Atmos. Chem. Phys. Discuss., 10, C6421–C6422, 2010 www.atmos-chem-phys-discuss.net/10/C6421/2010/ © Author(s) 2010. This work is distributed under the Creative Commons Attribute 3.0 License.

ACPD

10, C6421–C6422, 2010

Interactive Comment

Interactive comment on "Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse" by T. C. Bond et al.

Anonymous Referee #1

Received and published: 13 August 2010

I acknowledge the reply of the authors to my comments although differences in opinion remain. I would just like to clarify a few things I wrote in my earlier comment, which were unclear or have been misunderstood.

(9) By "overestimating the differences between SFP and AGWP", I meant indeed "overstating the difference between the two metrics and the value of the SFP". As far as I am concerned the SFP is very much the same as an AGWP. The authors argue that AGWP is a poor name for this metric, fair enough, but SFP is not really better (if some forcings are specific, then what is a non-specific forcing?). The unit is confusing -this is what I was trying to convey in my previous comment on forcing vs response- the

unit J usually refers to quantify the heat content of a system so it is a bit weird to use it for a forcing integrated over time. It is quite deliberate that the AGWP has unit of $W.m^{-2}.kg^{-1}.yr$ and not unit of $J.m^{-2}.kg^{-1}$; this was in order to make explicit the concept that it is a time integral of a forcing. Finally I don't really see the usefulness of a metric if it excludes long-lived species from its definition.

(16) If you say "BC adds 1 GJ to the system", then it reads to me that the energy content of the climate system has increased by 1 GJ because of the BC. Obviously this is not what the authors mean and I admit I've been playing devil's advocate, but I think the authors are replacing a well established way of saying something by a language that could confuse many people.

(18a) Why is the shortwave radiation absorbed by the aerosols all dissipated as heat and not partly re-radiated as longwave radiation? Surely if the particle is heated, it must emit more longwave radiation (Planck's law).

Interactive comment on Atmos. Chem. Phys. Discuss., 10, 15713, 2010.

ACPD

10, C6421-C6422, 2010

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

