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Abstract

Domain filling, forward trajectory calculations are used to examine the global dehydra-
tion processes that control stratospheric water vapor. As with most Lagrangian models
of this type, water vapor is instantaneously removed from the parcel to keep the relative
humidity with respect to ice from exceeding saturation or a specified super-saturation5

value. We also test a simple parameterization of stratospheric convective moistening
through ice lofting and the effect of gravity waves as a mechanism that can augment
dehydration. Comparing diabatic and kinematic trajectories, we find, in agreement with
previous authors, that the additional transport due to the vertical velocity “noise” in the
kinematic calculation creates too dry a stratosphere and a too diffuse a water-vapor10

tape recorder signal compared observations. The diabatic simulations, on the other
hand, produce stratospheric water vapor mixing ratios very close to that observed by
Aura’s Microwave Limb Sounder. Convective moistening, which will increases strato-
spheric HDO, also increases stratospheric water vapor while gravity waves do the op-
posite. We find that while the Tropical West Pacific is the dominant dehydration loca-15

tion, dehydration over Tropical South America is also important. Antarctica also makes
a contribution to the overall stratospheric water vapor budget by releasing very dry air
into the Southern Hemisphere stratosphere following the break up of the winter vortex.

1 Introduction

The precise mechanism that controls stratospheric water vapor has eluded scientists20

for more than 60 years — since the publication of Brewer’s seminal paper (Brewer,
1949). However, significant progress has been made and many of the details of how
air is dehydrated as it enters the stratosphere are now understood. For example, we
know that most stratospheric dehydration takes place in a region called the tropical
tropopause layer (TTL) (Sherwood and Dessler, 2000; Fueglistaler et al., 2009) a re-25

gion that lies between the ∼360 K potential temperature surface and the tropopause or
between about 15 and 18 km in the tropics.
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Simple back-trajectory calculations using analyzed winds and large-scale tempera-
tures are able to accurately reproduce many of the details of TTL dehydration process
and lower stratospheric water vapor (e.g., Fueglistaler et al., 2005; Jensen and Pfis-
ter, 2004; Gettelman et al., 2002). These simple calculations demonstrate that the
zeroth-order physics governing the water vapor abundance in the TTL appears to be5

temperature variations along the advective path air parcels take as they move into the
lower stratosphere (e.g., Mote et al., 1996; Fueglistaler et al., 2009).

The typical set-up for back trajectory calculations begins with a grid of parcels in the
lower stratosphere that are subsequently advected backwards for a few months. Those
parcels that reach the upper troposphere are then analyzed with regard to origin and10

temperature history. Depending on the length of the trajectory, however, a significant
number of parcels may not be traceable back to the upper troposphere and the de-
hydration history of those parcels cannot be determined by the analysis. This is an
important uncertainty of the back trajectory calculations, and one that has not yet been
properly quantified. In addition, back trajectory calculations typically neglect at least15

three important processes. First, dehydration is usually set to occur at 100% relative
humidity, meaning that supersaturation is not included in the analyses. Observations,
however, show ice supersaturation is common in the tropics (Jensen et al., 2005). Sec-
ond, temperature fluctuations not resolved by the reanalysis (e.g., from gravity waves)
are also frequently not included. As shown by Jensen and Pfister (2004), these fluctua-20

tions are important for accurately reproducing TTL temperatures. And, third, ice lofting
by convection is another neglected process. Observations show that convection does
indeed reach up to and beyond the tropopause (Alcala and Dessler, 2002; Zipser et
al., 2006; Dessler et al., 2006), and convection, which brings up HDO-rich air from the
boundary layer, can also explain the observed enriched abundance of HDO in the TTL25

and lower stratosphere Moyer et al., 1996; Keith, 2000; Dessler et al., 2007).
Finally, there is the question of how to handle vertical advection of the parcels. Liu et

al. (2010) performed an extensive study of stratospheric dehydration using domain
filling back trajectory calculations. They compared results using both diabatic and
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kinematic trajectory schemes and found that the diabatic trajectories were superior
to the kinematic ones even when the vertical motion field from the assimilation was
time-smoothed.

The main work discussed here is a domain filling forward trajectory analysis. By
domain filling we mean a continuous release of parcels that results in hundreds of5

thousands of parcels filling the stratosphere and providing a statistically robust popu-
lation for analysis. As we will discuss below, this approach avoids many of the pitfalls
of the back trajectory studies, as well as allowing us to investigate issues that cannot
be addressed with that traditional back-trajectory approach or with chemical-transport
models. With our model, we focus on the processes that determine the water vapor10

content of the stratosphere.
In the next section we describe the model including the parameterizations for gravity

waves, dehydration, convective moistening and methane photolysis. In Sect. 3 we
describe our results. Summary and conclusions are presented in Sect. 4.

2 Model15

2.1 Dynamics

All of our experiments use the Modern Era Retrospective-Analysis for Research and
Applications (MERRA) (Bosilovich et al., 2008) for winds and temperatures. The
MERRA assimilated data set runs from 1979 to the present using the GEOS-5 as-
similation system. MERRA spatial resolution is 1/3 deg. longitude by 0.5 deg. latitude,20

although the wind and heating data (the sum of radiative and latent heat) set we are
using has been averaged down to 1.25◦ by 1.25◦. The MERRA model has 72 pressure
levels extending from the surface to 0.1 hPa, but the wind data is reported on 42 levels.
In the TTL and lower stratosphere, the winds are available at 150, 100, 70, and 50 hPa.

Because of the importance of temperature in our analyses, we use the MERRA’s full25

resolution (both in the horizontal and vertical) temperature field. This vertical resolution
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is about ∼1 km in the TTL and lower stratosphere. Finally, all data sets used here are
daily average fields rather than the 6-hourly data; this is done to make the meteorolog-
ical data set a more manageable size.

We use the Bowman trajectory code (Bowman, 1993; Bowman and Carrie, 2002)
that can run in either diabatic or kinematic mode. This code is significantly faster than5

the Goddard Trajectory Model (Schoeberl and Sparling, 1995), so it allows much longer
trajectories required by this model. Temperatures are linearly time-space interpolated
onto parcel positions. Parcel positions are output every 45 minutes along the trajec-
tory. Running with ∼500 K parcels, the Bowman code can perform a 25-year forward
calculation in 4–5 days on a quad-core Unix workstation. This speed allows us to per-10

form multiple experiments on the sensitivity of stratospheric water vapor to the level of
supersaturation, gravity waves and convective moistening.

We have performed both kinematic and diabatic trajectory calculations similar to
Schoeberl et al. (2003) and Liu et al. (2010). Kinematic means that the vertical coor-
dinate is pressure and the parcels are moved using the MERRA’s pressure tendency15

(omega) field whereas diabatic means that the model operates in isentropic coordi-
nates and uses the net diabatic heating to move parcels across isentropes.

The model integration begins with the insertion of a base longitude-latitude parcel
grid (typically 5◦×2◦) at 250 hPa (∼10 km) for the kinematic runs or at 360 K for the
diabatic runs. The base grid extends from ±60◦ latitude and covers all longitudes. The20

insertion potential temperature is chosen such that it is, on average, above the level
of zero net radiative heating – roughly the base of the TTL (Gettelman and Forster,
2002; Fueglistaler et al., 2009). A new base parcel grid is added to the model’s parcel
field each day approximating a continuous injection. Both the kinematic and diabatic
models remove parcels at the end of each day if the parcel pressure is 250 hPa or25

higher. The assumption in this removal scheme is that these parcels have re-entered
the troposphere. The very few parcels ascending above 1800 K in the diabatic model
or 0.2 hPa in the kinematic model are also removed. The spatial density of the base
grid controls the total number of parcels in the stratosphere. With the spatial density
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described above the model reaches steady-state of about ∼500 K parcels. This num-
ber ensures that we will have a sufficient number of parcels in the stratosphere for a
quantitative analysis.

In each case reported here, the model is started 1 January 2000 and integrated to the
end of 2009. For the first two to three years, the number of parcels in the stratosphere5

grows. After that, the total number stabilizes. Thus we can safely compare the model
results starting in 2005 with Aura MLS water vapor data.

2.2 Water vapor and dehydration

All base grid parcels are initiated with 200 ppmv water vapor, the approximate value
of water vapor at 250 hPa in the tropics. The Marti and Mausberger (1993) relation is10

used to calculate the saturation vapor pressure with respect to ice. When the relative
humidity exceeds the threshold, enough water is removed from the parcel to reduce
the relative humidity (RH) to 100%. In most previous Lagrangian studies, the removal
threshold has been set at 100% relative humidity; however, frequent observations of
supersaturation in the TTL (Jensen et al., 2005) suggest that the actual threshold might15

be higher. We allow for supersaturation by allowing the threshold to exceed 100%. We
do not consider re-evaporation of the condensate in the studies shown here although
Liu et al. (2010) argues that the low bias in water vapor seen in their back trajectory
studies could be due to neglect of the re-evaporating condensate.

2.3 Convective moistening20

As mentioned above, the observed abundance of stratospheric HDO (Moyer et al.,
1996; Keith et al., 2000; Johnson et al., 2001; Hanisco et al., 2007; Steinwagner et al.,
2010) exceeds the amount predicted by Rayleigh fractionation, a theoretical limit de-
rived by assuming that HDO-rich condensate formation and removal at 100% RH. One
explanation for the larger than expected stratospheric HDO abundance is the direct in-25

jection and evaporation of HDO rich ice into the stratosphere through convective lofting.
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As shown by Dessler et al. (2007) a small amount of the convective lofting of HDO rich
ice can significantly increase the HDO concentration in the stratosphere. While we do
not include HDO in our model, we do assess the effect of convective moistening on the
stratospheric water vapor budget.

We use here the scheme developed by Dessler et al. (2007) to simulate the moisten-5

ing process. To determine when and where trajectories are influenced by convection,
we first derive a probability of convective influence as a function of pressure and the
flux of outgoing longwave radiation (OLR) (Liebmann and Smith, 1996) using mea-
surements of height-resolved ice-water content (IWC) from the Aura Microwave Limb
Sounder (MLS) (Livesey et al., 2005). Unlike Dessler et al. (2007), our probability table10

is a function of latitude and month, and is built from data obtained from OLR and IWC
covering 2004–2010.

At specific intervals along each trajectory, we use the probability table and the par-
cel’s pressure and collocated OLR to determine a probability for convective influence.
A random number generator is then used to determine whether the trajectory is actu-15

ally influenced by convection at that time. For pressure <68 hPa, the probability is zero;
for pressure >146 hPa, we use the 146 hPa probability.

When convection impacts a parcel, we set the parcel’s relative humidity to 100% –
this means that supersaturated parcels are dehydrated by convection (Jensen et al.,
2007). There are two adjustable parameters in this model, the frequency at which20

we test for convection and the maximum detrainment level. Increasing the frequency
increases the probability that a parcel will be impacted by convection. For the ex-
periments shown here we test for convection once a day. Parcels that are above the
maximum detrainment level are never moistened so increasing the height of the de-
trainment level will moisten parcels that may have already been dehydrated at colder25

temperatures and thus increasing the height will increase the water vapor in the strato-
sphere.
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2.4 Gravity waves

Gravity waves can produce adiabatic temperature excursions that are unresolved by
the MERRA anaysis, and these temperature excursions can produce condensation
and additional dehydration. Jensen and Pfister (2004) modeled the effect of gravity
waves and showed that they had the potential to reduce stratospheric water vapor by5

∼0.5 ppmv or so. In the tropics, both high frequency inertial gravity waves and low
frequency Kelvin and mixed Rossby gravity waves are present. Outside the tropics
only the high frequency waves are common. In order to parameterize gravity wave
effects we approximate the temperature amplitudes and frequencies from Table 1 of
Jensen and Pfister (2004) We assume that the temperature is given by:10

Tg =M(0.5sin(ωht+φh)+0.7sin(ωl t+φl ))|latitude|<15◦

Tg =M(0.5sin(ωht+φh))|latitude|>15◦

where M is an arbitray tuning factor (M = 1.0 approximates the Jensen and Pfister
(2004) simulation). We set ωh =1.1e-4 s−1 for the high frequency wave, and ωl =2.3e-
6 s−1 for the low frequency wave. The phase, φ, is a uniformly distributed random15

number between 0 and 2π. This scheme reduces stratospheric water vapor ∼0.2 ppmv
for M =1.

2.5 Methane photolysis

Methane photolysis is an important source of water in the upper stratosphere. We inde-
pendently keep track of methane in each parcel and photolyze it using photochemical20

loss rates supplied from the Goddard two-dimensional model (Fleming et al., 2007);
loss of each molecule of methane produces two molecules of H2O (e.g., Wofsy et al.,
1972; Dessler et al., 1994). Methane is set at 1.8 ppmv for all injected parcels.
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3 Results

Table 1 gives an overview of the numerical experiments performed. All of the results
are for the last few days of our 10-year integrations unless indicated otherwise. In these
runs, we vary the amount of supersaturation, the presence of convective moistening
(CM), gravity waves (GW) and the transport scheme (K or D). We compare our results5

to the global average MLS water vapor from 18–28 km for the same day (Lambert et al.,
2007; Read et al., 2007). We use MLS version 3 data, which is an improvement over
the validated version 2 data. The MLS limb water vapor measurements have 2–3 km
vertical resolution. We note that the reported accuracy of MLS water vapor at lower
stratospheric levels is 5–7% or about 0.3 ppmv.10

In general, our results comparing diabatic and kinematic models are similar to those
of Liu et al. (2010). We find that the kinematic models are dry biased compared to the
diabatic simulations. Allowing for supersaturation increases stratospheric water vapor
because some parcels will avoid being dehydrated to the ice vapor pressure. Con-
vective moistening overall increases water vapor in the stratosphere by rehydrating15

parcels that have been dehydrated at colder temperatures. The gravity wave parame-
terization reduces the water vapor through excursions to lower temperatures. The best
agreement with MLS is achieved, including reasonable simulation of the tropical tape
recorder (see below), with 104% supersaturation using diabatic simulation, no gravity
waves and no convective moistening. However, if we believe that convective moist-20

ening is required then we need to include gravity waves to correct for the excessive
moisture. Since the MLS observations are only accurate to about 5–7% we cannot be
completely quantitative on the level of convective moistening and gravity wave dehy-
dration required to reproduce the stratospheric water vapor fields.

3.1 Parcel distribution25

Figure 1 shows the distribution of parcels at the end of the 10-year diabatic integration
(uniformly thinned out by a factor of 10) overlaid on the zonal mean temperature field.
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As is usual with this kind of trajectory calculation, the parcel density decreases with
altitude roughly in proportion to the atmospheric density. The parcels tend to cluster
at lower altitudes where the heating rates and vertical velocities are smaller. We also
note that there is a relative paucity of parcels at the high northern latitudes above about
25 km. This is the region of strong descent inside the vortex and parcels that originated5

at high altitudes are advected to lower altitudes. This effect is seen in the Southern
Hemisphere six months earlier (not shown). Third, we also note a thicker cluster of
tropical parcels between 22 and 27 km. This corresponds to the “the tropical pipe”
region where air ascends relatively undisturbed producing the tropical tape recorders
(Plumb, 2002). The isolation of the tropical region causes parcels to accumulate.10

3.2 Kinematic vs. diabatic

The diabatic and kinematic computations give quite different results (Table 1). Model
results should be independent of the transport scheme used, but as Danielson (1961)
first noted, the aliasing of adiabatic gravity waves in the kinematic models creates
“noise” in the vertical velocity field. MERRA omega fields are time smoothed to reduce15

this noise, but it is not entirely eliminated. The net result is that parcel models tend to
be more dispersive than diabatic models when compared to observations, as seen by
Liu et al. (2010).

The spurious vertical motion provides extra opportunities for dehydration compared
with the diabatic calculation (which moves parcels vertically through net heating). With20

extra opportunities to encounter cold temperatures, the stratospheric humidity com-
puted by the kinematic model is low biased.

To further illustrate the difference in the transport dynamics between the kinematic
and diabatic models, we performed a short experiment where parcels at the same
starting locations are advected kinematically and diabatically for 15 days starting 125

January 2005. Figure 2 shows the results of the experiment. It is evident that the
kinematically advected parcels are dispersing through the stratosphere at a much
more rapid rate than the diabatically advected parcels. This effect was first noted by
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Schoeberl et al. (2003), and, as a result, the time smoothing of the vertical motion field
was implemented in MERRA to compensate. A similar smoothing system is used with
ERA-Interim data. Integrations performed by Liu et al. (2010, see their Fig. 12c) gave
comparable results to our Fig. 2. Thus, despite the time smoothing, there appears to be
sufficient remaining vertically velocity “noise” to produce excessive stochastic motion5

and affect the water vapor concentration.
Another way to compare the differences between the kinematic and diabatic models

is to examine the age-of-air. Figure 3 shows the mean age for the diabatic and kine-
matic computations. The tropical pipe in the kinematic run is much narrower and young
air extends only to about ∼24 km vs. ∼29 km in the diabatic case. Thus the “pipe” is10

more isolated in the diabatic experiment compared to the kinematic case.
Figure 4 shows the comparison at 20 km with age estimates from CO2 and SF6 from

Waugh and Hall (2002). In both the kinematic and diabatic case the air is too old in the
tropics, which suggests that the vertical motion field (or net heating) is too weak near
the tropopause. This is consistent with analysis by Schoeberl et al. (2008) that showed15

that the vertical velocity in the GEOS-4 assimilation was too weak at 20 km by almost a
factor of two compared to vertical motion fields derived from the observed water vapor
tape recorder signal. If the tropical vertical motion were stronger, then the age-of-air in
the tropics would be younger in better agreement with observations.

Outside the tropics, the kinematic model age for the extra-tropical lower stratospheric20

is too old (6 years vs. ∼4 years observed). This means that parcels reaching the upper
stratosphere in the kinematic model have a much longer residence time than parcels in
the diabatic model. As Fig. 3 implies, the lack of isolation of the tropics allows parcels
to recirculate in and out of the tropical upper stratosphere increasing their age.

4 Water vapor25

Given the kinematic trajectory transport biases we will now generally restrict our discus-
sion to the diabatic integrations. Figure 5 shows the D100 simulations of water and the
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MLS zonal mean water vapor for the same day. Overall the agreement is within MLS
measurement uncertainties, although the water vapor field in D100 is slightly lower
than MLS. Both the tropical and Antarctic dry zones are well simulated. We also note
that the model patch of tropical dry air at about 22 km is located at a somewhat lower
altitude in the MLS observations. This dry patch is a section of the tape recorder; the5

previous Northern Hemisphere (NH) winter’s dry TTL air that has ascended to 22 km.
The altitude offset between the model and MLS implies that MERRA heating rates in
the tropical lower stratosphere are slightly low biased.

Figure 6 shows comparisons of monthly mean water vapor maps for January and
August for the D100 experiment at 82 hPa (∼17.5 km) with MLS observations. There is10

overall excellent agreement between the model and the observed water vapor fields.
We do note some important differences. The tropical west Pacific region is somewhat
dryer than MLS observations and slightly wetter outside the tropics. On the other hand,
the model has reproduced the dry region over South America which has not been
discussed much in the literature. As we will show below, this is an important region of15

NH winter dehydration that has been previously neglected. For NH summer, the model
reproduces the increase in tropical water vapor. Not only are there increases in water
over the East Asia but over Central America as well.

Figure 7 shows the water vapor tape recorder (Mote et al., 1996, Schoeberl et al.,
2008 and references therein) for D100, MLS and K120. The K120 simulation (Fig. 7a)20

shows rapid dispersal of the tape signal above ∼20 km compared to MLS (Fig. 7b).
D100, Fig. 7c, on the other hand, shows a coherent tape signal through the lower
stratosphere although, as mentioned above, the signal is ascending too slowly. The
incoherence of the K120 tape signal is consistent with the mean age plots shown in
Fig. 3 where we noted that penetration of old air into the tropics from mid-latitudes25

would increase the age and narrow the tropical pipe. We also note that the upward
moving water vapor (Fig. 7b, c) anomalies show downward bends in 2006 and 2008
near 20 km. This is the effect of the descending QBO circulation on the anomaly field,
which is well reproduced in the MERRA heating rate data.
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4.1 Location of final dehydration events

Parcels moving through the TTL and lower stratosphere can dehydrate multiple times.
Thus the pattern of dehydration shortly after a parcel is released is less relevant than
the location of final dehydration point because it is the final dehydration event that
ultimately determines the stratospheric water vapor concentration. There are multiple5

dehydration events within a month or so after parcel release with the parcels experienc-
ing fewer dehydration events after words. Thus to provide a pattern of final dehydration
we select parcels that are older than a year because very few of these parcels are
continuing to dehydrate. In fact, we find that the final dehydration pattern does not vary
much after about three months.10

In Fig. 8 we show statistics of the locations of final dehydration point density for all
D100 parcels. For all the diabatic experiments the dehydration locations are nearly the
same. The point density is obtained in Fig. 8a by counting final dehydration locations
in a 5◦×10◦ latitude-longitude grid and normalizing by the total number of parcels. The
altitude-latitude density pattern shown in Fig. 8b is obtained the same way using a15

5◦×1.35 km latitude-height grid.
In agreement with many previous studies, the principle dehydration region is the

Tropical West Pacific (TWP), which is the coldest part of the TTL (e.g. Fueglistaler et
al., 2009 and others). However, outside the TWP, Fig. 8a shows significant dehydration
taking place in zones over India, Africa, South America and Antarctica. Somewhat sur-20

prising is the wide extent of dehydration over South America, and very low water vapor
amounts observed by MLS and present in the model (Fig. 6a) over South America are
consistent with this zone of dehydration. It is also interesting that the TWP dehydra-
tion region is split into two regions, one north of the equator extending to East Asia,
and one south of the equator extending from northern Australia across eastern New25

Guinea. This TWP dipole dehydration distribution also shows up in the vertical distri-
bution of dehydration locations (Fig. 8b). We have overlaid the winter temperatures in
Fig. 8b to illustrate the co-location of cold temperatures and final dehydration points in
the tropics and over Antarctica.
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Figure 9 shows the D100 seasonal distribution of final dehydration density for
winter (December–February), spring (March–May), summer (June–August) and fall
(September–November). The winter dehydration exhibits many of the features of the
annual average dehydration (Fig. 8a) with the highest density of dehydration points oc-
curring in the southern branch of the TWP dipole and with almost no contribution from5

East Asia. Dehydration over South America is also important in this season. The tran-
sition in spring shows that the dehydration focus is in the tropical Pacific and SE Asia.
Dehydration in the summer is most common over East Asia with a smaller contribution
from Antarctica. In the case of Antarctica, the major dehydration zone lies close to the
Antarctic Peninsula where large-scale orographic waves that are resolved by MERRA10

can depress temperatures. The altitude of this zone is shown in Fig. 8b. North polar
gravity wave driven dehydration is also seen in the model, but to a much lesser extent
than in the Southern Hemisphere. During NH winter this dehydration mostly occurs
over the Scandinavian Peninsula. In the NH fall, dehydration over Antarctica occurs as
does dehydration over S. America and the N. Australia-New Guinea region.15

Table 2 shows how each region in Figs. 8a and 9 contributes to the control of water
vapor in the stratosphere in percent and in average water vapor mixing ratio. The
percent is of number model parcels (over a year old) that dehydrated in the specified
region shown in the Fig. 8a map.

As is evident in Figs. 8a and 9 and Table 2, in NH winter the TWP is the predominant20

locus of dehydration of the stratosphere; however, as noted above, the next most im-
portant zone for dehydration is the continent of South America. Water vapor amounts
from these zones are about 4 ppmv. In NH summer, dehydration events over India
(and east Asia) are most important, but dehydration over Antarctica plays a role as
well. During NH summer, the water vapor mixing ratio for parcels that dehydrated over25

Antarctica average 2 ppmv whereas all other regions the average is ∼5–6 ppmv.
The Antarctic stratosphere reaches minimum temperatures during a period when the

polar vortex is very isolated (Schoeberl and Hartmann, 1991) and thus the dry air inside
the vortex cannot easily circulate into the Southern Hemisphere until the vortex break
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up in November. Therefore, despite the very dry air being released by the Antarctic
vortex, the net contribution of Antarctica to stratospheric dehydration is still smaller
than the overall contribution from the tropics.

Tracking parcels after final dehydration and sorting their distribution as a function
of altitude and latitude allows us to further explore the role of the various dehydration5

zones in controlling stratospheric water vapor. Using the parcel positions, we can show
the relative distribution of parcels that have dehydrated in different regions. Figure 10
amplifies the results from Table 2 by showing the vertical distribution of the fraction of
parcels as a function of latitude-height that dehydrated in each region – we refer to
these fractional maps as “Influence.” We neglect the Northern Hemisphere influence10

since it is negligible in all seasons and we lump South America and Africa together.
Table 2 and Fig. 10 shows that the TWP influence dominates the stratosphere but

that South America and Africa together are important regions for dehydration in NH
winter. During the NH summer the influence of TWP is still higher than India (and
East Asia) despite the fact that the water vapor maximum is clearly located over India15

(Fig. 6b). Figure 10b shows that, during Antarctic winter, the vortex confines the de-
hydration to regions south of ∼60◦ S. After the breakup of the vortex (early NH winter),
the influence of Antarctic appears to be reduced to the region below 18 km (Fig. 10a)
where a weak vortex persists. Despite the strong dehydration in the Antarctic strato-
sphere, the overall influence is small. As a side note, the kinematic integrations show20

much wider influence of the Antarctic region in the Southern Hemisphere (not shown).
This wider Antarctic influence in the kinematic model occurs because diffusive parcel
exchange across the vortex wall allows more air to be processed by the cold Antarctic
stratosphere locating the final dehydration points there.

5 Summary and conclusion25

This paper describes the results from a domain filling, forward trajectory model that
has been used to examine the dehydration processes that control stratospheric water
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vapor. We use the MERRA assimilated winds and temperatures in these calculations.
Comparing diabatic and kinematic trajectories, we find that the kinematic trajectory re-
sults are significantly different from the diabatic calculations. Despite vertical velocity
time smoothing of the MERRA data, the additional stochastic transport due to the verti-
cal velocity “noise” in the kinematic calculation creates too dry a stratosphere and a too5

diffuse a tape recorder signal compared observations. The reason the kinematic strato-
sphere is too dry is because the random motions of parcels provide a higher probability
for encountering cold temperatures and thus more dehydration. These results are in
agreement with the study by Liu et al. (2010).

The diabatic calculations provide more reasonable transport, and the mean age for10

the diabatic calculation better matches to the observations. Comparisons to MLS water
vapor data show that the diabatic simulation of stratospheric water vapor assuming
dehydration at ice saturation is only slightly dry, and the water vapor tape recorder
signal compares well to MLS observations although the ascent of the tape signal is too
slow.15

We explore the effects of changing the super-saturation, including convective moist-
ening and gravity wave induced temperature fluctuations. We can match the MLS ob-
servations if we assume super-saturation of about 104%. Alternatively, we can obtain
the same agreement with MLS measurements if we include both convective moisten-
ing and gravity waves, setting the saturation at 100%. Convective moistening increases20

stratospheric water vapor and gravity wave temperature fluctuations reduce it. Thus,
if we believe that convective moistening must be present to reproduce HDO measure-
ments, (Moyer et al., 1996; Keith, 2000; Dessler et al., 2007) then gravity waves are
also required to provide additional dehydration. Future simulations will focus on simul-
taneously matching H2O and HDO in the stratosphere.25

The model allows us to quantify the spatial pattern of final dehydration locations.
Although we find that the TWP dominates the dehydration processes in winter, South
America is also important, and this regions show up in the MLS H2O observations as
well. Antarctica makes an additional contribution to the Southern Hemisphere water
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vapor budget by releasing very dry air into the Southern Hemisphere stratosphere
following the break up of the winter vortex, but its influence is not great. The India-East
Asia region is important for dehydration during NH summer, but it is not as important
as TWP.

Acknowledgements. A. Dessler acknowledges NASA Aura grant NNX08AR27G to Texas A&M5

University and K. Bowman for help on the trajectory code.
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Table 1. Summary of trajectory experiments.

Experiment Saturation H2O* Comment

K100 100% 3.9 Too dry, tape recorder (TR)
disperses too fast with altitude

K120 120% 4.2 Slightly dry, TR disperses
too fast with altitude (Fig. 7)

D100 100% 4.4 Agrees with MLS,
TR is coherent but phase
lags observations
(true for all D experiments)

D104 104% 4.5 Agrees with MLS
D100GW 100% + gravity waves 4.2 Slightly dry
D100CM 100% + convective moistening 5.1 Too wet
D100+CM+GW 100% + gravity waves 4.8 Slightly wet

+ convective moistening
D100+CM+1.5*GW 100% −1.5*GW & CM 4.6 Agrees with MLS

*Global average between 18 and 28 km, MLS=4.5±0.3 ppmv (∼5–7% accuracy) for the same region.
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Table 2. Dehydration statistics by region.

Location
All Seasons (100%) NH Winter (30%) NH Summer (24%)
% H2O % H2O % H2O

West Pacific 41 4.2 52 3.4 36 5.2

India 11 4.6 5 3.9 20 5

South America 21 4.5 26 3.8 10 6

Africa 10 4.4 15 4.1 3 5.8

Antarctica 16 2.2 0 − 30 2.0

Northern Hemisphere 1 5.8 ∼0 – 1 –

Statistics of final dehydration locations for regions shown in Fig. 8a (D100). Percent shows the total percentage of
model parcels that dehydrated in the indicated region. H2O is the average water vapor mixing ratio (ppmv) for parcels
that dehydrated in that location. Only parcels over a year old are considered.
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Fig. 1. Parcel distribution for diabatic experiment on 30 December 2009 thinned by a factor of
10 for visibility. Injection begain 1 January 2000. Colors show the zonal mean temperature dis-
tribution from MERRA. Red lines identify the zonal mean 360 K and tropopause levels. Parcels
moving below about 10 km are eliminated. The total number of parcels is 527 951.
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Fig. 2. Results from a 16 day advection experiment using diabatic (white) and kinematic (or-
ange) trajectory techniques. Parecels are initiated in black box region in the center of the figure.
Note that the kinematic trajectory parcels are dispersing more rapidly than the diabatically ad-
vected parcels. Background image is average temperature over this period.
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Fig. 3. Left, mean age for a kinematic trajectory run. Right mean age for a diabatic trajectory
run.
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Fig. 4. Mean age averaged over a 2009 at 20 km with measurements based on CO2 and SF6
from Waugh and Hall (2002). Solid line, kinematic integration; dashed line, diabatic integration.

10184

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/10159/2011/acpd-11-10159-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/10159/2011/acpd-11-10159-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 10159–10190, 2011

Dehydration of the
stratosphere

M. Schoeberl and
A. Dessler

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 5. MZonal mean water vapor concentration at the end of the particle integrations. Top
D100 (Diabatic, 100% supersaturation) experiment, bottom MLS V3 observations (see Table 1).
Zonal mean temperatures are shown as black contours. Temperature data are from MERRA.
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Fig. 6. Monthly mean water vapor at 82 hPa (∼17.5 km) for January (Part a, top) and August
2005–2009 (Part b, bottom) for the model and MLS; D100 experiment.
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Fig. 7. Water vapor concentration anomalies at the equator vs time. Part (a) (top) K120 (kine-
matic) experiment, middle, Part (b) (middle) MLS V3 observations, Part (c) (bottom) D104
(diabatic) experiment (see Table 1).

10187

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/10159/2011/acpd-11-10159-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/10159/2011/acpd-11-10159-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 10159–10190, 2011

Dehydration of the
stratosphere

M. Schoeberl and
A. Dessler

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 8. Upper plot (part a) shows horizontal distribution of final dehydration location density for
all parcels more than 1 year old, regardless of when they were dehydrated (from the D100 run).
The lower plot (part b) shows the annual vertical distribution of dehydration locations along with
the winter zonal mean temperature contours superimposed (winter in the SH and winter in the
NH).
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Fig. 9. Density of final dehydration points by season as shown in Fig. 8a. Upper left (a), winter,
upper right (b), spring, lower left (c), summer, lower right (d), fall.
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Fig. 10. Fraction of parcels from different locations in the stratosphere for 31 December 2009
(part a, top) and 3 July 2009 (part b, bottom), D100. Figure 8a shows the region map labels.
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