Interactive comment on "The validity of the kinetic collection equation revisited - Part 2: Simulations for the hydrodynamic kernel" by L. Alfonso et al.

L. Alfonso et al.

raga@servidor.unam.mx
Received and published: 7 July 2010

Reply to Reviewer \# 1

First, we would like to thank the anonymous referee for his/her comments that will improve the quality of our paper. Our revised version will include several of his/her suggestions.

General comments:

1) Breakup of droplets:

For the simulations presented in this paper, the largest droplets (runaway droplets) at the start of the runaway growth have a size between 25-40 $\mu \mathrm{m}$ in radius.

C4876

1. First simulation for the product kernel with an initial concentration equal to $100 \mathrm{~cm}^{\wedge}(-$ 3): The radius of the runaway droplet at $t=1335 \mathrm{sec}$. was found to be equal to 37.5 $\mu \mathrm{m}$.
2. Second simulation for the hydrodynamic kernel with an initial concentration of 100 $\mathrm{cm}^{\wedge}(-3)$: The radius of the runaway droplet at $\mathrm{t}=860 \mathrm{sec}$. was found to be equal to 28.5 $\mu \mathrm{m}$.
3. Third simulation for the hydrodynamic kernel with an initial concentration of 200 $\mathrm{cm}^{\wedge}(-3)$: The radius of the runaway droplet at $\mathrm{t}=450 \mathrm{sec}$. was found to be equal to 36.9 $\mu \mathrm{m}$.
Then, the runaway drop sizes obtained in the three simulations are smaller than the typical collision breakup drop size. As we know, spontaneous breakup occurs once a diameter of approximately 3 mm is reached. The runaway drop sizes are also smaller than the typical sizes involved in the collision induced breakup mechanism. A brief discussion of this point will be included in the final revised version.
2) Hydrodynamic kenel: In the revised version, the claim that the hydrodynamic kernel is realistic will be tuned down as suggested by the reviewer.
[^0]
[^0]: Interactive comment on Atmos. Chem. Phys. Discuss., 10, 6219, 2010.

