
The authors would like to thank the reviewers for their analysis and useful comments. Each 

general and specific comment has been addressed in detail below, and appropriate additions 

and changes to the manuscript have been made where necessary. 

 

   

Reviewer 1 General Comment: 

 

Local and regional aerosol sources impacting Cork Harbour, Ireland over 3 weeks in August 

2008 were identified using positive matrix factorization applied to several aerosol 

measurements, including aerosol time-of-flight mass spectrometry (ATOFMS). The majority 

of the manuscript discusses in detail the mass spectral signatures of the observed particles. 

As written, the manuscript does not contribute significantly to the overall understanding of 

aerosol sources, and although the manuscript focuses significantly on the analysis approach, 

it is not novel. A more thorough literature search should be conducted and integrated, 

considering other studies of long-range aerosol transport to Ireland, as well as previous 

single-particle mass spectrometry studies. The conclusions are not well supported or 

discussed in terms of the overall applicability of the results or method to future work. 

 

Response: 

The authors believe that this work does make a significant contribution to our understanding 

of aerosol sources, particularly in a harbour location. The research is novel in its 

demonstration of the benefits of combining positive matrix factorisation (PMF) and single 

particle mass spectrometry data as a tool for source apportionment of PM2.5 mass 

concentration and particle number concentration, and more importantly in outlining how each 

technique improves the accuracy and validity of the other. As suggested by the reviewer the 

manuscript (the Introduction and Results and Discussion sections in particular), has been 

reorganised and expanded as outlined below to emphasise the importance and novelty of 

these findings and also to demonstrate the specific contribution of the work to the research 

area. The authors believe that, in agreement with Reviewer 2, this manuscript is of interest to 

readers of Atmospheric Chemistry and Physics (ACP) and that, in particular, the following 

points are of value to the scientific community: 

 



1: Although PMF of ATOFMS mass spectral data has been used to apportion PM2.5 mass 

previously (Eatough et al., 2008), no standard spectra were used to confidently confirm 

specific sources, as is the case in this manuscript not only for domestic combustion sources 

but also for shipping exhaust. Shipping and oil refining emissions could not be separated in 

the case of Eatough et al. (2008), however in our case the confirmation of shipping plumes 

using corresponding berthing logs have enabled the inclusion of a shipping factor that is not 

influenced by any other combustion processes, or indeed any regional shipping activity. The 

identification of locally emitted ship exhaust particles in Cork Harbour is covered in more 

detail in a previous article (Healy et al., 2009), however much additional information has 

been added to the Results and Discussion section as outlined below in the response to specific 

comments. The exclusive contribution of the ATOFMS shipping particle class to the 

Shipping factor (100%, Table 2) demonstrates the value of collecting “standard” spectra for 

source apportionment where possible, as confident assignment of spectra to specific sources 

leads to a more accurate result. Furthermore, while PM2.5 mass was apportioned in the case of 

Eatough et al. (2008), particle number concentration was not. This has allowed the relative 

impact of vehicular and shipping traffic on submicron particle number concentration in an 

urban port environment to be estimated in our work. This quantitative estimation arises from 

the combination of the ATOFMS single particle identification and PMF techniques and 

cannot be determined using one or the other alone. The estimated shipping traffic 

contribution of 18% to ambient particle number (20-600 nm, mobility diameter), only a factor 

of 2 lower than the contribution from vehicular traffic, has important implications for air 

quality in port environments. Now that this source has been isolated, characterised and 

apportioned effectively in a relatively small urban port environment, the methodology 

described can be used in larger, more complex port environments worldwide. It is important 

to note here that while vehicular emissions are highly regulated, emissions arising from the 

combustion of residual fuel oil by ocean-going vessels are not (Fridell et al., 2008). The 

effect of regionally transported shipping emissions on air quality and health in coastal areas 

has come to the fore recently, with an estimated 60 000 deaths per annum attributed to this 

source, a number expected to rise over the next decade with an increase in global shipping 

activity (Corbett et al., 2007). Ship exhaust particles contain species with known 

toxicological effects such as polycyclic aromatic hydrocarbons, vanadium and nickel 

(Lippmann et al., 2006; Peltier et al., 2008; Murphy et al., 2009; Healy et al., 2009). A recent 

modelling study estimates that ship emissions could soon become one of the major sources of 

air pollution in Southern California, with some regions subject to a threefold increase in 



contribution to ambient PM2.5 mass concentrations from this source between 2002 and 2020 

(Vutukuru and Dabdub, 2008). However, in-port ship emissions also need to be considered, 

in particular for cities with substantial shipping activity (Symeonidis et al., 2004; Ault et al., 

2009; Tzannatos, 2009; Viana et al., 2009; Pey et al., 2009; Pey et al., 2010). Freshly emitted 

ship exhaust particle numbers reside predominantly in the ultrafine mode (Fridell et al., 2008; 

Healy et al., 2009; Ault et al., 2010), and epidemiological research suggests that fine or 

ultrafine particle number concentrations may represent a more accurate metric than PM2.5 

mass concentrations when estimating the health impacts of anthropogenic particulate sources 

(Ibald-Mulli et al., 2002; Kreyling et al., 2006; Hoek et al., 2010). Thus particle number 

concentrations may be just as important to quantify and apportion as PM2.5 mass 

concentrations in future studies. Several articles focused on estimating the regional and 

global impact of emissions from shipping have been published recently in ACP (Eyring et al., 

2007; Petzold et al., 2008; Jalkanen et al., 2009; Marmer et al., 2009), highlighting the need 

for corresponding source apportionment of particulate matter in locations impacted by this 

source. The authors believe that our findings regarding the relative contribution of ship 

exhaust particles of unregulated composition to air quality in a port environment, and the 

methodology required to calculate this contribution are expected to be of interest to other 

researchers, in particular considering the growth of shipping activity worldwide, and the 

expected resultant effect on human health (Winebrake et al., 2009; Dalsøren et al., 2010). The 

authors concede that this point may not have been made strongly enough in the original 

ACPD manuscript. The results and conclusions sections have been expanded to incorporate 

additional detail and discussion as outlined below. 

 

2: The collection of reliable “standard” single particle mass spectra for domestic coal 

burning, peat burning and wood burning processes in order to satisfactorily identify these 

combustion particles in ambient air is important. Although ambient single particles have been 

attributed to coal-fired power generation and domestic coal burning sources in the US and 

Poland respectively (Liu et al., 2003; Pekney et al., 2006a; Bein et al., 2006; Bein et al., 

2007; Mira-Salama et al., 2008), the generation of locally sourced coal, peat and wood 

combustion particles using a domestic system allows for the comprehensive identification of 

similar domestic combustion particles in the ambient dataset using not only the presence or 

absence of individual ions in the mass spectra, but also the relative intensity of the ions 

present. This is particularly necessary when separating the coal and peat combustion particle 



classes, for example (Figures 1 and 2). Interestingly, the domestic coal burning mass spectra 

obtained in this work are quite different to those apportioned to coal burning in previous 

single particle studies, as outlined in the detailed response to specific comments below, and 

the authors believe that the domestic combustion mass spectra included (Figures 1-3) will be 

useful for other researchers in the analysis of single particle mass spectrometry data collected 

in future field studies. Although wood or biomass burning single particle mass spectra have 

been identified in several previous studies (Silva et al., 1999; Moffet et al., 2008; Guazzotti et 

al., 2003), this is the first reported identification of single particles formed through the 

combustion of peat. Peat is widely used as a domestic fuel not only in Ireland, but also in 

parts of Northern Europe (Orru et al., 2009). The peat burning single particle mass spectra 

collected during the combustion experiment match extremely well with those identified in the 

ambient dataset (Figure 2). The authors believe that the collection of standard combustion 

spectra and the subsequent confident assignment of ambient single particles to definitive 

sources are much more useful than listing single particle mass spectra as “sodium-containing” 

or “potassium-containing”, for example, along with possible sources. A recent article 

published in ACP involves the description of the different single particle classes observed at 

an urban site in Mexico City using ATOFMS and includes possible sources (Moffet et al., 

2008). Dependence on meteorology was included but the article does not include any 

estimation of the contribution of each suggested source to ambient PM2.5 or particle number 

concentration. PMF of temporal trends of various single particle classes generated using laser 

ablation mass spectrometry (LAMS) has been performed previously to identify sources of 

particulate matter in Toronto, Canada, however no corresponding PM2.5 mass concentration, 

particle number concentration, or semi-continuous quantitative data was included or 

apportioned in that case (Owega et al., 2004). Single particle mass spectra have also been 

previously used to help validate the source apportionment of PM2.5 using off-line ICP-MS 

data in Pittsburgh, Pennsylvania, however the single particle mass spectral data was not 

included in the PMF analysis (Pekney et al., 2006a). Two articles involving PMF of aerosol 

mass spectrometry (AMS) particle ensemble data in order to apportion organic aerosol have 

been published in ACP recently, but without knowledge of single particle mixing states 

(Ulbrich et al., 2009; Aiken et al., 2009). The authors therefore believe that the demonstration 

of the synergy of single particle mass spectral classification and PMF to confidently 

apportion PM2.5 mass concentration and particle number concentration, using “standard” 

spectra for confirmation where possible, is a novel component of this work. Further detail is 

provided in the answers to specific comments below. 



 

3: The possibility of intercontinental transport of North American anthropogenic particles to 

Cork Harbour is also interesting, considering that deposition processes are expected to 

minimise transport over such long distances. Cork Harbour represents a unique in-port site 

due to its position at the extreme west of Europe. The prevailing winds are south-westerly 

and the site is mainly influenced by clean marine air masses (Yin et al., 2005; Ceburnis et al., 

2006; Healy et al., 2009). Thus, particles arising from anthropogenic activity are 

predominantly primary and emitted locally, as demonstrated in the manuscript. The 

anthropogenic ATOFMS particle classes identified herein exhibit a very strong dependence 

upon time of day (Figs. 4 & 7), supporting their assignment to local sources. However, the 

temporality of one carbonaceous single particle class, the EC-phos-aged class (now renamed 

as EC-MSA), is dramatically different, exhibiting a dependence upon air mass origin rather 

than time of day (Figure 10). These findings lead the authors to conclude that these particles 

have a sustained source to the west of the coast of Ireland that cannot be attributed to 

shipping because ship exhaust particles can be identified and separated from other sources as 

described in the manuscript. Thus, the EC-MSA particles are either emitted from the Atlantic 

Ocean or further afield. The presence of internally mixed methanesulfonic acid (MSA), a 

species arising from phytoplankton emissions of dimethyl sulfide that has been recently 

detected in a range of anthropogenic single particle classes in California, strongly supports 

the theory of transport over an ocean surface (Gaston et al., 2010). While the source 

assignment here is indeed speculative, and the accuracy of the HYSPLIT back trajectories 

decreases with increasing temporal projection, the presence of elemental carbon fragments in 

particular suggests a combustion origin (Figure 8). Transport of North American black 

carbon and forest fire particles to Ireland and Western Europe respectively, and transport of 

Saharan dust particles to North America have been previously reported (Jennings et al., 1996; 

Forster et al., 2001; Singh et al., 2006; Owega et al., 2004). Thus North American 

anthropogenic activity may represent a source of submicron particles arriving in Cork 

Harbour, albeit extremely minor compared to the various other sources identified. A detailed 

discussion of this source assignment, including appropriate references to previous articles in 

this field, is given in the reply to specific comments below. 

 

 



Reviewer 1 Specific Comments: 

 

Abstract: The first half of the abstract reads similarly to a methods section with the 

second half of the section stating some results. However, it is unclear what has been 

added to the scientific understanding of aerosol source apportionment. Further, it is 

not appropriate to include such information as the number of ATOFMS mass spectra 

generated here. The abstract should be reorganized to primarily be a discussion of the 

main results of the work. 

 

Response: 

This is a valid point. The following sentences have now been removed from the abstract:  

“Over 550,000 ATOFMS particle mass spectra were generated and classified using the K-

means algorithm. The vast majority of particles ionised by the ATOFMS were attributed to 

local sources, although one class of carbonaceous particles detected is attributed to North 

American or Canadian anthropogenic sources.”  

 The following text has been added to the abstract: 

“The synergy of the single particle classification procedure and positive matrix factorisation 

allowed for the identification of six factors, corresponding to vehicular traffic, marine, long-

range transport, power generation, domestic solid fuel combustion and shipping traffic.” 

“The positive matrix factorisation procedure enabled a more refined interpretation of the 

single particle results, in particular for the separation of domestic and power generation coal 

combustion, while the single particle data enabled the identification of additional factors not 

possible with typical semi-continuous measurements, including local shipping traffic. One 

class of single particles exhibiting mass spectral signatures for elemental carbon, sulfate, 

methanesulfonate and oxalate is associated with possible intercontinental transport of 

anthropogenic particles from North America, although this represents an extremely minor 

source compared to local primary sources.” 

 



Comment: 

Introduction, Paragraph 2: This summary of the use of single-particle mass spectrometry for 

source characterization is highly incomplete; several studies using single-particle mass 

spectrometry have focused on source characterization of ambient aerosol [eg. Bein et al., 

2007, Pekney et al., 2006, Reinard et al., 2007].  

 

Response: 

This section was originally kept to a minimal length considering the overall size of the 

manuscript but has now been expanded to include two of the references mentioned by the 

reviewer. A reference to the article of Reinard et al. (2007) was already included in the 

original manuscript. The following lines in the Introduction, Paragraph 2 have been amended 

as follows: 

“Aerosol time-of-flight mass spectrometry (ATOFMS) and other single particle mass 

spectrometry techniques have been employed in several field studies to identify point sources 

of PM2.5 including steel manufacturing, smelting, refining and power generation facilities 

(Reinard et al., 2007; Snyder et al., 2009; Liu et al., 2003; Bein et al., 2007; Pekney et al., 

2006a; Bein et al., 2006).” 

Further lines have also been added to the Introduction, Paragraph 3 as follows: 

“A detailed campaign performed in Pittsburgh, Pennsylvania, focused on the identification of 

sources of particulate matter using a single particle mass spectrometer and off-line analysis of 

high-volume and micro-orifice uniform-deposit impactor (MOUDI) samples of PM using 

inductively coupled plasma-mass spectrometry (ICP-MS) (Pekney et al., 2006a; Bein et al., 

2006; Bein et al., 2007; Pekney et al., 2006b). In that case PMF analysis was performed using 

the ICP-MS trace metal data, quantitative measurements of nitrate, sulfate and EC/OC but 

without including the single particle data, in order to apportion PM2.5. Factors were generated 

corresponding to traffic, crustal material, regional transport, secondary nitrate, cooking and 

wood burning, steel production, and a gallium-rich factor was associated with coal burning. 

Several coal-fired power stations surrounding the site were identified as point sources of 

PM2.5, with gallium identified as a possible tracer for coal combustion, although this source 

was estimated to contribute only 3% to the PM2.5 mass measured. PMF of temporal trends of 

various single particle classes generated using laser ablation mass spectrometry (LAMS) has 



been performed previously to identify sources of particulate matter in Toronto, Canada 

(Owega et al., 2004). Factors were obtained corresponding to sources of locally emitted and 

Saharan dust, road salt, wood burning, organic nitrates and aluminium-fluoride particles. 

However, no corresponding PM2.5 mass concentration or semi-continuous quantitative data 

was included or apportioned in that case.” 

 

Comment: 

In addition, there is no reference here to previous studies of ship emissions, which seems 

particularly pertinent for this work [Ault et al., 2010, Ault et al., 2009, Healy et al., 2009]. A 

more thorough literature search should be completed and integrated into the introduction. 

 

Response: 

The latter two ship emission articles were already referenced in the Results and Discussion 

section of the original manuscript. Furthermore the authors did not wish to repeat the findings 

of the recently published ship exhaust article (Healy et al., 2009). The first reference (Ault et 

al., 2010) was not published at the time of submission. However, additional lines have now 

been added to the Introduction, Paragraph 2 as follows: 

“More recently, single ship exhaust particles arising from the combustion of residual fuel oil 

have also been successfully identified and characterised using ATOFMS. Freshly emitted and 

regionally transported particles associated with this source containing internally mixed 

vanadium, nickel, iron and sulfate have been detected in Cork Harbour and in the Port of Los 

Angeles (Healy et al., 2009; Ault et al., 2009; Ault et al., 2010).” 

Also, the Results and Discussion section entitled “Source Apportionment: Shipping” has 

been greatly expanded in length and detail to incorporate a more in-depth discussion and 

literature review of the impact of in-port ship emissions on health, and the importance of 

assessing the contribution of this source as accurately as possible: 

“The shipping factor identified in this work was not identified in a previous study involving 

PMF of real-time monitoring data in Cork Harbour, due to the absence of complementary 

ATOFMS data in that case (Hellebust et al., 2010b). A contribution of 100% is observed for 

the ATOFMS Shipping class for this factor. This is expected, as these unique residual fuel oil 



combustion particles are emitted exclusively from container and liquid bulk vessels arriving 

and departing from the nearby shipping berths, with no input from other sources (Healy et al., 

2009). Factors for residual oil combustion were not observed in either the Pittsburgh or 

Toronto PMF studies where single particle instruments were employed (Pekney et al., 2006b; 

Owega et al., 2004). However a factor for residual fuel oil was observed in Riverside, 

California using PMF of ATOFMS, AMS and other semi-continuous data and attributed to 

possible shipping or refining in the Los Angeles Harbour (Eatough et al., 2008), although the 

contribution to PM2.5 mass in that case was estimated to be negligible compared to other local 

and regional sources. Residual fuel oil combustion factors are often observed in PMF studies 

that include trace metal analysis and identified using Ni and V (Godoy et al., 2009; Castanho 

and Artaxo, 2001; Kim and Hopke, 2008). However, the relative contribution of oil 

combustion particles from refining, industry, domestic heating and shipping can be difficult 

to separate (Isakson et al., 2001; Kim and Hopke, 2008; Eatough et al., 2008; Viana et al., 

2009). Although shipping traffic is estimated to contribute only 1.5% to the ambient PM2.5 

mass measured in this work, it contributes 18% to the total number of particles detected by 

the SMPS. This value is second only to traffic with a contribution of 42%. Thus it appears 

that local shipping traffic can contribute significantly to local ambient particle number in the 

size range 20-600 nm (mobility diameter) in Cork Harbour. What is important to note here is 

that while vehicular emissions are highly regulated, emissions arising from the combustion of 

residual fuel oil by ocean-going vessels are not (Fridell et al., 2008). The effect of regionally 

transported shipping emissions on air quality and health in coastal areas has come to the fore 

recently, with an estimated 60 000 deaths per annum attributed to this source, a number 

expected to rise over the next decade with an increase in global shipping activity (Corbett et 

al., 2007). A recent modelling study estimated that ship emissions could soon become one of 

the major sources of air pollution in Southern California, with some regions subject to a 

threefold increase in contribution to ambient PM2.5 mass concentrations from this source 

between 2002 and 2020 (Vutukuru and Dabdub, 2008). However, in-port ship emissions also 

need to be considered, in particular for cities with substantial shipping activity (Symeonidis et 

al., 2004; Ault et al., 2009; Tzannatos, 2009; Viana et al., 2009; Pey et al., 2009; Pey et al., 

2010). A recent study involving PMF of trace metal and EC/OC data estimates the 

contribution of shipping to PM2.5 mass concentrations in Melilla Spain at 14% using V/Ni 

ratios (Viana et al., 2009). PMF of similar data collected at five sites in Seattle, estimates a 

contribution to PM2.5 mass of 4-6% from residual oil combustion, with the Port of Seattle 

identified as the most likely source (Kim and Hopke, 2008). Although the relative 



contribution of shipping to ambient PM2.5 is lower in our case, freshly emitted ship exhaust 

particle numbers reside predominantly in the ultrafine mode (Fridell et al., 2008; Healy et al., 

2009; Ault et al., 2010), and epidemiological research suggests that fine or ultrafine particle 

number concentrations may represent a more accurate metric than PM2.5 mass concentrations 

when estimating the health impacts of anthropogenic particulate sources (Ibald-Mulli et al., 

2002; Kreyling et al., 2006; Hoek et al., 2010). Several recent articles have focused on 

estimating the regional and global impact of emissions from shipping (Eyring et al., 2007; 

Petzold et al., 2008; Jalkanen et al., 2009; Marmer et al., 2009; Viana et al., 2009; Pey et al., 

2010), highlighting the need for corresponding source apportionment of particulate matter in 

locations impacted by this source. Thus, knowledge of the relative contribution of ship 

exhaust particles of unregulated composition to air quality in a port environment is of 

particular importance considering the growth of shipping activity worldwide and the expected 

resultant effect on human health (Winebrake et al., 2009; Dalsøren et al., 2010).” 

 

Comment: 

Introduction, Last Paragraph: While it is useful that ATOFMS mass spectral signatures were 

obtained for coal, peat, and wood combustion, ATOFMS source signatures have been 

measured previously for coal and wood combustion [Gard et al., 1997, Liu et al., 2003, Silva 

et al., 1999]. Section 3.2.1: Previous measurements of the ATOFMS source signature of coal 

combustion [Liu et al., 2003] should be compared to these results. 

 

Response: 

Although single particles attributed to coal-fired power generation facilities have been 

detected by single particle mass spectrometry in previous studies (Liu et al., 2003; Pekney et 

al., 2006a; Bein et al., 2007), and attributed to possible domestic combustion in two studies 

(Guazzotti et al., 2003; Mira-Salama et al., 2008), the single particle mass spectra observed in 

this work are quite different. In the study of Liu et al., particles generated in local coal-fired 

power facilities in Atlanta, GA were similar to those observed here except for additional 

signals for lithium and iron, and a substantially lower signal for sulfate. In the comprehensive 

study of Bein et al. (2007), gallium-containing particles internally mixed with sodium, 

potassium, silicon, iron and lead detected in Pittsburgh, Pennsylvania were attributed to local 



coal-fired power generation facilities. Single particles detected by ATOFMS during the 

Indian Ocean Experiment (INDOEX) that contained lithium and potassium were attributed to 

possible domestic and small-scale industrial coal combustion (Guazzotti et al., 2003). 

However, no discernible signal for gallium or lithium is detected in the coal combustion 

particle mass spectra in this work, indicating that while these may represent appropriate 

tracers for coal-fired power generation in Pittsburgh and Atlanta respectively (Bein et al., 

2007; Liu et al., 2003), they are not necessarily useful tracers for domestic combustion of 

coal of a different origin. The single particles attributed to domestic coal burning by Mira-

Salama et al. (2008) in Poland are also very different to those sampled in our case as no 

signal was observed for sulfate in that study. Varying origin of coal, and possibly conditions 

of combustion, may result in very different single particle mass spectra, and thus the 

collection of “standard” single particle mass spectra generated from the combustion of locally 

sourced fuels in a domestic stove proved invaluable to the correct assignment of these 

particles in the ambient dataset in our case. The relative intensities of sodium, potassium, 

carbon/hydrocarbon and sulfate ions were particularly useful, and the similarity of the 

“standard” particles and ambient particles is very strong as shown in Figure 1. The recurrent 

daily temporal variability and high correlation with off-line measurements of organic tracers 

in this work provide further evidence to confirm the source. Thus, “standard” particles should 

be generated or measured where possible in single particle studies.  

Several additions including appropriate references have been made to section “ATOFMS 

particle classes: Coal, Peat and Wood”, paragraph 1 as follows: 

“Particles attributed to coal-fired power generation facilities have been detected by single 

particle mass spectrometry in previous studies (Liu et al., 2003; Pekney et al., 2006a; Bein et 

al., 2007), however the single particle mass spectra observed in this work are quite different. 

In the study of Liu et al., particles generated in local coal-fired power generation facilities in 

Atlanta, GA were similar to those observed in this manuscript except for additional signals 

for lithium and iron, and a substantially lower signal for sulfate. In the comprehensive study 

of Bein et al. (2007), gallium-containing particles internally mixed with sodium, potassium, 

silicon, iron and lead detected in Pittsburgh, Pennsylvania were attributed to coal-fired power 

generation facilities. Particles measured by ATOFMS in an aerosol outflow from Asia that 

were assigned to coal burning exhibited different spectra to those observed in this work, 

sharing many of the same positive ions but with an additional signal for lithium (Guazzotti et 

al., 2003). However no discernible signal for lithium or gallium is detected in the coal 



combustion particles detected in this work (Fig. 1), indicating that while these metals may 

represent useful tracers for locally mined coal (Bein et al., 2007), they are not necessarily 

useful tracers for domestic combustion of coal of a different origin. Single particle mass 

spectra generated with a single particle analysis and sizing system (SPASS) containing a 

signal for carbon but not for sulfate, were attributed to a fresh domestic coal combustion 

source in a recent study performed in Krakow, Poland (Mira-Salama et al., 2008). In that 

case, however, no combustion spectra were generated to confirm the source. In this work, a 

strong signal for sulfate was consistently observed even in freshly emitted coal combustion 

particles, demonstrating the value of collecting “standard” mass spectra where possible (Fig. 

1).” 

A reference to the article of (Gard et al., 1997) which also describes wood burning mass 

spectra has been added to the reference of Silva et al. in the section “ATOFMS particle 

classes: Coal, Peat and Wood”, paragraph 3, as follows: 

“Similar ATOFMS mass spectra have been observed for particles arising from the 

combustion of various plant species indigenous to California (Gard et al., 1997; Silva et al., 

1999)” 

 

Comment: 

Figures 4 & 5: Due to the large temporal variability of the “coal-amm-nit” and “peatnit” 

particle classes (Figure 5), it seems deceiving to report average diurnal trends in 

Figure 4. Please address this. Also, why are the other particle types shown in Figure 4 

not shown in Figure 5? 

 

Response: 

In this case the authors did not intend to suggest that the nitrated subclasses appear in 

significant numbers on each day of the campaign, but it is difficult to illustrate the strong 

dependence these species have on time of day when they do appear if using Fig. 5 alone. 

While these particles are observed at the highest levels during four separate low wind speed 

events (Fig. 5), when present they exhibit a strong dependence on time of day that the authors 

wished to illustrate. The temporal shift between nitrated and non-nitrated subclasses would 

not be clearly seen in Fig. 5 and this is the reason for the inclusion of Fig. 4. The particle 



classes that are presented in Fig. 4 and not presented in Fig. 5 are the non-nitrated subclasses; 

freshly emitted coal, peat and wood combustion particles. These species do follow a very 

reproducible daily pattern, as illustrated in Fig. 4, but were not included in Fig. 5 as the plot 

would be too complex, and the relationship between wind speed and particle counts would 

not be as easy to identify. 

 

Comment: 

Page 1048, lines 7-10: Why is adsorption, condensation, or hydrolysis expected to be the 

dominant processes? Please support this further. Previous studies have shown conversion 

from KCl to K2SO4 and KNO3 during biomass burning plume aging, for example 

[Gaudichet et al., 1995, Li et al., 2003, Yokelson et al., 2009].  

Page 1049, lines 3-4: It seems important to note that Figure 4 shows the “non-nitrated”, 

fresh subclasses to peak at night, as well. This point should be considered in the discussion of 

the nitrate formation, particularly since aged sea salt had a similar temporal pattern 

compared to fresh sea salt (page 1050, lines 13-15). 

 

Response: 

This is an interesting point. It is difficult to determine what fraction of the nitrate uptake is 

through heterogeneous reaction of KCl and NaCl salts with nitric acid to release gas phase 

HCl (Gard et al., 1998; Li et al., 2003), and what fraction is formed through hydrolysis of 

N2O5 or NO3 at particle surfaces (Mogili et al., 2006; Wang et al., 2009). Although single 

particle analysis of biomass burning particles of increasing age sampled in southern Africa 

clearly demonstrates the replacement of chloride with nitrate and sulfate, probably through 

reaction with nitric and sulfuric acid respectively, the relative humidity was quite low in that 

case (20-40%) (Li et al., 2003). More recently, similar depletion of particle phase chlorine 

has been observed in biomass burning particles measured by AMS arising from biomass 

burning in the Yucatan region of Mexico (Yokelson et al., 2009). The nitrated wood-burning 

particle class observed in this work is defined by dramatically higher signals for nitrate when 

compared to the fresh wood-burning class, but very little difference is observed in the signal 

for sulfate, indicating that while heterogeneous reaction with nitric acid may play a part, 

reaction with sulfuric acid is of comparatively little importance. The signals for K2Cl+ (m/z 

113, 115) and Cl- (m/z -35, -37) are also lower in the aged wood-nit particles, by a factor of 

approximately 2, but these species remain present and thus chloride does not appear to be 

completely displaced overnight, although this reaction may proceed further downwind of the 



sampling site as particles are dispersed when wind speed increases in the early morning 

following each episode (Fig. 5). It is possible that both mechanisms play a part in nitrate 

uptake in the case of this study. There is a dramatically higher alkali metal concentration in 

wood particles compared to coal particles, with peat particle alkali metal concentrations lying 

in between the two (Figs. 1-3). Thus heterogeneous reaction with nitric acid to displace 

chloride should be most relevant for wood burning particles. In fact, as noted by Reviewer 1, 

there is little or no delay in the appearance of the nitrated wood burning particle class 

compared to the fresh counterpart, a trend also observed for the fresh and nitrated sea salt 

classes, and although the authors originally attributed this to the comparatively high 

hygroscopicity of wood burning particles accelerating N2O5 and NO3 hydrolysis, it is indeed 

likely that rapid heterogeneous reaction with nitric acid may also be responsible (Gard et al., 

1998; Li et al., 2003). However, the obvious delay in uptake of nitrate in the case of coal and 

peat burning particles (Fig. 4) indicates that their relatively low hygroscopicity is inhibiting 

the uptake of water and subsequent hydrolysis of N2O5 or NO3 at particle surfaces, a 

humidity-dependent process that has been previously observed for carbonaceous particles in 

Shanghai (Wang et al., 2009).  

 

In order to address this issue, the following lines have been removed from the manuscript 

“While it may be possible that some sodium and potassium cations on coal, peat and wood 

combustion particle surfaces are available for heterogeneous reaction with gas phase nitric 

acid, simple uptake through adsorption, condensation or N2O5/NO3 hydrolysis are expected to 

be the dominant processes.” 

 

Additional discussion has been added to the manuscript in the “ATOFMS particle classes: 

Coal, Peat and Wood” section, paragraph 4 as follows: 

“Single particle analysis of biomass burning particles of increasing age sampled in southern 

Africa clearly demonstrates the replacement of chloride with nitrate and sulfate, probably 

through reaction with nitric and sulfuric acid respectively, although the relative humidity was 

relatively low in that case (20-40%) (Li et al., 2003). More recently, similar depletion of 

particle phase chlorine has been observed in biomass burning particles measured by AMS 

arising from biomass burning in the Yucatan region of Mexico (Yokelson et al., 2009).” 

 

The following addition has been made to the “ATOFMS particle classes: Coal, Peat and 

Wood” section, paragraph 5:  



“However, heterogeneous chemistry may also play a role in this processing. There is little or 

no delay in the appearance of the nitrated wood burning particle class compared to the fresh 

counterpart, a trend also observed for the fresh and nitrated sea salt classes. The Wood-nit 

particle class is defined by dramatically higher signals for nitrate when compared to the 

Wood-fresh class, but very little difference is observed in the average signal for sulfate 

between the two classes, indicating that while heterogeneous reaction with nitric acid may 

play a part, reaction with sulfuric acid is of comparatively little importance. The average 

signals for K2Cl+ (m/z 113, 115) and Cl- (m/z -35, -37) are lower in the Wood-nit particle 

class compared to Wood-fresh, by a factor of approximately 2, but these species remain 

present and thus chloride does not appear to be completely displaced overnight, although this 

reaction may proceed further downwind of the sampling site as particles are dispersed when 

wind speed increases in the early morning following each episode (Fig. 5). It is possible that 

both heterogeneous reaction and N2O5/NO3 hydrolysis play a part in nitrate uptake in the case 

of wood burning particles. There is a dramatically higher alkali metal concentration in wood 

particles compared to coal particles, with peat particle alkali metal concentrations lying in 

between the two (Figs. 1-3). Thus heterogeneous reaction with nitric acid should be most 

relevant for wood burning particles. However, the obvious delay in uptake of nitrate in the 

case of coal and peat burning particles (Fig. 4) indicates that their relatively low 

hygroscopicity is inhibiting the uptake of water and that the subsequent hydrolysis of N2O5 or 

NO3 at particle surfaces is the dominant mechanism for nitrate uptake for these particle 

classes (Wang et al., 2009).” 

 

Comment: 

Section 3.2.3: Comparison with Ault et al. [2010, 2009] should also be made for the 

source signature of the ship emissions. 

 

Response: 

The authors’ previous article (Healy et al., 2009) involves the description of this source 

signature in detail, including comparison with the findings of Ault et al. (2009). However the 

more recent article of Ault al. (2010) was not published when the original manuscript was 

submitted. The “ATOFMS particle classes: Shipping” section has been rewritten and 

expanded to include the findings of Ault et al. (2010) as follows: 

 



“Shipping particles exhibited a very strong dependence on west-south-westerly wind 

direction but little or no dependence on time of day and accounted for approximately 4% of 

the particles ionised. These particles contain tracers for residual fuel oil and were observed in 

short, sharp events that could be directly attributed to ships entering and departing from the 

nearby shipping berths. This was confirmed through comparison with the Port of Cork 

shipping logs as outlined in a previous article (Healy et al., 2009). The positive ion mass 

spectra are characterised by organic and elemental carbon (m/z 12, [C]+; 27, [C2H3]+; 36, 

[C3]+; 37; [C3H]+), sodium (m/z 23, [Na]+), calcium (m/z 40, [Ca]+), iron (m/z 56, [Fe]+), 

vanadium (m/z 51, [V]+; 67, [VO]+) and nickel (m/z 58, [Ni]+) ions. Negative ion mass 

spectra contain signals for elemental carbon (m/z -12, [C]-; -24, [C2]-; -36, [C3]-; -48, [C4]-), 

carbon-nitrogen adducts (m/z -42, [CN]-) and sulfate (m/z -64, [SO2]-; -80, [SO3]-; 81, 

[HSO3]-; -97, [HSO4]-) ions (Fig. 6). These spectra are very similar to those recently 

measured using ATOFMS and attributed to ship exhaust in the Port of Los Angeles, however 

in that case a second class of ship exhaust soot particles was also identified that did not 

contain residual fuel oil tracers such as vanadium and nickel and attributed to the combustion 

of distillate fuel (Ault et al., 2009; Ault et al., 2010). Particles containing vanadium were 

found to be relatively sulfate-enriched, indicating that vanadium or other transition metal 

impurities found in residual fuel oil combustion particles may catalyse the oxidation of SO2 

(Ault et al., 2010). Residual fuel oil combustion particles were detected for every ship plume 

measured in this work (Healy et al., 2009).”  

 

Comment: 

Sections 3.2.4 and 3.2.5: It is suggested to discuss more clearly the chemical and size 

differences between the EC particle types. These sections should be reorganized to 

make these differences clearer and to incorporate discussion of additional comparisons 

with previous ATOFMS source studies of vehicle emissions [Shields et al., 2007, Silva 

and Prather, 1997, Sodeman et al., 2005, Suess and Prather, 2002, Toner et al., 2008, 

Toner et al., 2006]. Comparison with Vogt et al. [2003] may also be appropriate. 

 

Response: 

The discussion regarding particle classes known to arise from vehicular emission was 

purposefully kept to a minimal length as the authors believe that the findings do not break 

any new ground scientifically, are in agreement with the previous single particle studies 

referenced in the manuscript, and serve only to confirm the local vehicular traffic source. 



Nevertheless, additional detail regarding particle size distributions has now been included in 

the “ATOFMS particle classes” sections, and to improve the clarity of the revised manuscript 

these sections are now rearranged as follows (EC-MSA has been assigned its own section due 

to the inclusion of a more thorough discussion): 

Coal, Peat and Wood 

Sea salt 

Shipping 

Elemental carbon and traffic classes 

EC-MSA 

ECOC and Oligomer 

The articles of Toner et al. (2006, 2008) regarding single particles arising from vehicular 

exhaust are already discussed briefly in the manuscript. However additional references have 

now been included as follows: 

 

Section “ATOFMS particle classes: Elemental carbon and traffic classes”, paragraph 2: 

“Ca-traffic positive ion spectra are characterised by signals for calcium (m/z 40, [Ca]+) and 

calcium oxide/hydroxide adducts (m/z 56, [CaO]+; 57, [CaOH]+; 96, [Ca2O]+), and negative 

ion mass spectra contain signals for nitrate (m/z -46, [NO2]-; -62, [NO3]-), phosphate (m/z -63, 

[PO2]-; -79, [PO3]-; -95, [PO4]-) and sulfate (m/z -81, [HSO3]-; -97, [HSO4]-). Similar single 

particle mass spectra have also previously been detected by ATOFMS in heavy duty diesel 

vehicle dynamometer studies (Suess and Prather, 2002; Shields et al., 2007), and particles 

containing internally mixed calcium, phosphate, and elemental carbon, along with a wide 

range of various other internally mixed particle classes, have been detected by ATOFMS in a 

light duty vehicle dynamometer study (Sodeman et al., 2005).” 

 

Section “ATOFMS particle classes: Elemental carbon and traffic classes”, paragraph 3: 

Negative ion spectra contain signals for elemental carbon (m/z -12, [C]-; -24, [C2]-;...-84, [C7]-

) and a relatively low response for sulfate (m/z -97, [HSO4]-) (Fig. 6). Similar particles have 

been observed previously by ATOFMS in freshly emitted vehicle exhaust both in laboratory 



dynamometer studies and at a roadside site (Toner et al., 2006; Toner et al., 2008; Shields et 

al., 2007). 

Section “ATOFMS particle classes: Elemental carbon and traffic classes”, paragraph 6: 

“Similar single particle mass spectra were collected using the LAMPAS-2 instrument both at 

a rural site, and a site next to an Autobahn in Germany, and attributed to diesel exhaust (Vogt 

et al., 2003).” 

 

Comment: 

Page 1052, last paragraph: While it is noted in Figure 8 that m/z -95 may be attributed 

to methanesulfonate, this is not discussed throughly and should be, particularly given 

the marine origin of the air mass. Without the presence of m/z -79 or m/z -63 (confirming 

the presence of phosphate), it is speculative to call these particles “EC-phos-aged”. 

 

Based on the temporal trend in Figure 9, it would seem as though there was a local 

background of these particles as well. 

 

Response: 

This is a very interesting point, and we would like to thank the reviewer for these comments. 

Although m/z -95 was attributed to either phosphate or methanesulfonate (MSA) in the 

original manuscript, it seems more likely that MSA is the correct assignment in light of a 

recently published article regarding the identification of a variety of single particle classes 

that contain this species in Riverside, California (Gaston et al., 2010). The EC-phos-fresh and 

EC-phos-aged classes in this work could not be separated by the K-means algorithm due to 

the strong similarity of their mass spectra and were thus originally observed as a single 

bimodal class. A cut-off of 300 nm (aerodynamic diameter) was chosen. Particles smaller 

than 300 nm were termed EC-phos-fresh (now shortened to EC-phos), while those larger than 

300 nm were originally termed EC-phos-aged (now renamed EC-MSA in the manuscript). 

However, this is not a very refined separation, because in reality the 2 modes overlap and 

what appears to be the minor local background referred to by Reviewer 1 in Fig. 9 arises as a 

result of this. The mass spectra differ only in that EC-phos spectra have a peak at m/z -79 

confirming phosphate, while EC-MSA spectra do not contain this peak, but instead exhibit a 

peak at m/z -95 corresponding to MSA, a peak at m/z -89 corresponding to oxalate and a 

more intense signal for sulfate. MSA is a well established tracer for marine phytoplankton 



activity (Andreae and Crutzen, 1997; Hallquist et al., 2009; Gaston et al., 2010), and the 

presence of this species supports the theory that the EC-MSA particle class has undergone 

transport over at least part of the Atlantic Ocean. In the study of Gaston et al. (2010), 

vanadium-containing particles were observed to be enriched with MSA relative to the other 

MSA-containing single particle classes that originated from coastal California, indicating that 

vanadium might represent a catalyst for MSA production. Interestingly, none of the other 

particle classes observed in this work are internally mixed with MSA, except possibly the sea 

salt class which appears to have an artificially higher relative intensity at m/z -95 than 

expected from the isotopic distribution of NaCl2
-, although this is difficult to determine 

definitively. However, a wide range of inorganic and carbonaceous particle classes 

transported from the coast of California were found to be internally mixed with MSA by the 

time they were detected by ATOFMS in Riverside (Gaston et al., 2010). This again reinforces 

the theory that all other carbonaceous particle classes observed in this work arise from local 

sources, except EC-MSA. Further discussion and details of appropriate additions to the 

manuscript are outlined in the response to the next comment. 

 

Comment: 

Page 1053, lines 25-28: What is the likelihood of vehicle exhaust particles surviving 

transport to the surface in Ireland from North America following 5 days of transport? 

 

Response: 

This point is related to the previous comment and reply. While the authors agree that the 

likelihood of particles originating in North America undergoing intercontinental transport 

(ICT) to Ireland while surviving deposition processes is low, it is still possible, but is 

expected to have a negligible impact upon air quality (D. Ceburnis, personal communication, 

2010). While there are relatively few direct measurements of particles from North America 

arriving at sites in Europe (Holloway et al., 2003), ICT of North American black carbon and 

forest fire particles to Ireland and Western Europe respectively, and ICT of Saharan dust 

particles to North America have been previously reported (Jennings et al., 1996; Forster et al., 

2001; Singh et al., 2006; Owega et al., 2004). Direct advection of ozone from North America 

to Ireland has also been reported, contributing up to 20 ppbv during ICT events (Li et al., 

2002). This source assignment has been made by the authors through a process of 



elimination. EC-MSA is the only carbonaceous particle class that does not exhibit the 

temporality of local sources. Instead the temporality is strongly associated with a sustained 

shift in air mass origin (Fig. 10). EC-MSA is the only carbonaceous particle class containing 

MSA, a tracer for marine phytoplankton emissions (Fig. 8) (Gaston et al., 2010). Therefore 

the remaining sources of these particles are expected to be either oceanic activity or 

anthropogenic sources in the Atlantic Ocean or further west. Biological marine activity was 

ruled out as a source due to the presence of elemental carbon ions typically associated with 

combustion processes in the negative ion mass spectra, however biological activity is 

expected to be the source of the internally mixed MSA (Fig. 8). Even though the calculated 

HYSPLIT back-trajectories included in the manuscript are expected to become less reliable 

when projected over 5 days, assignment of EC-MSA particles to anthropogenic sources in 

North America should not be ruled out (Jennings et al., 1996; Forster et al., 2001; Singh et 

al., 2006), although admittedly a specific source or source region cannot be comprehensively 

identified. 

A new section entitled “ATOFMS particle classes: EC-MSA” has been written to address this 

point and the previous point raised by the reviewer: 

The following lines have been removed from the manuscript: 

“However, a strong signal is observed instead at m/z -95, possibly due to [PO4]-, suggesting 

that EC-phos-aged particles may represent an oxidised or aged form of EC-phos-fresh 

particles. When compared to EC-phos-fresh mass spectra, a much higher signal is observed 

for sulfate (m/z -97, [HSO4]-) relative to the negative elemental carbon ions and an additional 

signal corresponding to oxalate (m/z -89, [COOHCOO]-) is also present. Assuming that both 

EC-phos-fresh and EC-phos-aged particles are generated in the same way” 

“Another possible assignment for the fragment at m/z -95 ion is methanesulfonate [CH3SO3]- 

(Silva and Prather, 2000). Methylsulfonic acid aerosol can be formed through the oxidation 

of biogenic dimethylsulfide emitted from ocean surfaces (Andreae and Crutzen, 1997; 

Hallquist et al., 2009), and may have been accumulated by EC-phos-aged particles during 

transatlantic transport. This class may thus represent vehicle exhaust particles originally 

emitted in North America or Canada that have undergone oxidation and accumulation 

processes in transit before arriving at the Cork Harbour site.” 

The new “ATOFMS particle classes: EC-MSA” section now reads: 



“EC-MSA particles are approximately 300-1000 nm in diameter, peaking at 550 nm, account 

for approximately 1.5% of the particles ionised, and have very similar positive ion mass 

spectra to EC-phos particles but do not contain any signal for [PO3]- in the negative ion mode 

(Fig. 8). However, a strong signal is observed instead at m/z -95, assigned to 

methanesulfonate (MSA) (Silva and Prather, 2000; Gaston et al., 2010). MSA is a well 

established tracer for marine phytoplankton activity (Andreae and Crutzen, 1997; Hallquist et 

al., 2009; Gaston et al., 2010), and indicates that the EC-MSA particle class has undergone 

transport over at least part of the Atlantic Ocean. Interestingly, none of the other particle 

classes observed in this work are internally mixed with MSA, except possibly the Sea salt 

class which appears to have a higher relative intensity at m/z -95 than expected from the 

isotopic distribution of NaCl2
- (Fig. 6). Although a wide range of inorganic and carbonaceous 

particle classes transported from the coast of California were found to be internally mixed 

with MSA by the time they were detected by ATOFMS in Riverside (Gaston et al., 2010), 

EC-MSA is the only carbonaceous single particle class in this work that contains this species. 

In the case of Gaston et al., vanadium-containing particles were observed to be enriched with 

MSA relative to the other classes, indicating that vanadium might represent a catalyst for 

MSA production. However, vanadium-rich shipping particles observed in this work were not 

internally mixed with MSA, presumably because they are emitted so close to the sampling 

site (400-600 m) (Healy et al., 2009). EC-MSA spectra also exhibit an intense signal for 

sulfate (m/z -97, [HSO4]-) relative to the negative elemental carbon ions and an additional 

signal corresponding to oxalate (m/z -89, [COOHCOO]-). This suggests that uptake of sulfate 

and oxalic acid may have occurred during transport, a process previously observed for 

transported mineral dust particles in Asia (Sullivan and Prather, 2007). Oxalic acid has also 

been detected in single particles arising from biomass and fossil fuel combustion processes in 

Mexico City and Shanghai, and may be directly emitted at source or formed through the 

oxidation of biogenic and anthropogenic volatile organic compounds (VOCs) in the gas or 

aqueous phases (Moffet et al., 2008; Carlton et al., 2007; Hallquist et al., 2009; Yang et al., 

2009). EC-MSA particles do not appear in any significant number until the last 4 days of the 

campaign (24-28 August 2008), during which elevated counts are consistently observed as 

shown in Fig. 9. These particles do not exhibit any dependence on time of day but are 

strongly dependent on west-southwesterly wind direction. 5 day air mass back-trajectories, 

calculated using the HYSPLIT dispersion model (Draxler and Rolph, 2003), demonstrate that 

air masses arriving at 500, 1000 and 2000 m above the site during this 4 day period originated 

in North America (Fig. 10, right panel), while for the rest of the campaign (7-23 August 



2008) similar 5 day back-trajectories show that air masses consistently originated in the 

North Atlantic and Arctic Oceans (Fig. 10, left and middle panels). Back-trajectories for air 

masses arriving at 100 and 200 m above ground level were also calculated yielding similar 

results. While it seems unlikely that anthropogenic particles would survive deposition 

processes during intercontinental transport over the Atlantic Ocean, transport to Europe of 

black carbon and boreal forest fire particles and anthropogenic trace gases including O3, CO, 

NOy and VOCs originating in North America has been previously reported (Jennings et al., 

1996; Forster et al., 2001; Singh et al., 2006; Stohl et al., 2003).” 

 

Comment: 

Page 1056, lines 20-21: What is the significance of an error of “100”? What does this 

mean and how specifically was it chosen? 

 

Response: 

In PMF, each data point is weighted according to its associated uncertainty. For the variables 

in question, EC-oil and EC-domestic, the average uncertainty calculated as described on page 

1043, excluding the data points mentioned on page 1056, was approximately 2 particles. By 

setting the uncertainty to 100 we ensure that these data points do not influence the solution 

because they are down-weighted significantly compared to the other points. The PMF 

solution seeks to minimise an object function which is a function of the prediction error and 

the measurement uncertainty. Thus, the higher the uncertainty, the less influence the 

prediction error for the data point has upon the solution (see e.g. (Paatero, 1999)). 

 

The following sentence has been included in section 2.5, paragraph 2: 

“The higher the uncertainty given for a specific data point, the less influence it has on the 

solution (Paatero, 1999).” 

 

The following sentence has been added to the section “Source Apportionment”, paragraph 1: 

“This is an increase of a factor of 50 compared to the average uncertainty for those two 

variables. This ensures that these particular data points do not exert any influence on the 

resulting factors resolved, as they will be significantly down-weighted compared to the 

remaining measurements (Paatero, 1999).”  

 



Comment: 

Page 1057, lines 1-10: How does this solution compare with previous PMF studies? 

In particular, comparison with other single-particle mass spectrometry studies utilizing 

PMF, including Owega et al. [2004] and Pekney et al. [2006], should be incorporated 

in this manuscript with more detailed discussion of the source results. 

 

Response: 

The studies of Pekney et al. (2006) and Owega et al. (2004) both differ from the methodology 

described in this manuscript as outlined in the response to some of the earlier comments. The 

former study involved using single particle data to help confirm sources identified using PMF 

analysis of off-line ICP-MS results, but the single particle data was not included in the 

analysis. The latter study involved PMF analysis of single particle mass spectra only, without 

including or apportioning any other semi-continuous quantitative data. Direct comparisons to 

these studies, and other PMF analyses of urban PM2.5 composition, have been included in the 

manuscript as follows: 

 

Additional detail has been added to the manuscript Introduction as follows: 

“A detailed campaign performed in Pittsburgh, Pennsylvania, focused on the identification of 

sources of particulate matter using a single particle mass spectrometer and off-line analysis of 

high-volume and micro-orifice uniform-deposit impactor (MOUDI) samples of PM using 

inductively coupled plasma-mass spectrometry (ICP-MS) (Pekney et al., 2006a; Bein et al., 

2006; Bein et al., 2007; Pekney et al., 2006b). In that case PMF analysis was performed using 

the ICP-MS trace metal data, quantitative measurements of nitrate, sulfate and EC/OC but 

without including the single particle data, in order to apportion PM2.5. Factors were generated 

corresponding to traffic, crustal material, regional transport, secondary nitrate, cooking and 

wood burning, steel production, and a gallium-rich factor was associated with coal burning. 

Several coal-fired power stations surrounding the site were identified as point sources of 

PM2.5, with gallium identified as a possible tracer for coal combustion, although this source 

was estimated to contribute only 3% to the PM2.5 mass measured. PMF of temporal trends of 

various single particle classes generated using laser ablation mass spectrometry (LAMS) has 

been performed previously to identify sources of particulate matter in Toronto, Canada 

(Owega et al., 2004). Factors were obtained corresponding to sources of locally emitted and 

Saharan dust, road salt, wood burning, organic nitrates and aluminium-fluoride particles. 



However, no corresponding PM2.5 mass concentration or semi-continuous quantitative data 

was included or apportioned in that case.” 

 

The Results and Discussion has been expanded as follows: 

The “Source Apportionment: Traffic” section now reads: 

“The Traffic factor contributes the most to the ambient PM2.5 mass (23%) and contributes 

significantly to particle number (42%), EC mass (43%), and the Ca-traffic and EC-phos 

ATOFMS particle classes (83% and 82% respectively). The high contributions to the 

ATOFMS classes indicate that their classification as traffic exhaust particles is correct. The 

contribution to EC-traffic is lower at 59%, and the Domestic solid fuel combustion factor 

contributes 25% to the EC-traffic class. This can be explained by the similarity of EC-traffic 

and EC-domestic negative ion mass spectra (Figs. 6 and 8). During the clustering procedure, 

this similarity leads to an incomplete separation of particles from two different sources and 

although the multiple other single particle classes arising from these sources can be isolated 

efficiently these two classes cannot be completely separated using the methodology 

described. However, the subsequent PMF analysis enables this limitation to be observed, 

highlighting the value of combining these two approaches. The high traffic contribution to 

PM2.5 in this work demonstrates the dominance of local sources and is comparatively higher 

than that observed in the Pittsburgh study (11%), although this can be explained by the 

dominance of regionally transported PM2.5 in that case (Pekney et al., 2006b). Traffic is 

typically a dominant factor in PMF studies of urban PM2.5 (Castanho and Artaxo, 2001; 

Godoy et al., 2009; Mugica et al., 2009).” 

 

The “Source Apportionment: Power Generation” section now reads: 

“The Power generation factor represents a source which would not have been identified by 

ATOFMS particle classification without PMF analysis, and exhibits variable contributions of 

16%, 18% and 40% to OC mass, EC mass and sulfate mass respectively. This factor is 

estimated to contribute 11% to the measured PM2.5 mass. This value is relatively high 

compared to the 3% contribution of coal-fired power generation to PM2.5 mass in Pittsburgh 

(Pekney et al., 2006b). A coal-fired power generation facility lies to the southeast of the 

sampling site, directly across the harbour and explains the relatively high contribution to the 

ATOFMS Coal class (30%) (Hellebust et al., 2010b). A high contribution to the ECOC 

particle class is also observed (69%), which indicates that this class is accounted for almost 

exclusively by the Long-range transport and Power generation factors. A contribution of 35% 



to the EC-background class is observed, although this class is distributed among several other 

factors suggesting input from every combustion source.” 

 

The “Source Apportionment: Shipping” section has been greatly expanded to include a more 

detailed comparison with previous PMF studies as outlined above. 

 

Comment: 

Page 1058, lines 1-2: What chemical species is proposed that would not be detected? 

Biological material has been previously detected by single-particle mass spectrometry 

using 266 nm radiation for laser desorption/ionization [Gaston et al., 2010, Pratt et al., 

2009, Russell, 2009]. 

Page 1058, lines 2-7: This comparison of previous results by Hellebust et al. should 

be expanded in this manuscript given the similarity of the studies. 

 

Response: 

MSA-containing particles have been observed in previous single particle studies as 

referenced in the manuscript, and the possibility of undetected particles was suggested 

because there is a contribution to OC mass from the marine factor. However, MSA-

containing particles are observed in this work, and it is possible that there is an MSA 

contribution in the sea salt spectra as mentioned above and illustrated in Fig. 6. Therefore the 

following lines have been removed from the manuscript: 

“There is no additional ATOFMS class that is covariant with sea salt, suggesting that the 

instrument is unable to detect these particles. This could be due to the absence of any 

chemical species that can absorb the wavelength of the UV laser (266 nm).” 

  

Although this work and the previous article of Hellebust et al. (2010b) shared a common goal 

of source identification of PM2.5, the findings reported here are far more detailed and 

highlight the advantages of combining single particle mass spectrometry with PMF. The 

previous article was focused on the applicability of using real-time measurements of trace 

gases, EC/OC, particulate sulfate and PM2.5 mass with PMF analysis to estimate the relative 

input of major local sources of PM2.5 (Hellebust et al., 2010b). This work is focused on the 

investigation of single particle composition in an in-port urban environment. New findings 

regarding sources of PM2.5 including shipping traffic and possible ICT have been made 



possible, as knowledge of single particle mixing state is a powerful tool when separating the 

input from various anthropogenic processes. The “Source Apportionment: Marine” section 

has been amended and the previous results of Hellebust et al. (2010b) are expanded upon as 

follows: 

“The Marine factor contributes the most to the ATOFMS Sea salt class as expected (86%), 

and contributes 14% to the PM2.5 mass. Interestingly, this factor also has the second highest 

contribution to OC mass (20%), indicating that biological activity in the Atlantic Ocean is 

contributing to particulate matter in Cork Harbour. There is no additional ATOFMS class that 

is covariant with sea salt, however there may be a contribution from internally mixed MSA in 

the sea salt mass spectra at m/z -95 (Fig. 6). MSA has recently been detected internally mixed 

with several types of carbonaceous and inorganic single particle classes in California (Gaston 

et al., 2010). This factor was not observed in a previous study using both principal component 

analysis (PCA) and PMF on semi-continuous data from the same site, but without ATOFMS 

particle speciation (Hellebust et al., 2010b). That study involved using cost-effective 

measurements of NO, NO2, O3, SO2, EC/OC, SO4
2- and PM2.5, in combination with temporal 

and wind averaging to estimate major sources of PM2.5 in Cork Harbour. The data was 

collected over a longer period (May-August 2008), and only three factors corresponding to 

traffic, domestic combustion and power generation were identified and estimated to 

contribute 19%, 14% and 31% to the measured PM2.5 mass respectively. The absence of 

single particle composition and mixing state data led to a far less refined source 

apportionment in that case. The contribution of domestic solid fuel combustion and power 

generation to the measured PM2.5 mass in this work are lower, as expected considering the 

introduction of three new factors (Table 3). The introduction of additional factors is 

analogous to the work of Eatough et al. (2008), who also observed additional factors when 

ATOFMS and AMS datasets were added to existing real-time monitoring data.” 

 

Comment: 

Page 1060, lines 22-24: The reasoning for biogenic SOA and crustal dust as missing 

ATOFMS particle types is not well supported and should be discussed further. The 

authors are directed to previous cases of missing particles (likely pure ammonium sulfate), 

where light absorption and scattering were utilized to identify these particles that 

were not chemically analyzed [Spencer et al., 2008, Wenzel et al., 2003]. This conclusion 

should be examined further and reconsidered. 

 



Response: 

While pure ammonium sulfate is typically the most important “missing” single particle type 

in ATOFMS field studies (Wenzel et al., 2003; Spencer et al., 2008), simulation chamber 

experiments involving α-pinene photooxidation have also resulted in the formation of 

particles that could not be successfully ionised using ATOFMS (Gross et al., 2006). However 

when a mixture of α-pinene and 1,3,5-trimethylbenzene was photooxidised in that study, the 

resulting SOA was successfully ionised by the desorption/ionisation laser, indicating that 

1,3,5-trimethylbenzene photooxidation products were required for efficient absorption at 266 

nm. While pure biogenic SOA is unlikely to be formed in the urban environment in this work, 

it could in theory represent a missing particle type, although the expected ubiquity of 

ammonia at the site suggests that pure ammonium sulfate represents a more likely missing 

particle class (Healy et al., 2009). However, pure ammonium sulfate should have been 

detected by the online particulate sulfate measurements. The fact that the variance in the 

measured sulfate is explained by the reported PMF factors suggests that pure ammonium 

sulfate may not constitute a significant independent source of PM in this dataset, although it 

may account for some of the error in the “prediction” of sulfate. Crustal dust should absorb at 

266 nm. In this case the authors referred to the transmission efficiency of larger particles 

through the aerodynamic lens as an obstacle to the detection of these species at low number 

concentrations, although it seems unlikely that the lower end of the size distribution of 

windblown soil or dust particles would not overlap with the upper limit of the lens (3 µm), 

especially when sea salt is detected successfully. This source was suggested as it has been 

identified at a nearby site using off-line analysis in a previous study (Hellebust et al., 2010a). 

However, the absence of an ATOFMS class for crustal material suggests that it does not 

represent a detectable or significant source of PM2.5 during this particular campaign.  

 

In response to the reviewer’s comments the following lines have been removed from the 

Conclusions section: 

“Approximately 33% of the measured PM2.5 mass remains unaccounted for and possible 

missing sources include crustal material and biogenic secondary organic aerosol. A factor for 

crustal material was identified in a previous study focused on the off-line analysis of the 

metal content of PM2.5 collected at a different site in Cork Harbour, and was estimated to 

contribute 11% to the measured PM2.5 mass (Hellebust et al., 2010a). It is possible that crustal 

and biogenic SOA particles were not detected by ATOFMS due to inefficient transmission 

through the aerodynamic lens or inefficient absorption of the UV laser.” 



 

The following lines have been added to section “Source Apportionment”, paragraph 1: 

“Approximately 33% of the measured PM2.5 mass remains unaccounted for and can possibly 

be explained by particles that are not detected by the ATOFMS such as pure ammonium 

sulfate (Wenzel et al., 2003). Identification of further independent factors by PMF is 

dependent on having appropriate source markers for specific source groups with a variance 

that is not explained by the factors already identified. Therefore it is difficult to speculate as 

to which emission sources are not identified as long as the variance in the measured variables 

are satisfactorily explained by the existing factors.” 

 

 

Reviewer 1: Technical Corrections: 

 

Page 1036, lines 2-5: This sentence is misleading as it implies that the ATOFMS was 

used for quantitative measurements. Please rephrase to make the product(s) of the 

ATOFMS measurements clearer. 

 

Response: 

The proposed change has been made. These lines now read: 

“An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed for the measurement 

of the size resolved chemical composition of single particles at a site in Cork Harbour, 

Ireland for three weeks in August 2008. The ATOFMS was co-located with a suite of semi-

continuous instrumentation for the measurement of elemental carbon (EC), organic carbon 

(OC), sulfate, particle number and PM2.5 mass.” 

 

Comment: 

Page 1036, lines 10-11: Canada is considered to be part of North America. Please fix 

this phrasing. Also, note this mistake on page 1044 (line 4), page 1053 (lines 13-14), page 

1053 (lines 13-14 and 26), page 1058 (line 17), and page 1060 (line 20). 

 

Response: 

These changes have now been made. 

 

Comment: 



Page 1036, lines 16 & 17: Please clarify what is meant by “shipping traffic” and 

“shipping”. 

 

Response: 

“Shipping traffic” is now used in both instances to clarify this source. 

 

Comment: 

Page 1037, lines 12-15: The Reinard et al. paper used the RSMS-3, not ATOFMS. 

 

Response: 

These changes have now been made. This line now reads: 

“Aerosol time-of-flight mass spectrometry (ATOFMS) and other single particle mass 

spectrometry techniques have been employed in several field studies to identify point sources 

of PM2.5 including steel manufacturing, smelting, refining and power generation facilities 

(Reinard et al., 2007; Snyder et al., 2009; Liu et al., 2003; Bein et al., 2007; Pekney et al., 

2006a; Bein et al., 2006).” 

 

Comment: 

Page 1037, lines 15-16: Why are vehicle emissions and biomass burning considered 

here to be “diffuse sources”? Several single-particle mass spectrometry studies have 

focused on vehicle emissions 

 

Response: 

“Diffuse” in this case refers to the spatial distribution of the source; it is not a point source 

but is distributed around the site in almost every direction 

 

Comment: 

Page 1038, lines 3-4: The PIAMS is not a single-particle mass spectrometer in the 

study by Dreyfus et al. as stated here. 

 

Response: 

This part has been changed to read as follows: 

“More recently, sources of organic aerosol in Wilmington, Delaware, were apportioned using 

a photoionisation aerosol mass spectrometer (PIAMS) (Dreyfus et al., 2009). The mass 



spectral data was modelled using PMF and these results were combined with elemental and 

organic carbon (EC/OC) quantitative data.” 

 

Comment: 

Page 1039, line 15: Fix typo “collinear”. 

 

Response: 

This is not a typo. It is a valid spelling of the word. 

 

Comment: 

Page 1044, lines 2-5: What method was utilized to obtain the air mass origins? 

 

Response: 

The following line has been added: 

“Air mass back trajectories were calculated using the Hybrid Single-Particle Lagrangian 

Integrated Trajectory (HYSPLIT) dispersion model (Draxler and Rolph, 2003).” 

 

Comment: 

Page 1046, line 29: If this paragraph is now discussing ambient data, please make this 

clearer. 

 

Response: 

This line now reads: 

“In the ambient dataset, aged coal particle subclasses were also observed; one exhibiting an 

additional signal for ammonium (m/z 17, [NH3]+; 18, [NH4]+), “Coal-amm”, and another 

containing a signal for ammonium and an increased signal for nitrate (m/z -46, [NO2]-; -62, 

[NO3]-), “Coal-amm-nit”.” 

 

Comment: 

Page 1048, lines 16-17: Please describe this temporal feature with more detail to make 

the discussion clearer. 

 

Response: 

An additional line has been added as follows: 



“Wood-nit particles appear with little or no delay from Wood-fresh particles, while there is 

an obvious temporal shift of 2 h and 4-5 h between fresh and nitrated peat and coal particles 

respectively.” 

 

Comment: 

Page 1055, lines 6-9 and Figure 11B: In Ault et al. [2009] and other ATOFMS papers 

[eg. Moffet and Prather, 2009], this mass spectral signature is labeled “ECOC” as OC 

does not appear as the primary signature. 

 

Response: 

This class has been renamed ECOC in the revised manuscript for clarity and to facilitate 

comparison with previous single particle studies. 

 

Comment: 

Page 1055, lines 12-13: What source was previously assigned by Dall’Osto and Harrison 

in that study? 

 

Response: 

This line now reads: 

“A similar class was also observed in Athens during a previous ATOFMS study, but due to a 

lack of dependence upon time of day could not be attributed to specific sources in that case 

(Dall'Osto and Harrison, 2006).” 

 

Comment: 

Page 1057, lines 17-20: Can this result also be attributed to the assignment of an incorrect 

source or multiple sources producing similar chemical fingerprints? What is meant by 

“incorrect classification: : :during clustering”? 

 

Response: 

In this case, during the clustering procedure, the similarity of the negative ion spectra of EC-

traffic and EC-domestic particles leads to an incomplete separation of particles from two 

different sources. This is indeed due to two sources producing very similar chemical 

fingerprints, and although the multiple other single particle classes arising from these sources 

can be separated efficiently as described in the manuscript, these two classes cannot be 



completely separated using the methodology described. Thus “incorrect classification” is 

admittedly not the best term to use. These lines now read: 

“The contribution to EC-traffic is lower at 59%, and the Domestic solid fuel combustion 

factor contributes 25% to the EC-traffic class. This can be explained by the similarity of EC-

traffic and EC-domestic negative ion mass spectra (Figs. 6 and 8). During the clustering 

procedure this similarity leads to an incomplete separation of particles from two different 

sources, and although the multiple other single particle classes arising from these sources can 

be isolated efficiently these two classes cannot be completely separated using the 

methodology described. However, the subsequent PMF analysis enables this limitation to be 

observed, highlighting the value of combining these two approaches.” 

 

Comment: 

Page 1058, line 14: What is the reference for the previous Cork Harbour study? 

Response: 

The following reference has now been added: 

“(Hellebust et al., 2010b)” 

 

 

Reviewer 2 General Comments: 

 

This manuscript describes a thorough and careful analysis of the sources contributing to 

PM2.5 in Cork Harbor, in Ireland. The authors use established methods, especially PMF, to 

work with data from a variety of instruments including single particle mass spectra 

(ATOFMS), quantitative EC, OC, sulfate, PM2.5 mass, and particle number. They carried 

out PMF using the temporal trends observed after clustering the single particle data, which 

is emerging as the most useful way to include single-particle data in PMF models. The 

authors include single-particle measurements of potential sources (smokeless coal, peat, and 

wood) to better characterize their contributions in the PMF model. The paper is within the 

scope of ACP and will be of interest to ACP readers, although this could be enhanced as 

described below. Overall, while this paper does not break new ground in methodology, it 

applies an established method to a new location in a new way. This detailed study of a 



shipping harbor should be of great interest to those trying to characterize the sources of 

pollution from such locations, and the authors should do much more to focus in on this aspect 

of their work and to put it into the context of other work that examines particles in such 

locations (e.g. Ault, et al., Environ. Sci. Technol., 2009, 43, 3500.). 

 

Response: 

In response to earlier comments from Reviewer 1, the Introduction and Shipping subsection 

of section 3.2 have been greatly expanded to incorporate discussion of the relevant single 

particle studies, PCA and PMF studies, and other PM2.5 trace metal analysis studies regarding 

particulate matter emissions from shipping in various port environments. The authors believe 

that the methodology described herein allows for an accurate apportionment of PM2.5 mass 

and particle number concentrations arising from the combustion of residual fuel oil on ocean-

going vessels, and various other sources, in an urban in-port environment.  

 

Comment: 

The authors have done a careful job of presenting the work they did, and the manuscript is 

generally well organized and well written (see detailed comments below). It is an appropriate 

length, and all of the figures are important. In the course of their analysis, the authors note 

trends in the detection of single-particle spectra that correspond with their wood, peat, and 

smokeless-coal particle types, with associated nitrate in the mass spectra. They note that the 

addition of nitrate occurs temporally in that order and propose that this might be a measure 

of the relative hygroscopicity of the particle types, with the more hygroscopic particles taking 

up nitrate more quickly. This seems to be borne out by the data that they reference, but it 

would be nice to test this hypothesis with laboratory measurements of the hygroscopicity.  

 

Response: 

Additional hygroscopicity tests would be ideal using the appropriate instrumentation, a 

hygroscopic tandem differential mobility analyser (HTDMA) for example, attached to a 

simulation chamber into which the combustion particles are introduced. This would allow the 

measurement of growth factors for the various fuel combustion particles in order to validate 

the hypothesis. Unfortunately HTDMA instrumentation is not available to us, although as 

outlined above, heterogeneous reaction with nitric acid may also represent a competing 

mechanism for nitrate uptake for combustion particles in Cork Harbour, in particular for 

potassium-rich wood-burning particles. Discussion of the competing processes is included in 



the response to previous comments and the manuscript has been amended to take this into 

account. Admittedly, without the appropriate instrumentation this remains a hypothesis. 

 

Comment: 

The authors also note that oligomers are detected in particles that they say correspond with 

relatively fresh domestic solid fuel combustion classes. They note that the particles appear to 

be formed rapidly as compared to reported rates of detection in smog chamber experiments. 

The authors should note that in those referenced experiments, the particles were nucleating 

in the absence of seed particles, and thus the observed formation rates for oligomers include 

the nucleation of particles as well. The spectrum shown in Figure 11c indicates that the 

oligomers are found in particles that contain other materials (sulfates, nitrates, etc.), and 

thus it could be likely that they form on pre-existing particles.  

 

Response: 

This is a good point. Typically in simulation chamber experiments performed in the absence 

of seed particles an induction period, often on the order of hours, is observed during which 

photooxidation products reach high enough concentrations to nucleate secondary organic 

aerosol (Dommen et al., 2006; Gross et al., 2006; Healy et al., 2008). In urban environments, 

however, pre-existing particles should provide surfaces for heterogeneous or particle phase 

accretion reactions leading to oligomer formation that could be catalysed by the presence of 

sulfuric or nitric acid (Jang et al., 2002; Barsanti and Pankow, 2004, 2005; Liggio et al., 

2005). Internally mixed nitrate and sulfate were detected in oligomer-containing single 

particles by ATOFMS in Riverside, California (Denkenberger et al., 2007). Increased particle 

acidity was also found to accelerate oligomer formation in that case. The lack of positive ion 

mass spectra in this manuscript hinders the source identification of oligomer-containing 

particles, however when positive spectra are present, signals are observed for sodium and 

potassium. Thus oligomer-containing particles may arise from accelerated 

accretion/oligomerisation reactions on relatively acidic coal combustion particles for 

example. The fact that the highest concentrations are observed for this class during low wind 

speed events suggests that these reactions do require a period of mixing with gas phase 

reactants that can be taken up through oligomerisation reactions (Kalberer et al., 2004; 

Denkenberger et al., 2007).  



The following lines have been removed from the “ATOFMS particle classes: ECOC and 

Oligomer” section: 

“This indicates that a significant fraction of these oligomer-containing particles are relatively 

fresh.” 

The following lines have been added to the end of the “ATOFMS particle classes: ECOC and 

Oligomer” section: 

“The rate of formation of detectable oligomers in secondary organic aerosol simulation 

chamber studies is typically of the order of hours (Kalberer et al., 2004; Gross et al., 2006), 

although studies performed in the absence of seed aerosol are often characterised by long 

induction periods while oxidation products reach high enough concentrations to induce 

nucleation (Dommen et al., 2006; Gross et al., 2006; Healy et al., 2008). In the case of 

Denkenberger et al., increased particle acidity was observed to accelerate oligomer formation. 

Thus, in this work oligomer-containing particles may arise from accelerated 

accretion/oligomerisation reactions on relatively acidic particles such as the coal-fresh class 

(Jang et al., 2002; Barsanti and Pankow, 2004, 2005; Liggio et al., 2005). The fact that the 

highest concentrations are observed during low wind speed events suggests that these 

particles require a period of mixing with gas phase reactants that can be taken up through 

oligomerisation reactions (Kalberer et al., 2004; Denkenberger et al., 2007).” 

 

Comment: 

Overall, I would like the authors to focus their conclusions on the broader implications of 

their work, rather than on the methodology – how applicable is their work to other ports and 

how does it compare to the characterization of other ports that are in the literature, what are 

the prospects for using this method for characterizing larger areas or more complex areas, 

and how much does their conclusion rely upon having the authentic sources measured? 

 

Response: 

The authors believe that the methodology described in this manuscript is applicable to other 

port environments. The advantage of performing such a study in Cork Harbour is that the 

relatively small size of the city (population <300 000), and the reliably clean marine air 

masses arriving at the site result in primary particles from local sources dominating air 



quality, as described in the manuscript. The lack of any other particle type containing the 

residual fuel oil tracers V and Ni, along with the use of appropriate shipping logs, allows for 

a comprehensive source apportionment for particles arising from shipping in this location. 

Standard particle mass spectra for the predominant domestic fuels used in the area also allows 

for accurate apportionment of that source. Future similar studies in larger port cities will be 

more complex. Although the contributions from traffic and crustal material to ambient PM 

are often satisfactorily apportioned using traditional continuous monitoring and source 

apportionment methodologies, relative contributions from local and regional shipping, 

domestic oil combustion, refining and industry are much more difficult to separate (Godoy et 

al., 2009; Ault et al., 2009; Viana et al., 2009). The conclusions drawn in this work absolutely 

rely on the measurement of the authentic sources, in particular those regarding domestic 

combustion and shipping particles. However, the authors believe that the dissemination of 

these standard spectra among the scientific community, along with previously reported 

signature single particle mass spectra from various sources worldwide, enables future 

researchers to confidently confirm these sources in ambient datasets. In a similar way, 

previous dynamometer and roadside single particle studies instructed the traffic source 

identification in this work (Sodeman et al., 2005; Spencer et al., 2006; Toner et al., 2006; 

Toner et al., 2008). Now that the particular sources identified in this work are satisfactorily 

characterised, employing this methodology in other port locations should enable their relative 

contribution to PM2.5 and particle number concentration to be estimated. A comparison of the 

findings of this work with other PMF studies in port cities, with and without single particle 

mass spectrometry, is now included in the much expanded Shipping subsection of section 3.2, 

outlined earlier in reply to the comments of Reviewer 1. That discussion also includes the 

broader implications of our findings.      

 

 

Reviewer 2 Specific comments: 

1. Overall, I would suggest that the authors consider replacing the exhaustive lists of ions 

observed in the single-particle mass spectra that are included in the text with tables. This will 

decompress the text somewhat, make the text more readable, and make it easier to compare 

the ions observed in the various classes of particles. 

 



Response: 

A new table (Table 2) has now been included in the revised manuscript, summarising the ions 

observed for each particle class. This table is also now referenced in the manuscript. 

However, the authors believe that the description of the ions in the body of the text is also 

essential, as the presence or absence of particular ions is discussed in each case and compared 

with previous literature. In some cases the ions present, or their relative intensities, differ 

slightly between classes, for example for coal, peat and EC-domestic particles, and thus an 

adequate description is necessary. Such description of single particle classes is quite common 

in the literature (Dall'Osto and Harrison, 2006; Tan et al., 2002; Moffet et al., 2008). 

 

Comment: 

2. p. 1041, line 13-14: The authors discuss the separation of EC-phos-fresh and ECphos-

aged, but do not comment there about whether these classes are different in any way other 

than size. The table suggested in comment 1, above, would make it easier to see this, and I 

would recommend adding a comment in the text as well. 

 

Response: 

These particle classes (now renamed EC-phos and EC-MSA respectively) exhibit very 

similar positive ion mass spectra, but the negative ion mass spectra are different, as outlined 

in the response to Reviewer 1. EC-phos spectra are characterised by a peak at m/z -79 

corresponding to phosphate, while EC-MSA spectra do not have this peak but instead are 

characterised by peaks at m/z -89 and -95 corresponding to oxalate and methanesulfonate 

respectively. EC-phos particles are assigned to local traffic emissions, and exhibit a 

pronounced diurnal cycle, while EC-MSA particles are associated with a shift in air mass 

origin and do not exhibit a dependence on time of day. These particles are instead assigned to 

intercontinental transport of anthropogenic particles from North America. The sections 

describing these classes have been expanded as described earlier, and EC-MSA has now been 

assigned an additional subsection due to the more detailed discussion included in earlier 

replies. A new table has also been included as described in the previous reply. 

 



Comment: 

3. p. 1043, line 10: The authors state that the number of factors used in their PMF 

calculations was varied until the “most reasonable” results were obtained. This phrase 

should be defined. 

 

Response: 

Six, seven and eight factor solutions were explored and the results of the various solutions are 

included in section “Source Apportionment”, paragraph 1. However, for clarity an additional 

line has been added to section 2.5, final paragraph: 

“Six-, seven- and eight-factor solutions were explored, with the six factor solution providing 

the most satisfactory result.”  

 

Comment: 

4. p. 1044, line 11: As there is expected to be relatively constant transmission through an 

aerodynamic lens in the size range for which it is designed, the authors might want to explain 

why there is expected to be little effect for not scaling for size-related transmission efficiency 

into the ATOFMS. 

 

Response: 

As the ATOFMS does not enable direct quantitative measurements due to size-dependent 

transmission efficiencies associated with the aerodynamic lens, and variable ionisation 

efficiencies depending on the particle matrix involved, scaling procedures can be useful when 

attempting to quantify the contribution of various particle phase species to PM2.5 mass 

(Wenzel et al., 2003; Dall'Osto et al., 2006). However, an aerodynamic particle sizer (APS) is 

typically required to measure size distributions larger than about 800 nm. In our work, the 

SMPS system provided size distributions up to 600 nm only (mobility diameter), thus scaling 

procedures are limited as many of the particle classes measured exhibit aerodynamic 

diameters larger than this. However, the temporality of the various particle classes is the 

important aspect here. Assuming the particle transmission efficiencies and ionisation 



efficiencies of the identified classes did not change during the campaign, the temporality of 

each class can be used for PMF. In our case PMF analysis replaces scaling procedures as the 

particle number concentrations, EC/OC, sulfate and in particular PM2.5 mass concentrations 

we seek to apportion are instead reconstructed using the model. However, “missing” particles 

such as pure ammonium sulfate that are not ionised by the ATOFMS cannot be accounted for 

in this way. This phenomenon is discussed in previous replies. 

 

Comment: 

5. p. 1045, line 18: The authors discuss the strong signal for sulfate observed in the freshly 

emitted combustion particles from their source tests, which they note is different from the 

measurements observed by other researchers. However, they do not discuss the potential 

effect of their source tests being done in an outdoor stove. Could the outdoor air influence 

their observed spectra? 

 

Response: 

In theory, the outdoor air could have an influence on the standard combustion spectra either 

through rapid uptake of ammonium, nitrate, sulfate or organics, although these processes 

would have to be extremely rapid as the ATOFMS was located less than 5 m from the stove, 

and the sampled particles were exposed to ambient air for only a few seconds before 

detection. Therefore the internally mixed species detected are expected to be primary. We 

believe that the higher signal observed for sulfate in coal particles detected in this work are a 

result of higher sulfur content in the coal used compared to previous studies. The origin of the 

coal appears to be important as gallium and lithium detected in previous single particle 

studies have been suggested as tracers for coal combustion particles measured in the US and 

Asia (Bein et al., 2007; Liu et al., 2003; Guazzotti et al., 2003), although these metals were 

not detected in our case, or in a previous single particle measurement campaign in Poland 

(Mira-Salama et al., 2008). 

 

Comment: 



6. Throughout the paper, the authors should more closely relate their findings to those that 

have been published, especially related to their source profiles. Coal has been sampled 

before with single-particle mass spectrometers (and should be referenced), but is this 

smokeless-coal different in some way? Similar questions arise with wood, which has been 

sampled and reported in numerous papers. Peat, I believe, is new to this work. 

 

Response: 

The Introduction, “ATOFMS particle classes: Coal, Peat and Wood” section and “Source 

Apportionment: Domestic combustion” section have been expanded to include much 

additional discussion and comparison with previous single particle studies of coal and wood 

combustion. These additions are included in the responses to Reviewer 1. The standard coal 

used for our combustion experiment was commercially available bituminous coal, while the 

commercially available smokeless coal is expected to contain lower levels of bituminous coal 

mixed and bound with anthracite. Interestingly, the mass spectra for coal and smokeless coal 

are practically identical and cannot be separated using the K-means algorithm in the case of 

this work. Therefore the relative contribution of these fuels to ambient air quality in Cork 

Harbour could not, unfortunately, be estimated.  
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