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We wish to thank the referees for their constructive and detailed comments. We will
improve our paper accordingly by addressing each of the respective points here.

Referee 1

1- As was mentioned in section 3.2, it is generally understood that multilinear regres-
sion models are prone to overfitting, hence there is a requirement for training sets
in order to assess the predictive qualities of the model. There is also a necessity
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to reduce the number of variables used as model parameters for the same reason.
Despite this, GROMHE includes unique descriptors for many different types of substi-
tutions, such as peracid, which has only one entry in the entire database. My question
is: have the authors considered a more generalized approach to the description of
substitutions? The peracid group, for example, contains a hydroperoxide group and
a carbonyl group, both of which are accounted for in the database. Another example
would be ketones and aldehydes, where both contain a carbonyl oxygen atom and
the only difference is an alkyl substitution. Therefore, would it be possible to describe
many of these substitutions using smaller fragments, which are more general and
better represented in the database?

Reducing the number of descriptors as much as possible was a key aim in the
development of GROMHE. Thus many attempts were made to decrease the number
of descriptors. They resulted in a significant increase of the errors in the estimated
values. If we describe the peracid group as a combination of ROOH and RCOR
descriptors, its Henry’s law constants is over-predicted by 1 order of magnitude.
Similarly, the contribution obtained for the ketone group (3.29 ± 0.12) is significantly
different from the one obtained for the aldehyde group (2.63 ± 0.12), where the
uncertainties are the standard errors (see answer to referee 2, item 12.1 for its
significance). Aggregating these two descriptors therefore leads to a significant
increase of the errors. As already stated in the text (P 4621, L15), we cannot provide
an assessment for the Henry’s law constant estimates using GROMHE for peracid
and hydroperoxide owing to the small number of entries of these type of species
in the database. Nevertheless, peracid and hydroperoxyde are major functional
groups produced during the tropospheric oxidation under low NOx conditions and we
therefore kept these groups within GROMHE for later applications. The contribution
of these groups should obviously be reviewed when additional data becomes available.
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2- If possible, the authors should provide more interpretation of their multilinear
regressions. There is almost no explanation of the SAR regarding the mechanism
by which Henry’s law constants are affected by substitution. Exactly how does the
presence of an electronegative substitution neighbouring another substitution affect
the Henry’s law constant and why? Questions such as this can become difficult to
answer as the multilinear regression becomes more complex and the physical interplay
between the descriptors becomes less obvious. So, is this approach just a black box,
or can some physical interpretation be made about the results of this study?

The multiple linear regression performed in this study is a fully empirical approach
to estimate the Henry’s law constants. Descriptors were selected when they were
statistically significant for the prediction of logH∗. This selection of descriptors is not
based on fundamental physical properties. As stated by the reviewer, the physical in-
terpretation of the contribution obtained for the various descriptors is not obvious, and
we can only provide a very crude analysis. Dipoles and hydrogen bonds are evidently
affecting the H∗ of the compound but we feel that interpreting the mechanisms of such
interactions is beyond the scope of this work.

3- In the final paragraph of this article a caveat is presented to the effect that the
database that is used represents a subset of the available data. GROMHE was
optimized for this database, but is compared with HWINb and SPARC, which are
optimized for other databases. This is an inherently unfair comparison, and the general
increase in performance associated with GROMHE is called into question. Since
these models are complex and there may be a lot of work associated with training
them, perhaps it is unreasonable to ask for these models to be re-optimized using
the present database. However, is it possible to optimize GROMHE to the databases
associated with HWINb and SPARC? This would result in a fair comparison and would
add much more weight to any assertion that GROMHE possesses better predictive
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power.

As we pointed out (P4632, L4), we agree that the inter-comparison performed within
this study is inherently unfair. GROMHE was developed for atmospheric applications
and does not account for many functional groups found in the databases associated
with HENRYWIN and SPARC methods. Adding these functional groups into GROMHE
is beyond the scope of this model.

Nevertheless, the bond contributions in HENRYWIN can be reevaluated using the
database described in this paper. A multiple linear regression was therefore performed
to optimize the HENRYWIN model to our database. 47 descriptors (35 bonds and/or
fragments and 12 correction factors) are required to describe the structure of the
488 molecules included in the database. The determination coefficient R2 is 0.96
compared to 0.91 for the original model (a t-test shows that this difference is significant
at 95 % confidence level). This optimized HENRYWIN model shows an improvement
for the estimation of logH∗ for the more soluble species (H∗ > 103 M atm−1) with
an RMSE of 0.66 compared to 1.12 previously. However, GROMHE still provides a
better performance. These results give confidence that our model can be used for
the determination of H∗ for organics known to be important in atmospheric chemistry.
This comment and the figures showing the scatter plot and box plot for the optimized
HENRYWIN model have been added into the revised paper.

The SPARC model uses physical parameters as descriptors (e.g. volume, molecular
polarisability, molecular dipole, H bonding parameters, dispersion interaction, induction
interaction, dipole-dipole interaction, H bond interaction, and entropic term). Quantum
mechanics calculations are required to determine these parameters. Dealing with
such tools is out of the scope of this paper and we did here not attempt to optimize
SPARC for our database.
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Technical corrections:
All technical corrections suggested by the referee have been implemented in the
revised paper.

Referee 2

1. Most secondary organics are expected to be water soluble" (P4618 L 25): Although
it is a fringe-note, this statement is ambiguous and can be misleading. Almost anything
can be dissolved to some extent in water, depending on the relative amounts of water
and organic present, as well as other specific (intensive) properties of the system. I
suggest to give explicit (for example, order of magnitude of some property) gauges for
the term "water soluble", or reformulate the statement.

We agree that this sentence can be misleading and was removed. The typical liquid
water content of a cloud is about 0.3 g m−3 air. At equilibrium, the partitioning of
a species in the aqueous phase is about 1 % if the Henry’s law constant is of the
order of 103 M atm−1. In page 4620, line 19, we noted that the species of interest
are those with H∗ above 103 M atm−1. Data in Table S1 show that most oxygenated
multifunctional species are above that threshold.

2. I suggest chemical and mathematical equations defining central concepts are
emphasized, and specifically not stated as regular text. In particular, there are different
forms of Henry’s law given in the literature. The version used in the present work for
defining the Henry’s law constant (H) is given in P4619 L 11, but should be easier to
locate. This would from the beginning avoid any ambiguity concerning the definition of
this central concept and immediately clarify exactly what quantity the developed model
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predicts. It is especially important since the authors use the inverse form of Henry’s
law compared to several of the references provided (e.g. Hilal et al. (2008)).

The equation has been separated from the text.

3. The authors refer to both the Henry’s law "constant" and the Henry’s law "coeffi-
cient" (e.g. P4624). The view that may emerge is a distinction between the "intrinsic
constant" and the "effective coefficient". If such a distinction is intended, it may be
too subtle, and I suggest the different quantities are explicitly defined. If the different
terminology is used for the same parameter, I suggest this ambiguity between a
constant and a coefficient (that can vary as a function of various system parameters)
is avoided.

There was no distinction between constant and coefficient. To avoid confusion, we
changed "Henry’s law coefficient" into "Henry’s law constant" in the text (including the
title).

4. As the authors note, the version of Henry’s law used for defining the Henry’s law
constant is a limiting law (P4619 L 13), without activity coefficient correction and thus
pertaining to the infinite dilution state of the solute. An underlying assumption of the
SPARC method (Hilal et al., 2008) is that it also applies in the solubility limit of a
saturated solution (P4620 L 10). As mentioned in several of the references provided,
the variability or uncertainty related to Henry’s law constants measured by composite
methods is in some cases related to confusion of states and the extrapolation of
Henry’s limiting law to the solute solubility limit. A clarifying comment about the unifor-
mity of the reference state assumptions involved at the different stages in the model
development and the significance of the predictions with GROMHE to atmospheric
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applications (where aqueous aerosol solutions are rarely dilute) might be useful. In
fact, the discussion might benefit from adding a short theory section clarifying these
ambiguities.

We have the feeling that adding a "theory section" is beyond the goal of this paper. We
added a reference to Boethling and Mackay, 2000, where further details can be found.
Reference: Handbook of property estimation methods for chemicals: environmental
and health sciences, R.S. Boethling and D. Mackay, Lewis Publishers, CRC Press,
New York, 2000.

5. The authors might consider spending a few lines describing the difference between
the GROMHE, HWINb and SPARC models, since the performance of GROMHE in
comparison to these existing tools is a main result presented. What the significant
new contribution of the GROMHE, compared to the HWINb and SPARC? Besides
the argued improvement of statistics, any new concepts should be more explicitly
emphasized to clarify this further.

The following comment has been inserted in the introduction (P4620, L23):
The SARs studied in this work are all based on a multiple linear regression approach.
The main difference relies on the selection of descriptors (i.e. the predictors) used
to estimate H∗. The descriptors chosen by SPARC are physical parameters (e.g.
volume, molecular polarisability, molecular dipole, H bonding parameters, dispersion
interaction, induction interaction, dipole-dipole interaction, H bond interaction, entropic
term, etc) and quantum mechanic calculations are required to determine their values
(Hilal et al., 2004). HWINb uses simple molecular structural descriptors: the number
and type of the chemical bonds and in addition, some correcting factors. GROMHE
uses a similar paradigm as HWINb, but is based on the number and nature of the
functional groups present in the molecule.
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6. P4621: The authors point out that the data set is very limited for some compound
classes and this affects the reliability and/or predictive ability of the model for other
such compounds. I understand that the purpose of this work is to develop the
GROMHE tool from already existing data. Nevertheless, it would be most useful
for targeting future experimental work if the authors could provide recommendations
and/or guidelines for measurements that would specifically facilitate further optimiza-
tion of the model developed.

See answer to referee 1, item 1. In addition, the following sentences have been added
in the paper (P4621, L14): The availability of experimental data for hydroperoxides (3
species) and peracids (1 species) is limited and therefore it is difficult to assess the
reliability of H∗ estimates for these groups of species. This is a limiting factor since
oxidation proceeds trough the formation of such compounds in remote conditions (or
low NOx conditions). Additional data for these groups of species would be especially
valuable to constrain structure activity relationships for atmospheric applications.

7. P4622, L7: "The data were exclusively taken from experimental values either
from direct or indirect measurements." As opposed to what - which other forms of
experimental values could have been used? I have an idea what the authors mean,
but perhaps this could be clarified.

The word "exclusively" is misleading and has been removed from the sentence.
This sentence refers to ’experimental measurements’ used as opposed to data from
"modelling studies" which can be found listed in database compilations (e.g. see
reference in the paper Sander, 1999).
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8. P4622, L21: What is the sensitivity of the model to the estimated variation in
the desolvation enthalpy (∆Hsolv )? Although I understand that the experimental
uncertainty for H is generally large, it would be good if the authors could provide a
remark about whether such sensitivity is comparable to or minor in comparison with
these uncertainties, and for how many compounds the temperature extrapolation is
relevant.

As described in page 4622, line 15, the experimental data used to develop the model
are provided at 298 K. A small number of species (20 compounds) measured at 293
K were also included to obtain a better representation of multifunctional oxygenated
species. Values at 293 K were corrected using the Van’t Hoff equation. The desolva-
tion enthalpy ∆Hsolv must be known to apply this correction. Here, we assume a typical
value of 50 kJ mol−1 for all species. For a 5 K change in temperature (293 → 298 K),
this value of ∆Hsolv leads to a 30 % decrease of H∗. For species measured at 293
K, the H∗ values in Table S1 was thus decreased by 0.15 log units. The desolvation
enthalpy ∆Hsolv typically ranges from 10 to 100 kJ mol−1 (e.g. Kuhne et al., 2005).
This span of enthalpies leads to a decrease of H∗ ranging from 7 to 50 % for a 5 K
increase (i.e. from 0.03 to 0.3 log unit). The uncertainty in the correction factor for the
293→ 298 K change is small compared to the uncertainties in the model outputs and
experimental data.

9. The model predicts H at 298 K, but how sensitive are model predictions with
GROMHE to atmospherically relevant temperatures? What do the authors believe
is the valid temperature range of the model? What is considered to be the relevant
temperature range for atmospheric applications? For example, how would the model
perform for, say, 278 K?

As discussed above (item 8), the value of H∗ are temperature sensitive. Assuming
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a value of 50 kJ mol−1 for the desolvation enthalpy, a temperature change from 298
to 263 K leads to a decrease of about 1 order of magnitude on the value of H∗. To
predict Henry’s law constants at other temperatures, the model developed here must
be coupled to an additional model that estimates the values of desolvation enthalpies
(e.g. see reference in the paper Kuhne et al., 2005).

10. P4624: The authors address hydration of carbonyls and the effect on observed
effective Henry’s law coefficients, as well as the means to account for this effect in
the developed model. What about the effects of other solute-solvent equilibria, e.g.
hydrolysis reactions of acid functionalities and protonation of bases?

We took into account the hydration processes for carbonyls because it is usually
implicitly accounted in the measured Henry’s law constant. Acid/base equilibrium con-
stants are another type of key properties that also must be estimated for atmospheric
applications. SARs to estimate pKa for organic acids and bases are already existing
in the literature (e.g. see reference in the paper Perrin et al.,1981).

11. P4624 L18: This paragraph starts very abruptly and it is difficult to follow. The
purpose of the paragraph is not immediately clear, if you are not already familiar with
the concepts, as it introduces and discusses new quantities without much explanation.
For example, what is a "descriptor", and what is the purpose of introducing it? I was
also confused about the sudden discussion of aromatics, aliphatics, then aldehydes
and ketones: Maybe "Taft and Hammett _" values (P4624 L22) could be briefly defined
and put into context?

An introduction to the paragraph and further explanations have been added:
A SAR was constructed to estimate Khyd based on a multiple linear regression using
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the experimental data shown in Table S2 as training set. This modeling approach
assumes that the relationship between the dependent variable y (here Khyd) and the
independent variables xj (here the structural descriptors or predictors) is linear. The
equation for this model is given by:

yi = β0 + β1x1,i + ...+ βjxj,i + ...+ βpxp,i (1)

where i stands for the ith species in the database, xj,i is the jth descriptors and βj
are the regression coefficients (here the weights or contributions) computed for the
descriptor j. The best-fitting line for the observed data is calculated by minimizing the
sum of the squared errors, SSE:

SSE =
n∑

i=1

(logKhyd,est − logKhyd,exp)
2 (2)

where n is the number of species included in the database. The descriptors were
selected following their assessment in the multiple linear regression.

12. The greatest difficulty for me in assessing the methods and results presented by
the authors concerns the statistical methods and parameters for which values are
provided. Although it may be argued that this should ideally be basic knowledge
to everyone working in science, at least I lack the proper knowledge foundation to
evaluate the quality and performance of the developed model. Specifically,

12.1. What is precisely meant by "reliability", "quality", "prediction ability", "contribu-
tion", and "weight in the regression"? What are the definition and units of the "standard
errors" of the descriptors?
- Reliability : in the text, reliability was used to express the magnitude of the error as-
sociated to the estimations. A more reliable method or estimation has lower errors.
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- Quality and prediction ability : the sentence using it (P4625, L22) was removed to
avoid confusion and rephrased as follow using referee 1 (item 1) suggestion. The
identification of descriptors for the multiple linear regression is complex: increasing the
number of descriptors (increase in the degree of freedom) usually leads to a better fit of
the experimental data. However, regression models are prone to over-fitting and there
is a requirement to reduce the number of descriptors used as much as possible.
- Contribution and weight in regression: they have now been defined in P4620, (see
item 11). "Weight in the regression" was deleted when rephrasing the sentences.
"Weight" was changed to contribution (or regression coefficient).
- Definition and units of the "standard errors" of the descriptors: The standard errors
(in Tables 1 and 3) have the units of the descriptor’s contribution. It represents the
standard deviation of the jth regression coefficient (or contribution). It can be used to
calculate the confidence interval of each contribution as:

βj = β̂j ± tα × sej (3)

where β̂j is the estimated value of the jth contribution (given in Tables 1 and 3), sej
is the standard error, and tα is the student number for a given threshold or level of
significance α and for the degree of freedom (df ) in our regression analysis:

df = n− k − 1 (4)

where n is the total number of species (here 488), k is the number of descriptors (here
28). For example, the contribution calculated for the number of carbon atoms is 0.49
with a se of 0.02 (see Table 1). For α = 0.025, then t = 1.96. Therefore, at 95 %
confidence, we can say that the contribution of that descriptor is between 0.45 and
0.53.

12. 2. What is the significance/interpretation of the different types of errors discussed,
i.e. the RMSE, MAE, MBE (P4625, P4628)? How do these quantities assess the
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model and method? What does a certain value mean? What is "good" or "bad"? Also,
the "n" in the defining equations is unspecified?

We think that the formulas provided to define the errors are self-explanatory. In short,
the MBE allows to check whether the predictions show some bias (i.e. a systematic
overestimation or underestimation for the whole set or a subset of the database). The
RMSE can be viewed as the standard deviation of the error (i.e. if the distribution of
the errors follow a normal distribution, 68 % of the predicted values are within plus
or minus the RMSE). For example, we show that GROMHE estimates logH∗ with
a RMSE of 0.53 for species having H∗ above 103 M atm−1. If we assume that the
distribution of the errors are close to a normal distribution (a reasonable approximation
given the shape of the box plot shown in Figure 4), this means that for this subset,
about 68 % of the estimated values are within 0.53 log units of the experimental ones
and 95 % within 1.06 log units (2×RMSE). The MAE is typically used to measure the
average magnitude of the errors in a set of predictions. The MAE is a linear index
which means that all the individual errors are weighted equally in the average. In
contrast, the RMSE is a quadratic index which gives relatively high weight to large
errors.

We introduced ’n’ (the number of experimental data) in page P4620 of the text and
change ’N’ for ’n’ in the graphs.

Good or bad : An error that falls within the uncertainty of the experimental data would
appear as "very good". As stated in the text, the uncertainty in the experimental data
is at least a factor of 2 (page 4623, line 6) for species with large H∗ values. Therefore,
we think that the estimated values can be stated as "good" if they agree within a factor
of 4 (or 0.6 log units) of the experimental one. The estimations using GROMHE show
errors of the same order of magnitude.
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12. 3. It seems like a "Catch 22" that the GROMHE is evaluated in comparison with
other models against the data set on the basis of which it was developed? I see
this is noted by the authors themselves in the conclusions section (P4632 L5), but
again, some remark elaborating a bit further on the significance of this could be very
informative.

See answer to referee 1, comment 3.

13. I believe it would be a great benefit if the central statistical parameters and their
interpretation was explained shortly, since it is the foundation of the development and
evaluation of the model described. It might furthermore enable the reader to better
appreciate the significance and quality of the results. Naturally, the authors cannot
write a new statistics text book, but a little more basic information might greatly improve
readability to people outside the specific field, notably the end users of the model
developed. This would enable the users to evaluate the strengths and weaknesses of
the model for the various application purposes. Such a statistics summary could be
included as supporting material or an appendix.

The statistical concepts used in this paper can be found in most statistical textbooks.
We think it will be more useful for the reader to refer to this specialized literature for
more details.

Technical Comments
Tables in supporting material (1, 2): Regarding the typography of the molecular
formulae, the authors could 1. use the "back-slash{chem}" command supported in
the Copernicus LaTeX package. 2. capitalize the appropriate elemental designation
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letters. 3. clarify what is meant by "SMILES" (table T1 and T2, leftmost columns’
headings): at least I am not familiar with this term.

The molecular formulas in table S2 are written in the SMILES formatting sys-
tem. This system is used in many chemical computer softwares to provide
the formula as a character strings. More details on this can be found in
http://www.daylight.com/dayhtml_tutorials/languages/smiles/index.html Table S2
provides the CAS numbers to avoid confusion.

Other technical corrections suggested by the referee have been performed in the
revised paper.

Interactive comment on Atmos. Chem. Phys. Discuss., 10, 4617, 2010.
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