
 

The authors would like to thank the two anonymous reviewers for their helpful 

comments. Both reviewers raised concerns regarding the use of correlated variables in 

the multiple regression. We agree that this should be discussed in the manuscript and 

have included a brief discussion and a table below; these will be added to the revised 

manuscript for publication.       

Ref #1:  I have one major comment however. The paper hinges on a multiple 
regression between a TES ozone product with two other fields - upper 
tropospheric humidity from GOES and potential vorticity from GFS. On p. 30066 
l. 11 these are described as ’independent variables’ - but whereas they are 
certainly derived from different sources these two datasets are themselves highly 
correlated and so are not statistically independent. At no point in the paper is this 
point discussed. 

Some of these issues were addressed in the thesis of Mr. Felker, but were edited out of 

the final paper. While the GOES Layer Average Specific Humidity (GLASH) brightness 

values and the Global Forecast System potential vorticity (PV) are inversely correlated 

(r=-0.707 in the training dataset), we believe they each add content which is unique in 

explaining the variability in ozone. The variables were considered separately to evaluate 

their capacity to explain variability in TES observed ozone. The authors recognize that 

while PV has traditionally been used as an effective tracer, when operating over data 

sparse regions like the North Pacific, the model may have errors of magnitude or 

displacement of features. Furthermore, it was the original goal of this project to try to 

define an empirical and independent method for extrapolating the information that TES 

provides to a larger domain, based on a correlation of remotely sensed information from 

two satellite platforms. However, it was found that individually GLASH could only 

explain 60% of the variance in TES, with a standard error of 22ppb.  So a purely 

satellite-based product was not that effective. In fact, the residuals of this regression 

indicate that the largest errors in estimating TES ozone occur for high ozone values. 

Similarly, variability in PV alone could explain 63% of the variance in TES ozone, with a 

standard error of 21ppb. The use of both variables together in a multiple regression was 

able to increase the explained variance and reduce the residual error. In regions 

favored for tropopause folding, we know that ozone is enhanced and specific humidity is 

low, but the ability to resolve differences in ozone at the high ozone end of the 

distribution is compromised. It is our understanding that while the GOES water vapor 

imagery is very useful at delineating the location of the tropopause break, and the step 

change in ozone across this boundary, the inclusion of PV enhances the ability to 

resolve variations in TES retrieved ozone on the poleward side of the tropopause break 

or the polar front, when the upper tropospheric humidity is very low and loses power; 

thus these two parameters clearly provide some complementary or independent 



information.   We regret we did not include this information previously.  A short 

discussion of these additional results will be included without showing all of the figures 

from the thesis.  

Ref # 2: In equations 2-4 a simple regression model is invoked involving three 
derived constants (a, b, c). It would be important to include values (in main text or 
maybe in a table) for the computed one-sigma or two-sigma statistical 
uncertainties for these derived constant coefficients which one can get from the 
three diagonal elements of the derived covariance matrix. The off-diagonal 
elements of the covariance matrix would also provide information of 
covariance/correlation between H2O and PV which may be substantial especially 
in NH spring within the analyzed region. Equations 3 and 4 list the coefficients to 
four or five significant digits, but their actual uncertainties could possibly be as 
large in magnitude as the derived coefficient numbers themselves. 

The table below further addresses the concerns of collinearity, which has the potential 

to cause instability in the regression coefficients, as noted by reviewer #2. We have 

added the statistical uncertainties in the regression coefficients; these are all on the 

order of 3% error, so the results do not seem unstable. We will limit the significant 

figures reported. The collinearity tests further indicate that the variables are not so 

strongly correlated as to be redundant in the regression. The tolerance (1-r2) is a 

common measure and should not be a problem unless the value is small (some 

statistics books suggest 0.1 or less); in this case it is 0.5. Furthermore, the variance 

inflation factor, which is the inverse of tolerance, will clearly indicate collinearity for 

values greater than 10, and could be a problem for values between 2.5 and 10, which 

implies correlations between 0.78 and 0.95. As noted previously, the correlation 

between GLASH and PV was -0.707 (the covariance between them is -8.8). 

Multiple Regression of GLASH and PV against TES Ozone 

 Collinearity 

Model 
Parameters 

Coefficient Standard 
Error of 
Estimate 

Significance Tolerance Variance 
Inflation 

Constant 281.40 7.99 .00  

a *GLASH -1.21 .04 .00 0.5 2.0 

B *PV 17.05 .54 .00 0.5 2.0 

R2 0.72 18.47 .00  
 
 

Ref #2: The conclusions section 6 mentions a future plan to evaluate the method 
over a longer record than the one month of INTEX-B in this study. As the authors 
point out, STE effects are greatest in the NH in spring months and the constant 
coefficients could be very different over the analyzed GOES West region during 
other times of the year. It is possible that for the one month of measurements in 
this study that the regression coefficients would have a significant spatial 



variability over the analyzed region. Have the authors tried partitioning the 
analyzed region, perhaps into two or three sub-regional latitude bands to improve 
the regression results? 

We did not stratify the events by latitude, but by PV, which adds dynamic variation as 

well as some implicit latitude dependence.  While the correlation coefficient of -0.707 

between GOES GLASH and PV does indicate significant anticorrelation, in the events 

with PV greater than 1.5 pvu, which accounted for 25% of the data points, the mean O3 

was 128, and PV and GLASH were less strongly anticorrelated (r=-0.234).  

The results of the regression analysis of PV and GLASH versus TES ozone was used to 

generate all of the figures in the paper.  We will drop the two parameter regression 

analysis of the ¼ of the data used for testing the model from the text (equation 4), as it 

was never used, and was provided only for completeness. Instead we will include the 

equation that compares the predicted ozone (equation 3) to the observed TES ozone 

(this is the MUTOP versus TES), as this represents the performance of the  regression 

applied to the data that were held back for testing. We regret that in reassessing 

statistics, we have just discovered there were a few points in the testing set that were 

not unique from the training set. This problem has been remedied, and the testing data 

set error analysis included is  now correct. We will need to update the paper with the 

new error statistics. However, nothing else will change, as the training regression was 

used to generate all images for the paper. The updated statistics for the testing or 

evaluation data are as follows: R = 0.73, MAE = 13.6 ppbv, RMSE = 18.1 ppbv, and 

these will be presented as a new Table  (an improvement over the results reported in 

the paper in the second part of Table 1). This will make also slight change to the 

residuals reported in figure 5, which is a plot of the testing or evaluation data, this figure 

has been updated (although the differences are nearly indiscernable.  While it is true 

that the overall magnitude of the regression error (RSME of 18ppb) is not small, it is in 

line with previous estimates of tropospheric residual ozone for extratropical spring 

locations (eg. Schoeberl, et al., 2007). 

Regression of MUTOP (predicted) against TES Ozone 
(observed) 

Model 
Parameters 

Coefficient Standard 
Error of 
Estimate 

Significance 

Constant -1.13 1.97 .567 

a *MUTOP 1.016 .02 .00 

R2 0.73 18.14 .00 

 

Ref #2: Does the Moody et al. paper (manuscript in preparation) on ozonesonde 
validation of this MUTOP product cover several years and with global extent? If 



so, does basic seasonal variability tend to agree between the MUTOP product 
and ozonesondes? It is difficult to properly evaluate a new data product with just 
one month of measurements over one sector of the globe – ideally the evaluation 
should cover many years with global extent to investigate basic features such as 
seasonal variability. There is also something somewhat circular in the validation 
of the MUTOP product in the current paper - a regression model is used which 
combines H2O and PV with TES ozone and then compares with TES ozone. 

 

It is our understanding that it is common practice to make a radom selection of a 

dataset and use one part of the data for training (developing a regression) and the 

reserved data for evaluating the regression.  The companion paper to this manuscript 

provides an independent validation of the MUTOP derived product imagery, based on a 

comparison to ozonesonde data collected during the INTEX/B field campaign.  While it 

is a limited dataset, the results suggest that the MUTOP product extrapolation of TES 

reproduces ozonesonde estimates of upper tropospheric ozone with a mean absolute 

error of 12ppb and an RSME of 16ppb.  The authors agree that while it would be very 

valuable to produce a larger dataset; the funding for this project was quite modest, and 

has expired.  The availability or production of GOES specific humidity is not routine, and 

is not currently supported. It is the hope of the authors that the publication of this limited 

dataset may spur interest within the community on this approach, combining information 

from more than one satellite system, and in particular, demonstrating the application of 

GOES derived specific humidity as a method for using near real-time remotely sensed 

information to help characterize the dynamic behavior of ozone in the upper- 

troposphere.   

Finally, upon reading the paper after some time away from it, we also agree with 

Referee #1 that some sections can be tightened up with critical editing.   We will correct 

the misspelled names of references (we thank Ref#2 for catching this) and will attempt 

to enhance the scales on the multi-figure panels, though this is something of a 

challenge to keep the number of panels presented without reducing the size or spatial 

extent of the images further by expanding the font for axes.  Finally, we will revise the 

discussion of potential vorticity, and address the other minor points raised by Ref#1. 

Again, we greatly appreciate the helpful comments of the reviewers and look forward to 

the opportunity to complete the publication of this manuscript. 

 


