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Response to Anonymous Referee No.1 SpeciïňĄc Comments

Regarding the choice of NCEP Reanalysis over ECMWF, a lot of the discrepancies
mentioned in the papers cited by the reviewer are related to the polar regions and to
reanalysis time periods prior to the advent of satellite observations, neither of which
apply to our work. We note that Trenberth and Guillemot (1998) show good agreement
between both NCEP and ECMWF reanalyses and satellite-derived precipitable water
vapor for midlatitude regions. Trenberth et al (2005) show very little difference between
NCEP and ERA-40 in midlatitudes, with the exception that NCEP is slightly moister in
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the southern midlatitudes. Bromwich and Fogt (2004) show good correlation between
reanalyses in the modern satellite era. The more important point when analyzing the
effectiveness of reanalysis-derived meteorology for our research is the connection to
the cloud properties. Norris and Weaver (2001) found negligible differences between
statistical cloud relationships when using NCEP and ECMWF Reanalyses (see Figs. 1
and 2 from that paper). We have added a line of text mentioning this last point.

The deïňĄciencies of the Zhang et al. 2004 radiative ïňĆuxes discussed in Trenberth
et al. (2009) are primarily systematic biases that affect climatological values and long-
term trends. In fact, Trenberth et al. note that the ISCCP FD has the most realistic
representation of cloud radiative effects among all datasets. While it is apparent that
deficiencies in the ISCCP-derived cloud and radiation products exist, the largest er-
rors shouldn’t affect our results. The random uncertainties of instantaneous values are
substantially reduced by averaging over many days in the composites, and we do not
expect that there will be much systematic bias with respect to various cloud conditions.
Zhang et al (2007) show that the largest source of uncertainty in the longwave flux
calculation is in the determination of surface skin temperature, and suggest that the
uncertainty in surface air temperature of 2-3K leads to an uncertainty in surface net
longwave flux of about 10-15 W/mˆ2. We find in our study that the satellite-derived
surface skin temperature tends to exceed NCEP Reanalysis surface temperature by
about 2K (also found by Tsuang et al., 2008). We attempt to minimize the effect that
large errors in surface temperature will have on our results by eliminating observations
where the difference between satellite skin temperature and reanalysis surface tem-
perature exceeded +8K or was less than -4K. We have added text discussing potential
deficiencies.

Vertical motion is better constrained over midlatitudes because it is closely connected
via quasi-geostrophic relationships to large-scale temperature and horizontal winds
that are observed by satellite and radiosondes. As demonstrated by Norris and Weaver
(2001), there is no difference among various reanalyses for statistical relationships
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between cloud properties and vertical motion. We have added text describing this.

With regard to the independence of the histogram bins, there is clearly potential anti-
correlation between bins. If the 80% of the pixels at a given time are located in one
CTP-tau bin, then the most that any other bin can be is 20%. I have attached a plot of
the relative correlation between cloud types. The two-letter names refer to the ISCCP
classification of each of the 9 CTP-tau bins. As you can see, there are cloud types
that are negatively correlated, but there are also types that tend to occur coincidently.
In particular, there tends to be a positive correlation between bins that are adjacent in
optical thickness category and/or cloud top pressure category. In our previous paper
(Gordon et al, 2005), we use three parameters as input to the clustering algorithm:
grid-box mean cloud fraction, cloud-top pressure, and reflectivity. We get very similar
results whether using a 9-dimensional histogram array or 3 variables.

Regarding the choice of number of clusters, this is an important step in the process.
Other studies (Williams and Tselioudis 2007) use an automated routine to choose the
number of clusters. Starting from k=2, you run the clustering algorithm and calcu-
late the maximum correlation between two cluster centroids for increasing values of k.
Eventually, two centroids are highly correlated (correlation coefficient greater than 0.9)
for some value of k=n. The proper value of k is then n-1. Another metric for deter-
mining the correct number of clusters is to look at the total variance around the cluster
centroids as a function of the value of K. By construction, this is a monotonically declin-
ing function of K, but by finding points where there is minimal relative decrease in total
variance for an increase in number of clusters analyzed one can detect a ‘correct’ num-
ber of clusters. Both of these techniques do not utilize the additional information that
the reanalysis provides to aid in our understanding of the cloud regimes. We did both
of these calculations and the latter indicated that 6 clusters were best while the for-
mer suggested 7 were ideal. We have clarified the text to state that additional clusters
beyond 7 exhibited great similarity to one of the preceding clusters.

With regards to meteorological profiles, we subtracted the climatological mean from
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each point before averaging, as there would be significant differences in the profiles
based on the location and time of year that the observation was made, especially in
temperature. While there may not be as large of a seasonal or spatial difference in
other variables, we still feel that it is most illustrative to show profiles with the local
mean removed.

We have also created plots with error bars corresponding to the 95% confidence in-
terval on either side of the profiles. In nearly every instance, the error bounds were
indistinguishable from the mean profile (due to the very large number of data points
contributing to each cluster). We thus chose not to show the error bars, but we now
mention the above reason in the text.

The purpose of figure 7 is to check that the cloud regimes that we find in our analysis fit
into a larger picture of the midlatitude synoptic wave. Similar to Lau and Crane (1995),
who composited around points of high optical thickness, we find the frontal clouds
preferentially oriented in a SW-NE fashion, with high thin clouds to the east, ahead of
the front, and low clouds in the cold sector behind the front. We have produced these
plots for all the other clusters, but they are much less interesting. For the low cloud
clusters, the neighboring boxes are most likely to be the same cluster, or another type
of low cloud.

The extent of the midlatitude domain is from 30 degrees to 55 degrees, so there is data
poleward of 50 degrees. I have corrected the text of the manuscript to reflect that.

The white blips are a result that there are fewer data points as we move poleward in
the equal-area version of the ISCCP data. I have regridded the data to eliminate these
white blips.

With regards to the domain extent, we have done the clustering independently for each
ocean basin and season, and we get very similar clusters, albeit with possibly different
frequencies. So, I would not expect the clusters to be very different if there were small
changes to the domain. The relative frequencies between the clusters may change if
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the domain was altered. We now mention this in the text.
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Fig. 1. Correlation between cloud types
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