Atmos. Chem. Phys. Discuss., 10, C10293–C10295, 2010 www.atmos-chem-phys-discuss.net/10/C10293/2010/

© Author(s) 2010. This work is distributed under the Creative Commons Attribute 3.0 License.



## Interactive comment on "Ternary homogeneous nucleation of H<sub>2</sub>SO<sub>4</sub>, NH<sub>3</sub>, and H<sub>2</sub>O under conditions relevant to the lower troposphere" by D. Benson et al.

## **Anonymous Referee #3**

Received and published: 26 November 2010

The formation of new particles in the atmosphere is still a hot topic in atmospheric science. Although in the last time there is a lot of progress open questions remain.

The authors show experimental findings from a flow-tube experiment investigating the role of NH $_3$  additions for H $_2$ SO $_4$ /H $_2$ O nucleation. H $_2$ SO $_4$ /H $_2$ O is formed via the reaction of OH with SO $_2$ . Experimental conditions are close to atmosphere, the residence time in the tube is in the range 60 – 240 sec. H $_2$ SO $_4$  and NH $_3$  concentrations are obtained by means of a mass spectrometer. This manuscript is one of a series of papers by this group. A paper with similar topic was already published last year, Benson *et al.*, GRL, 2009.

## C10293

- 1. I am very confused by comparing the data given in this manuscript with earlier results from the same group using more or less the same experimental approach. The only change in the setup seems to be the enlargement of the tube diameter from 2.54 or 5.08 cm to 13 cm at present. With the smaller tubes a H<sub>2</sub>SO<sub>4</sub> concentration of 10<sup>8</sup>-10<sup>9</sup> molecule cm<sup>-3</sup> was reported for a nucleation rate of unity (Young et al., ACP, 2008). But in this manuscript data are shown for J = 1 cm<sup>-3</sup>s<sup>-1</sup> for a few of 10<sup>6</sup> molecule cm<sup>-3</sup> of H<sub>2</sub>SO<sub>4</sub> (also in the absence of NH<sub>3</sub> addition). Nothing is given in the manuscript explaining this discrepancy! Lowering of the importance of wall losses with the new tube cannot be the reason for this large difference, in the former studies the H<sub>2</sub>SO<sub>4</sub> wall loss was intensively discussed by the authors.
- 2. The authors used for particle monitoring a TSI 3786 counter and they are stating that particles with a diameter > 3nm were detected. Assuming a critical cluster size of 1-1.5 nm a growth of about 1.5-2nm in diameter is needed. This cannot be explained by  $10^6$ - $10^7$  molecule cm $^{-3}$  of  $H_2SO_4$ ! A clear statement regarding the growth processes in the tube incl. the  $H_2SO_4$  limited growth is needed.
- 3. In recently published papers (Sipilä et al., Science, 2010; Berndt et al., ACP, 2010; Brus et al., ACPD, 2010) the importance of high efficiency counters with a cut-size of about 1.5 nm for nucleation experiments with low growth times was clearly shown. Application of less efficient counting devices should result in an underestimation of total particle numbers and in an overestimation of the slope log(J) vs. log (H<sub>2</sub>SO<sub>4</sub>). The authors are stating slopes of 3.6-4.6 being definitely higher than those given in the three papers above. On the other hand, the given values for J are close to (or somewhat higher than) the observation from the other experiments in literature. Also this topic should be discussed in this paper.
- 4. Was  $NH_3$  measured only at the entrance or also at the tube outlet? What was the  $NH_3$  loss in the tube?

5. It is stated that NH<sub>3</sub> was flushed into the tube together with the water vapour resulting in NH<sub>3</sub> mixing ratios of 20-100 pptv. What are the background concentrations of amines and organics in the flow tube? Especially in the case of amines, very low concentrations of these substances can clearly influence nucleation.

| F.,  |      |       | ~ t | :    | _ |      |          | :_ |        |    |
|------|------|-------|-----|------|---|------|----------|----|--------|----|
| From | IIIV | DOILI | OI  | view | а | main | revision | ıs | neeaea | ١. |
|      |      |       |     |      |   |      |          | -  |        |    |

\_\_\_\_

Interactive comment on Atmos. Chem. Phys. Discuss., 10, 22395, 2010.