Supplemental Material for *Elemental Composition and Oxidation of Chamber Organic Aerosol*

P. S. Chhabra¹, N. L. Ng², M. R. Canagaratna², A. L. Corrigan³, L. M. Russell³, D. R. Worsnop², R. C. Flagan^{1,4}, and J. H. Seinfeld^{1,4}

¹Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA

²Aerodyne Research, Inc. Billerica, MA

³Scripps Institution of Oceanography, University of California, San Diego, CA

⁴Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA

Correspondence to: J. H. Seinfeld (seinfeld@caltech.edu)

Table 1. Average ratios of particle phase signals of $\rm CO^+$ to $\rm CO_2^+$. Ratios were determined from high-resolution spectra that had adequate separation of the $\rm CO^+$ and $\rm N_2^+$ ions, typically from experiments with high organic loadings. The average values found are close to the default value of 1.0 in the AMS High-Resolution Fragmentation Table and in agreement with other studies (Zhang et al., 2005; Takegawa et al., 2007) so this default value was used for all experiments in this study.

SOA Precursor	$\mathrm{CO}^+/\mathrm{CO}_2^+$		
glyoxal uptake	5.6 ^a		
α -pinene ^b	0.9		
toluene	1.1		
<i>m</i> -xylene	1.3		
isoprene	1.3		
naphthalene	1.2		
phenol	0.9		
guaiacol	1.0		
syringol	1.1		
acrolein	ND^{c}		
methacrolein	ND^{c}		
crotonaldehyde	ND^{c}		

 $^{\rm a}A$ value of 5.0 was used for ${\rm CO^+/CO_2^+}$ in glyoxal uptake experiments presented in this study $^{\rm b}Includes$ both ozonolysis and photooxidation experiments.

 $^{\rm c}$ Not Determined. ${\rm CO}^+$ could not be adequately separated from ${\rm N_2}^+$ to determine a ratio accurately.

1

 Table 2. Elemental composition of SOA system. Values represent the average ratio for each experiment at the time of maximum O/C.

VOC System		O/C (max)	H/C	N/C	OM/OC
glyoxal uptake ^a		1.13	1.54	0.01	2.68
α -pinene + O ₃ ^a		0.43	1.47	0.00	1.70
α -pinene + OH		0.41	1.57	0.02	1.70
	$low-NO_x$	0.40	1.62	0.00	1.67
	$high-NO_x$	0.42	1.51	0.03	1.73
$isoprene + OH^{a}$		0.61	1.55	0.02	1.96
	$low-NO_x$	0.59	1.64	0.00	1.92
	$high-NO_x$	0.62	1.46	0.04	2.00
aromatics $+ OH^{a}$		0.68	1.44	0.04	2.07
	m-xylene, high-NO _x	0.66	1.48	0.08	2.09
	m-xylene, low-NO _x	0.60	1.54	0.00	1.93
	toluene, high- NO_x	0.72	1.38	0.07	2.15
	toluene, low- NO_x	0.74	1.39	0.00	2.10
$naphthalene + OH^{a}$		0.62	0.89	0.02	1.93
	$low-NO_x$	0.66	0.88	0.00	1.96
	$high-NO_x$	0.57	0.90	0.04	1.89
phenol + OH		0.90	1.11	0.03	2.32
	$low-NO_x$	0.88	1.10	0.00	2.26
	$high-NO_x$	0.92	1.12	0.05	2.38
guaiacol + OH		0.92	1.28	0.03	2.37
	$low-NO_x$	0.89	1.26	0.00	2.30
	$high-NO_x$	0.94	1.30	0.06	2.43
syringol + OH		0.95	1.47	0.02	2.41
	$low-NO_x$	0.97	1.41	0.00	2.41
	$high-NO_x$	0.93	1.52	0.03	2.41
acrolein + OH		0.79	1.31	0.03	2.20
methacrolein + OH		0.54	1.53	0.02	1.87
crotonaldehyde + OH		0.56	1.45	0.01	1.88

^aValues first reported in Chhabra et al. (2010).

Fig. 1. High-resolution spectra of α -pinene photooxidation SOA formed under high- and low-NO_x conditions.

Fig. 2. High-resolution spectra of acrolein photooxidation SOA.

Fig. 3. High-resolution spectra of methacrolein photooxidation SOA.

Fig. 4. High-resolution spectra of crotonaldehyde photooxidation SOA.

Fig. 5. High-resolution spectra of phenol photooxidation SOA under high- and low- NO_x .

Fig. 6. High-resolution spectra of guaiacol photooxidation SOA under high- and low-NOx.

Fig. 7. High-resolution spectra of syringol photooxidation SOA under high- and low- NO_x .

Fig. 8. Average composition by mass of guaiacol photooxidation SOA as measured by FTIR analysis.

Fig. 9. Average composition by mass of α -pinene photooxidation SOA as measured by FTIR analysis.

References

- Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer, Atmos. Chem. Phys., 10, 4111–4131, doi:DOI10.5194/ acp-10-4111-2010, 2010.
- Takegawa, N., Miyakawa, T., Kawamura, K., and Kondo, Y.: Contribution of selected dicarboxylic and omegaoxocarboxylic acids in ambient aerosol to the m/z 44 signal of an aerodyne aerosol mass spectrometer, Aerosol Sci. Technol., 41, 418–437, doi:10.1080/02786820701203215, 2007.
- Zhang, Q., Alfarra, M. R., Worsnop, D. R., Allan, J. D., Coe, H., Canagaratna, M. R., and Jimenez, J. L.: Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry, Environ. Sci. Technol., 39, 4938–4952, doi:10.1021/Es0485681, 2005.