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Fig. 1: Time average of the global mean surface temperature Ts (solid line) and of the
temperature of the warm (©%) and cold (©") reservoirs (dashed and dotted lines,

respectively).
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Fig. 2: Generalised climate sensitivities. CO, concentration dependence of macroscopic

thermodynamic variables. Seetext for details.
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Fig. 3: Zonally and vertically averaged mean heating rates (in K/day) for the 100 (a-c)

and 1000 (b-d) ppm CO, concentration runs.
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Fig. 4: Vertically averaged mean heating rates (in K/day) for the 100 (a-c) and 1000 (b-

d) ppm CO, concentration runs.
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Fig. 5: @) Zonally averaged mean temperature difference between the 1000 ppm CO;,

and 100 ppm CO;, concentration runs. b) Zonally averaged difference between the 1000
ppm CO, and 100 ppm CO, concentration runs for the mean heating rates due to the

convergence of lateant heat fluxes (in K/day).
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Fig. 6 a) Zonally averaged difference between the 1000 ppm CO, and 100 ppm CO,
runs for the mean squared velocity (in m?s?) at the sigmalevel closest to surface. b)
Same as a), but the difference between the 1000 ppm CO, and 350 ppm CO, runsis

shown.
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