/2 x MAE, increase non-monotonically with MAE and vary
with the square root of n (Willmott and Matsuura, 2005). MAE will thus be used in this
evaluation.

3.2 Smoothing over noise

Noise due to errors of measurement or uncertainties will impact the ability and ef-
fectiveness of a method to reconstruct values that may be missing from time series.
As hinted earlier, the underlying idea is to process the data in such a way that typi-
cally high-frequency random variations considered as noise are filtered out while low-
frequency changes are left unaffected. In the case of spectral methods, this is most
easily implemented by decomposing the original series in terms of a power spectrum
and reconstructing the signal using all frequencies lower than some given threshold.
The sensitivity of the methods to the presence of noise will be documented in the tests
below.

3.3 Designing artificial test cases

A large set of test cases was constructed to evaluate the performance of the ap-
proaches described above when either the number of missing observations or the level
of noise in the data increases. The idea of these tests is to generate complete time
series representing the “truth”, altering them by imposing data gaps and adding noise,
and then analyzing these modified series with the methods described earlier to assess
to what extent they are capable of generating reasonable values to replace the missing
ones. Three different “base” signals were considered: a single sine wave (Fig. 17),
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a superposition of three sine waves (Fig. 18) and an aperiodic signal (Fig. 16), re-
spectively. They intend to represent functions resembling typical geophysical signals
of increasing complexity:

x4(t) = 0.5sin(t—m/2)+0.5 (4)
Xo(t) = 0.28sin(t —m/2) +0.19sin(2t —/2) +0.16sin(0.5¢ - /4) + 0.6 (5)
X5(t) = 0.35sin(t —m/2) +0.15sin(20Vt -1/2) + 0.5 (6)

While these equations represent continuous time series, we generated discrete base
series by sampling these functions in such a way that the argument ¢ of the sine func-
tions is successively incremented by 10 degrees over a total of 10 full cycles (simulated
years), thus creating time series of n =361 data points. These series were then “de-
graded” by introducing variable amounts of gaps and adding different levels of noise as
follows.

3.3.1 Gaps

The following three types of gaps (missing data) were considered:

— Uniformly distributed gaps (Fig. 17). For each predefined percentage of missing
data, a random number generator U was used to iteratively select the location of
the next data point to be removed from the series: x,, = U[0,1] x n. This situation
might arise when the system of interest is occasionally unobservable, for instance
due to the presence of clouds, when analysing satellite data.

— Seasonal gaps (Fig. 16). In this case, the desired percentage of missing data
was imposed by removing, from each cycle in the time series, the required num-
ber of points around the lowest data values. In reality, this case may occur at
high latitude because a lack of solar irradiance (or the presence of snow) might
systematically prevent the acquisition of usable observations during the winter.

14273

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
11, 14259-14308, 2011

Gap-filling and
smoothing time
series

J. P. Musial et al.

40


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/14259/2011/acpd-11-14259-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/14259/2011/acpd-11-14259-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

— Prolonged gaps (Fig. 18). For this scenario, a single continuous period of missing
data was imposed in the middle of the time series, with a total length set to corre-
spond to the predefined percentage of gaps desired. This pattern would emerge
if the observing instrument failed to operate correctly for some time, for instance.

The results described below only refer to the performance of the methods to generate
reasonable values in the artificial data gaps within the period of 10 cycles: no attempt
was made to extrapolate beyond either end of the original series.

3.3.2 Noise

The simulated noisy data value x*(t) corresponding to the time series value x(t) were
estimated as x*(t) = x(t)[1 + N(0,1)S], where N(0,1) represents a normal (Gaussian)
distribution of mean 0.0 and standard deviation 1.0, and where S is a scaling factor to
create different noise levels. In this process, only those values of N(0,1) falling within
the range [-1.0, 1.0] were considered.

3.4 Using actual time series

In addition to these artificial test cases, the approaches will also be evaluated against
a few actual time series, modified by adding gaps and noise as before. The following
cases were considered:

1. Some 400 time series of the Fraction of Absorbed Photosynthetically Active Ra-
diation (FAPAR), derived from an analysis of SeaWiFS data, generated as part
of the CarboEurope project database, were downloaded from the JRC FAPAR
web site (http:/fapar.jrc.ec.europa.eu/). The SeaWiFS scanner instrument has
been in operation since September 1997. Complete data coverage for large ar-
eas requires compositing the daily acquisitions over longer periods, and standard
products are typically generated every 10 days or monthly. The processing steps
required for generating these products are described in detail in publications and
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reports available from the same source. These time series are typical of se-
quences that may exhibit gaps due to cloudiness or lack of sunlight during the
winter.

. Sunspots have been observed by astronomers for centuries, and include the well-

known 11 year cycle, although other fluctuations considerably affect the number
of observable spots at anyone time. For the purpose of this study, the monthly
number of Sunspots for the period 1900—-2009 were obtained from the National
Geophysical Data Center (NGDC) of the US National Oceanic and Atmospheric
Administration (NOAA) (http://www.ngdc.noaa.gov/). This series exhibits strong
periodicities but also some degree of unpredictability.

. The record of atmospheric carbon dioxide (CO,) concentration, in parts per million

per volume, obtained at Mauna Loa constitutes probably one of the most emblem-
atic time series of our times, as it unequivocally shows how human consumption
of fossil fuels modifies the composition of our atmosphere. The values used here
were downloaded from the Carbon Dioxide Information Analysis Center (CDIAC)
at the Oak Ridge National Laboratory (ORNL) (http://cdiac.ornl.gov/). The main
advantage of this series in the current context is that it exhibits a strong trend
(itself somewhat variable in time) as well as a clear seasonal signal.

. The Dow Jones Index (DJI) is clearly not a geophysical time series, but it offers

the distinct advantage of being a non-periodic signal, with wild fluctuations and a
strong overall trend. The mean weekly values of DJI were obtained from a public
domain source (http://finance.yahoo.com/) for the period 1981 to 2009.
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4 Numerical experiments and results
4.1 Numerical experiments with artificial time series

In the artificial time series experiments, the accuracy of the selected algorithms was
estimated by calculating the MAE between series reconstructed by each of the meth-
ods described above and the original smooth dataset (without noise and gaps). Every
experiment was repeated 10 times with the same set of parameters (data type, gap
pattern, levels of noise, amount of gaps), but with different seed values for the pseu-
dorandom number generator, thereby generating 10 different data sets with the same
model parameters and different noise patterns. The results reported here exhibit the
average of these 10 MAE values, a compromise between available computational re-
sources and the desire to establish reasonably stable results. This exercise yielded a
large number of MAE values as a function of five variables: gap-filling method, data
type, gap pattern, amount of gaps, and noise level.

4.1.1 Overall results classified by type of data pattern

Figure 1 summarizes the results for all experiments with different amounts of data
gaps and noise levels. Overall, the smallest MAE values occur for random gaps, which
clearly have a less drastic effect on the signal reconstruction than seasonal or very long
gaps. In other words, when missing values are sprinkled throughout the time series
and do not excessively mask the underlying signal, the remaining data points still carry
enough information to reconstruct a reasonably accurate version of the series.
Whenever missing values are clustered seasonally (as in winter gaps, for instance)
the signal becomes severely corrupted because there is a deficit of information for
some ranges of frequencies and the power spectrum cannot be reliably estimated. In
this case, minor fluctuations in the data can induce the presence of spurious peaks
when reconstructing the time series with the Lomb-Scargle method, and even the
Kondrashov-Ghil algorithm is sensitive to this type of gaps (Figs. 9 and 16). The
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smoothing spline method is not affected by this problem since it does not rely on the
power spectrum of the signal.

On the other hand, in the case of the “continuous gap” scenario (Fig. 18), the smooth-
ing spline algorithm is not able to take advantage of the power spectrum information
recovered from the rest of the time series to fill the large gap. The polynomial function
adopts various shapes, depending on the distribution of the few points immediately be-
fore and after the continuous gap. The other approaches perform much better in this
case, as can be seen from the MAE statistics reported in Fig. 1.

4.1.2 Overall results classified by type of data pattern

The underlying structure of the data also influences the performance of the time series
reconstruction in the presence of gaps and noise. Our tests included both periodic
(Figs. 17 and 18) and aperiodic times series (Fig. 16), and methods that essentially
assume the existence of significant periodic fluctuations in the data (such as the Lomb-
Scargle algorithm) naturally experience greater difficulties in regenerating reliable val-
ues for aperiodic time series (Hocke and Kampfer, 2009).

Interestingly, relatively poor results were obtained with all approaches other than the
smoothing spline in the winter gap scenarios. In fact, the largest MAE values in that
group are obtained in the case of the simple sine wave signal. This might be due to
the presence of a single peak in the power spectrum, which is quickly degraded when
the frequency of gaps corresponds to the main frequency of the signal. When multiple
sine waves are combined, the power spectrum exhibits multiple peaks and may be
somewhat less sensitive to individual data points and their associated noise.

4.1.3 Detailed results classified by type of gap

The performance of each gap-filling and noise reducing technique was investigated
against different distributions of data gaps and noise. The graphical representation of
the results yields a set of contour plots (Figs. 2 to 7) depicting the distribution of MAE
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for the indicated method as a function of gap and noise proportions. Each plot was gen-
erated by linear interpolation of 6 x 6 grid (hence the sometimes jagged appearance of
the graphs) composed of data points which represent the average of 10 independent
experiments. The color scheme corresponds to fixed ranges of MAE values, as shown
in the legends. The interpretation of these graphs should consider both the absolute
values and the orientation of MAE isolines. Vertical pattern of these lines (Fig. 2) indi-
cates that the reconstruction of a time series by a particular algorithm is more depend
on the noise level than on the amount of data gaps. The reverse situation takes place
when the isolines are horizontal (Fig. 4a, b, ¢). When the graph exhibits a diagonal pat-
tern (Fig. 4d), noise level and data gaps both contribute to a degradation in the quality
of the reconstructed time series.

— The distribution of MAE in the random gap scenario mainly depends on the level
of noise (Figs. 2 b, ¢, d, 3). Even when many data points are missing, most of
selected algorithms perform well in reconstructing the original datasets provided
the noise level remains low. It can also be seen that selecting a Kaiser-Bessel
window instead of a Hamming window in the Lomb-Scargle algorithm significantly
improves the results (Figs. 2a, b, 3a, b). However this technique is inferior to
others when the oscillations are not periodic (Fig. 2). Amongst all random gap
scenarios, the Kondrashov-Ghil algorithm yielded the smallest MAE across all
types of artificial time series (Figs. 1, 2¢, 3c), though the differences in datasets
reconstructions (and MAE values) between this method and smoothing spline
technique are very small (Figs. 1 c, d, 2c, d).

— In the winter gap scenario, the MAE of the time series reconstruction by means
of Kondrashov-Ghil and Lomb-Scargle algorithms is relatively high due to the ap-
pearance of spurious peaks which appear in the reconstructed time series where
the gaps used to be (Figs. 4, 5). The systematic presence and duration of these
data gaps in the input time series strongly influence the performance of these two
algorithms (horizontal MAE isolines). However, the relative contributions of data
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gap percentages and noise levels in the total MAE values are more balanced
(diagonal pattern, Figs. 4d, 5d) in the case of smoothing spline algorithm. The
latter approach is unquestionably the most appropriate method for gap-filling and
smoothing of datasets with winter gap patterns, as it does not introduce spurious
features.

- In the continuous gap scenario, the distribution of MAE depends more on the
size of the gap than on the level of noise (Figs. 6, 7). The smoothing spline
method gives extremely odd results (Figs. 6d, 7d) because it fits a polynomial
function only to the few existing data points at both ends of a large gap. Thus
even averaging the results over 10 experiments does not yield stable results or
a smooth contour plot. In this case, the best fit of reconstructed series to the
original dataset is obtained by the Kondrashov-Ghil algorithm (Figs. 6c, 7c).

4.2 Numerical experiments with actual time series

Time series acquired directly from an instrument or retrieved from observational data
automatically include the noise inherent to the instrument and retrieval methods, so no
additional noise was added in these experiments. Similarly, since FAPAR time series
naturally contain gaps, no further manipulation of these series took place (neither noise
nor data gaps were introduced), and the goal was to compare the methods described
above when applied to the same time series. The computation of the MAE values
had to be modified, though, to include only those points for which data were available
initially: new values can be generated by the algorithms within the gaps, but one must
assume that the accuracy of the latter is similar to that during the times when data are
available.

In the case of the atmospheric CO,, sun spots and Dow Jones time series, the orig-
inal records were complete so the modifications included only the artificial introduction
of random, uniformly distributed gaps, and the MAE was computed as done previously
with artificial time series.
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In evaluating these experiments, it is important to note that we have compared the
four gap-filling algorithms as such, without any manual adjustment. It may be feasible
to “tune” each method to yield better results by tweaking individual parameters, but the
results would then depend on each particular record and on the amount of time and
energy spent in tuning. Our aim is to evaluate the performance of generally applicable
methods that could be applied automatically to a large number of time series, without
any human intervention.

4.2.1 Results from the SeaWiFS FAPAR time series experiment

The outcome of the experiment with FAPAR time series at monthly and decadal time
resolutions is presented in Fig. 8. The patchiness of FAPAR datasets reflects the com-
bination of gap patterns previously tested in the experiment with artificial time series.
Missing values originate mainly from the temporary appearance of clouds or snow,
though some are related to the lack of solar illumination at high latitudes during the
winter period: see Fig. 9.

The reconstruction based on the Lomb-Scargle algorithm generates the highest MAE
values because of the presence of aperiodic components in the original signals. These
phase- and amplitude-modulated oscillations derive from natural and human-induced
constrains such as the variability of incoming solar irradiance at the surface, a time-
evolving supply of water and nutrients in the soil, the strong dependency of biochem-
ical growth and development processes on ambient temperatures, agricultural prac-
tices, etc. (e.g., Verstraete et al., 2008). The Kondrashov and Ghil method turns out
to be more accurate than both Lomb-Scargle algorithms, but the best fit to the original
data is produced by the smoothing spline algorithm. While data availability at higher
frequencies may generally improve the ability of a spectral method to reconstruct the
signal, using temporally-averaged values tend to decrease the noise level. This can
be seen in Fig. 8, which shows that reconstruction results based on monthly data tend
to be marginally better than those based on decadal data, without altering the ranking
of the methods. It may also be easier to fit a smaller set of points (fewer constraints),
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especially for the smoothing spline method, where number of nodes is a crucial vari-
able.

4.2.2 Results from the sunspots time series experiment

The results of reconstructing the historical record of monthly sunspot numbers for the
period 1900-2009 where some 50 % of the data have been artificially removed can be
seen in Fig. 10. Clearly, all methods do a fair job in detecting and properly representing
the large 11-year cycle present in this time series, though the performance of these
algorithms is actually quite variable. The Kondrashov-Ghil and the smoothing spline
approaches exhibit similar MAE over all experiments, while the Lomb-Scargle algorithm
does not appear to do so well, especially near either end of the record. However, it
should be noted that this latter method smoothes the reconstructed curve (Fig. 11)
more extensively than the other techniques, which generates higher MAE values.

4.2.3 Results from the Mauna Loa CO, time series experiment

The famous record of monthly concentration of atmospheric CO, measured by Keeling
et al. (1996) at Mauna Loa since 1958 constitutes another emblematic and very useful
time series to test these algorithms, because it includes a powerful trend as well as
a clear seasonal signal, both of which are somewhat variable in time. This results in
significant power at very low frequency and smaller peaks to represent the seasonal
fluctuations and their variations. The time series for the period 1958—2008 was artifi-
cially manipulated by introducing gaps, as explained earlier, to evaluate the capacity
of the gap-filling methods to reconstruct a reasonable approximation of the original
record.

In their original analysis, Hocke and Kampfer (2009) proposed two approaches to se-
lect the relevant spectral components to use with the Lomb-Scargle algorithm (a fixed
threshold, set as a fraction of the highest peak in the power spectrum or a statistical
confidence analysis). Both approaches were tested in this experiment, and it turns out
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that, for small proportions of data gaps, the Lomb-Scargle method coupled with thresh-
old set by statistical confidence was able to recover the annual cycle of the time series
(Fig. 12, top panel). However, when the percentage of data gaps exceeds 10 %, the
strength of the annual peak in the power spectrum decreases enough to become statis-
tically insignificant and the Lomb-Scargle method only retrieves the main trend (Fig. 12,
bottom panel). In both cases, the MAE associated with the Lomb-Scargle method re-
mains significantly higher than the MAE for the Kondrashov-Ghil and smoothing spline
methods, which perform almost equally well (Fig. 13).

In truth, Hocke and Kampfer (2009) do recommend to remove any trend before ap-
plying the Lomb-Scargle approach, to process the residuals and then to add the trend
back to the processed data. We have not implemented such a pre-processing step
(which might be implemented in a variety of ways) in this exercise because it could
introduce a variable and somewhat arbitrary bias in the comparison of gap-filling and
smoothing algorithms.

4.2.4 Dow Jones index

The last test involves the long record of weekly values of the Dow Jones Index (DJI)
for the period 1981 to 2009. This time series is very irregular due to the wide range of
economical factors affecting this index. DJI is definitely not a periodic time series, so
that the Lomb-Scargle method is not expected to be appropriate: in fact, it does cap-
ture the broad features, but not the smaller scale and somewhat arbitrary fluctuations.
Figure 14 shows to what extent the four methods are capable to represent the overall
time series.

The Kondrashov-Ghil method can account for such an unusual signal, though its
performance depends strongly on the length of the window. If this parameter is large
compared to the entire record, say 468 data points (equivalent to 9 years), the recon-
struction is rather smooth but the MAE remains relatively high (see Fig. 15a). A shorter
window, for instance of 52 data points (1 year), yields results similar to the smooth-
ing spline approach (Fig. 15b). As explained earlier, the length of the window controls
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the degree of smoothing of this algorithm and choosing the most appropriate value de-
pends on the nature of the problem at hand (Golyandina et al., 2001). If the typical main
periodicities were known or at least expected in previous experiments (e.g., an annual
cycle), no such information can be assumed in this case. The choice of a window
length is thus somewhat more arbitrary, and although this parameter can be optimized
during the cross validation (CV) procedure, that step is computationally demanding
and time consuming for such long time series (more than 1500 points). If the window
length parameter is specified explicitly instead, that fact and the chosen value should
be notified explicitly since it does significantly affect the results of the reconstruction.

5 Discussion

Gap-filling and smoothing unevenly sampled and noisy time series is a common and
necessary process, especially in the analysis of geophysical signals. Various ap-
proaches to this problem have been proposed, but the choice of the most appropriate
method for a particular dataset is non trivial. In this paper, three gap-filling techniques
(one of them in two variants) were evaluated on the basis of experiments with artificial
time series as well as measurement datasets. The strengths and limitations of these
methods have been explored and are summarized below.

First and foremost, it must be realized that a single indicator of “goodness of fit” such
as MAE (or any other single measure, for that matter) cannot fully represent the range
and diversity of goals in any particular analysis. As mentioned earlier, a gap filling
and smoothing algorithm that would exactly match each and every available data point
would yield a null MAE but would also generate rather unrealistic and unusable values
anywhere else. Thus, if one desires a smooth approximation to the original data, one
must also accept larger values of the goodness of fit criterion.

All methods discussed above include a mechanism to adjust the degree of smooth-
ness, be it the window length in the case of Kondrashov-Ghil, the threshold used to
select the power spectrum peaks to be retained in the Lomb-Scargle approach, or the
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stiffness parameter of the smoothing spline. Objective algorithms have been proposed
in each case to establish an “optimal” value of this parameter, though this step only
formalizes a particular way of expressing the ultimate goal. The results presented in
this paper thus highlight some of the strengths and weaknesses of these approaches
in particular conditions, but cannot substitute a personal judgment that will also often
involve other criteria, for instance the need to extrapolate the time series outside the
range of available values or the need to achieve a minimum degree of smoothness in
the reconstruction.

5.1 Lomb-Scargle

The Lomb-Scargle technique permits the estimation of the periodogram of a time series
where the data points do not need to be equally spread in time. This is an extension of
the classical Fourier approach, it leads to the natural decomposition of the original time
series into a superposition of trigonometric functions, each associated with a certain
“strength”, quantified by the corresponding power in the periodogram or power spec-
trum. Assuming frequencies with limited power represent less relevant fluctuations, the
bulk of the original signal can be reconstructed by summing only those components
that have a sufficient power in the periodogram. Hocke and Kampfer (2009) proposed
the use of the Hamming window to enhance the retrieval of the spectral information in
the time series, though the authors and our tests showed that the performance of the
approach degrades near both ends of the record. The solution to this problem sug-
gested by Hocke and Kampfer involves modifying the spectral window and using only
the middle part of the reconstructed data segment. This may not be satisfactory if most
or all of the data record is required, but our investigation showed that this side effect
can be largely controlled by using the Kaiser-Bessel window instead.

The strength of the Lomb-Scargle algorithm is also its weakness: it is particularly
appropriate to process strongly periodic signals, but appears to be less apt than other
methods to deal with aperiodic time series. In fact, the experiments with artificial time
series described above showed that Lomb-Scargle algorithm, together with the Kaiser-
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Bessel window, is fully capable of regenerating credible values to fill gaps when the
underlying function is periodic and the distribution of missing values is random. Ape-
riodic components in the signal or a distribution of gaps that interferes with the base
frequencies of the signal are likely to cause less reliable results, up to the point of gen-
erating spurious fluctuations in the reconstructed signal that were never present in the
original data (e.g., in the “winter gap” scenario). This approach is also sensitive to the
presence of a strong trend in the original data (as in the Mauna Loa CO, time series),
which boosts the power spectrum at low frequencies and may therefore mask other
frequencies that would be significant in the absence of that feature. This case is best
handled by removing the trend from the signal first, processing the residuals, and then
adding the trend back to the results.

On the positive side, it must be recalled that the capability of detecting significant
frequencies in arbitrary time series is a very powerful tool, especially to project likely
values of the record in the future.

5.2 Kondrashov and Ghil

The Kondrashov and Ghil (2006) method, based on the Singular Spectrum Analysis
(Golyandina et al., 2001), is a powerful and effective approach to fill gaps and smooth
a univariate time series. Of all approaches tested here, this one generated the small-
est MAE values in experiments with artificial time series involving either randomly dis-
tributed gaps or a long continuous period of missing data (Fig. 1). However, when
the distribution of these missing data followed a seasonal patter (e.g., the “winter gap”
scenario), it generated spurious peaks in the reconstructed data record as did the
Lomb-Scargle approach (see Fig. 16). As noted above, the simulated values remain
reliable during those periods where a majority of the measurements are not missing,
but neither the Kondrashov-Ghil nor the Lomb-Scargle approach can be recommended
for filling such systematic seasonal gaps.

Experiments with real time series also demonstrated that the Kondrashov-Ghil ap-
proach is very flexible and effective in a wide range of applications. It handles datasets

14285

Jadedq uoissnosiq | Jadeq uoissnosigq |  Jadeq uoissnosiqg | Jaded uoissnosig

ACPD
11, 14259-14308, 2011

Gap-filling and
smoothing time
series

J. P. Musial et al.

: “““ “““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/14259/2011/acpd-11-14259-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/14259/2011/acpd-11-14259-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

with strong linear trends as well as aperiodic components. This is not surprising, since
decomposing a time series into a trend, a set of periodic components and other sig-
nals constitutes a primary objective of this approach. In principle, this technique should
help suggest probable causes or explanatory factors for the observed variations and,
as was the case for the Lomb-Scargle algorithm, the capacity to “learn” the primary
modes of fluctuations from past records should provide some skill in predicting future
values.

In general, the Kondrashov-Ghil method generated MAE values similar to slightly
higher than those for the smoothing spline method in the various tests on actual time
series. The main drawback of this method is its complexity and especially the large
computational requirements, which may quickly become prohibitive when processing
very long or very many time series (Wang and Liang, 2008).

5.3 Smoothing spline

The smoothing spline algorithm delivers a piecewise cubic approximation of the noisy,
unevenly sampled time series. The shape of the reconstructed spline depends on a
smoothing parameter, optimized through the General Cross Validation (GCV) proce-
dure.

Experiments with artificial datasets demonstrated that this method provides accurate
reconstructions, comparable to the Kondrashov-Ghil algorithm, for all types of data in
the random gap scenario. It performs much better than the latter or the Lomb-Scargle
method in the winter gap scenario, precisely because because it does not exploit any
spectral information and thus does not introduce spurious peaks in the reconstructed
time series. On the other hand, the smoothing spline algorithm is not able to accurately
reconstruct reasonable missing values during long, continuous periods.

The smoothing spline method generated some of the smallest values of MAE in ex-
periments involving real time series, even producing marginally better results than the
Kondrashov and Ghil technique, and even for very small proportions of missing val-
ues (e.g., 1%). As noted above, the main limitation of the smoothing spline gap filling
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algorithm is its inability to generate reasonable values when the missing values are
clustered in one single long period. These results are quite understandable, since the
smoothing spline method is essentially a “local” approximation, which takes advantage
of neighboring observations to generate an estimate, but does not have any mecha-
nism to “learn” the general properties of the whole time series and therefore guess
adequate values in the absence of these neighbors. For the same reason, that method
should have little or no predictive skill.

6 Conclusions

Four methods were evaluated in terms of their performance to fill gaps and filter noise
in time series: two versions of the Lomb-Scargle algorithm, with different windowing
schemes, the Kondrashov-Ghil approach and the smoothing spline method. The Mean
Absolute Error (MAE) was chosen as the goodness of fit criterion. The various tests
conducted showed that each method has its strengths and weaknesses.

The Lomb-Scargle approach, which is an extension of the classical Fourier analysis
to the case where the observations or measurements in the original time series can
occur at arbitrary times, works well as long as the underlying signal can be considered
as a sum of periodic components. It therefore shares the same powerful theoretical
basis as the classical spectral methods. However, when aperiodic fluctuations are in-
troduced, additional frequencies should be called upon in the power spectrum, though
the associated power may be too small to be statistically significant. Limiting the re-
construction to those frequencies associated with a statistically significant power then
leads to a limited capacity to fit the original series. This method is of course particularly
sensitive to the systematic removal of data points at specific frequencies (e.g., winter
gaps), in which case it can generate spurious values, though the values in other sea-
sons remain fully usable. If a strong trend is present in the original data, it should be
removed before starting the analysis proper. Lastly, it has been shown that the Kaiser-
Bessel window appears to yield better results than the Hamming window, especially
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near either end of the reconstructed record.

The Kondrashov-Ghil method proved reliable and accurate in reconstructing a wide
range of time series. As for the Lomb-Scargle method, it is not able to reconstruct
periodically missing fragments of the dataset, producing false peaks in these system-
atic gaps. In all other experiments, it performed well, especially in the case of long,
continuous gap in the time series. From the analytical point of view SSA (Singular
Spectrum Analysis), the core of the Kondrashov-Ghil algorithm, benefits from a strong
theoretical foundation and provides a wide range of tools to process time series. This
method is thus valuable to estimate missing values and smooth time series, but also
to investigate the nature of underlying physical processes controlling this time series.
The main drawback of this approach is its considerable computational cost, especially
for very long or numerous time series, when it can quickly become prohibitive.

The smoothing spline gap filling method provided generally satisfying results, espe-
cially when the values of neighboring data points provide sufficient information for a
local solution to guess the missing values (random or seasonal gaps). The dataset
reconstruction results were accurate (small MAE) for most experiments with real and
synthetic time series. The main limitation of this method is associated with continuous
data gap scenario, where the algorithm is not able to utilize the spectral information
retrieved from whole time series to fill a prolonged data gap. On the other hand, the
computational cost of this approach is very limited, which is a definite advantage in

operational environments.

The choice of a particular approach to estimate the values of missing observations
in a time series thus depends very much on the underlying nature of the signal, on
the type and distribution of the data gaps, and on the expectations of the investiga-
tor in terms of staying close to the existing data (low MAE) or requiring a smoother
representation of the broad features of the time series.
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Fig. 8. Average values and standard deviations for MAE acquired during the experiment with

FAPAR dataset. See text for details.
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Fig. 9. Example of reconstruction of a FAPAR time series using the indicated methods. Neither
additional gaps nor noise were introduced in this case. Some of the approaches generate
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spurious peaks in the winter due to lack of constraint. See text for details.
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Fig. 10. Example of the reconstruction of sun spots time series using the indicated methods.
The proportion of missing points is equal to (a) 1% and (b) 50 %, no noise was introduced.

See text for details.
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experiment with sun spots time series. See text for details.
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Fig. 12. Example of the reconstruction of the CO, record, expressed in ppm, from Mauna Loa
station acquired by means of the indicated methods. The data fragment in the rectangle has
been enlarged on the right. The fraction of missing points is equal to (a) 10 % and (b) 20 %, no
noise was introduced. See text for details.
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Fig. 14. Example of the reconstruction of Dow Jones time series acquired by means of the
selected methods. The amount of missing points is equal to 40 %, no noise was introduced.

See text for details.
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Fig. 15. Distribution of MAE values as a function of data gaps, acquired during the experiment
with the time series of Dow Jones index. The SSA window size is 468 points (top panel) and
52 points (bottom panel). See text for details.

14305

Jadeq uoissnosiq | Jadeq uoissnosiq | J4edeq uoissnosiq | Jaded uoissnosi(

ACPD
11, 14259-14308, 2011

Gap-filling and
smoothing time
series

J. P. Musial et al.

: III III


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/14259/2011/acpd-11-14259-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/14259/2011/acpd-11-14259-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

ACPD
11, 14259-14308, 2011

Jaded uoissnasiqg

Gap-filling and
Aperlod|c Winter Gop 40% of gaps 10% of noise - smoothing time
C ] series
15F oN0|sy Doto W|th Gaps Lomb Org . =
i — Original Data Spline ] 2 J. P. Musial et al.
[ Lomb Mod — Kond & Ghil ] %
-/ - - >
1of ’ . TwePage
I ] g
T =
| |
(72}
i - = e
0.0L o
=]
0 o1 103 154 206 257 309 360 Ry ! !
©
Fig. 16. Example of a reconstruction of an aperiodic time series with winter gaps acquired by % ! !
means of the indicated methods, to show the spurious peaks generated by the Kondrashovand ! !
Ghill as well as the Lomb-Scargle algorithms, but not the smoothing spline method. See text
) O
for deail. BT
2
o
5
3
QO
?
~

14306


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/14259/2011/acpd-11-14259-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/14259/2011/acpd-11-14259-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

ACPD
11, 14259-14308, 2011

Jaded uoissnasiqg

Gap-filling and
smoothing time

Sine Random Gap 50% of gaps 50% of noise . series
2 O C T N T N T T T T ] ~
g o Noisy Data with Gaps --- Lomb Or ] 8 ;
o — Orig%ol Data P Spline J . ] § oL [ Ll e 2l
1.5 e Lomb Mod . — Kond & Ghil | 2.
L °o 1\ ] 5
? : o [ TePege
1.0, ] o
g : | AbsmctInroducton.
0.5 . -
: ~ [Conalusions  References
(7]
0.0/ : 2 | Tabes  Figures
L 7 (72}
- : . ; § o e 1 S ! !
_0.57 1 1 1 1 1 ° 1 l S
0 51 103 154 206 257 309 360 A
z 1
Fig. 17. Example of a reconstruction of a sine time series with random gaps acquired by means ! !
of the indicated methods. See text for details. .
2
o
5
| meractve Discussion
Q
©
@

14307


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/14259/2011/acpd-11-14259-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/14259/2011/acpd-11-14259-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

SuperP Prolonged Gap 20% of gaps 30% of noise

1.5

1.0F

Fig. 18. Example of a reconstruction of a time series composed of superposition of trigono-
metric functions with a prolonged gap acquired by means of the indicated methods. See text

for details.
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