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Abstract

We use observations from the April 2008 NASA ARCTAS aircraft campaign to the
North American Arctic, interpreted with a global 3-D chemical transport model (GEOS-
Chem), to better understand the sources and cycling of hydrogen oxide radicals
(HOx ≡H+OH+peroxy radicals) and their reservoirs (HOy ≡HOx+peroxides) in the5

springtime Arctic atmosphere. We find that a standard gas-phase chemical mecha-
nism overestimates the observed HO2 and H2O2 concentrations. Computation of HOx
and HOy gas-phase chemical budgets on the basis of the aircraft observations also
indicates a large missing sink for both. We hypothesize that this could reflect HO2
uptake by aerosols, favored by low temperatures and relatively high aerosol loadings,10

through a mechanism that does not produce H2O2. Such a mechanism could involve
HO2 aqueous-phase reaction with sulfate (58% of the ARCTAS submicron aerosol by
mass) to produce peroxymonosulfate (HSO−

5 ) that would eventually convert back to sul-
fate and return water. We implemented such an uptake of HO2 by aerosol in the model
using a standard reactive uptake coefficient parameterization with γ(HO2) values rang-15

ing from 0.02 at 275 K to 0.5 at 220 K. This successfully reproduces the concentrations
and vertical distributions of the different HOx species and HOy reservoirs. HO2 uptake
by aerosol is then a major HOx and HOy sink, decreasing mean OH and HO2 concen-
trations in the Arctic troposphere by 48% and 45% respectively. Circumpolar budget
analysis in the model shows that transport of peroxides from northern mid-latitudes20

contributes 50% of the HOy source above 6 km, and cloud chemistry and deposition
of H2O2 account together for 40% of the HOy sink below 3 km. Better rate and prod-
uct data for HO2 uptake by aerosol are needed to understand this role of aerosols in
limiting the oxidizing power of the Arctic atmosphere.
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1 Introduction

Radiative forcing by aerosol and tropospheric ozone pollution transported from mid-
latitudes may be an important driver of recent Arctic warming (Quinn et al., 2008; Shin-
dell et al., 2008). This pollution is strongest in spring (Scheuer et al., 2003) and is
modulated by chemical reactions serving as sources or sinks of aerosols and ozone.5

The Arctic photochemical environment in spring is characterized by polar sunrise, low
sun angles, intense cold, and underlying ice surface. Considerable attention has fo-
cused on halogen radical photochemistry under these conditions as a rapid sink for
ozone (Simpson et al., 2007), but this appears to be important only in the shallow
boundary layer where sea ice provides a halogen radical source (Wagner et al., 2001).10

Hydrogen oxide radicals (HOx ≡H+OH+peroxy radicals) have a more pervasive effect
in the tropospheric column but the chemistry of these radials in the Arctic spring has
received little study. The OH radical is the principal atmospheric oxidant, affecting both
aerosols and ozone in complex ways. Peroxy radical reactions with nitric oxide (NO)
are the main chemical source of tropospheric ozone. We use here observations from15

the April 2008 NASA Arctic Research of the Composition of the Troposphere from Air-
craft and Satellites (ARCTAS) aircraft campaign (Jacob et al., 2009), interpreted with
a global 3-D chemical transport model (GEOS-Chem CTM), to better understand the
sources and cycling of HOx radicals in the springtime Arctic atmosphere.

HOx radicals originate from water vapor. The main pathway involves oxidation by the20

high-energy O (1D) atom produced from photolysis of ozone:

O3+hv →O(1D)+O2 (R1)

O(1D)+H2O→2OH (R2)

The OH atoms cycle with peroxy radicals, driving various HOx-catalyzed mechanisms
for atmospheric oxidation and ozone formation and loss. Oxidation of methane and25

other volatile organic compounds (VOCs) yields formaldehyde (HCHO), which pho-
tolyzes to produce additional HOx radicals and amplify the original source:
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HCHO+hv →H+HCO (R3)

H+O2+M→HO2+M (R4)

HCO+O2 →HO2+CO (R5)

Loss of HOx eventually takes place by radical-radical reactions. These reactions can
return water vapor in which case the loss is terminal, or they may produce reservoir
species such as hydrogen peroxide (H2O2) and methyl hydrogen peroxide (CH3OOH).
The peroxides can photolyze to return HOx radicals. Alternatively, they can be con-
verted to water or deposited resulting in a terminal HOx sink. It is useful to define an5

expanded hydrogen oxides family HOy ≡HOx+reservoirs (Jaeglé et al., 2001), where
the reservoirs include mainly peroxides but also some other minor reservoir species
such as nitrous acid (HONO). The HOx budget can then be understood on the basis
of the HOy budget and the chemical cycling within the HOy family, governed in part by
reactions involving nitrogen oxide radicals (NOx ≡NO+NO2) (Jaeglé et al., 2001). The10

lifetime of HOy against conversion to water vapor is of the order of a few days, so that
transport of HOy reservoir species on convective and synoptic scales can modulate
the supply of HOx radicals (Jaeglé et al., 1997; Prather and Jacob, 1997; Müller and
Brasseur, 1999).

Past studies of HOx chemistry in Arctic spring have mainly been from surface sites.15

They have pointed out the importance of HOx radical production from photochemically
driven snow emissions of H2O2 (Hutterli et al., 2001; Jacobi et al., 2002, 2004), HCHO
(Sumner and Shepson, 1999; Sumner et al., 2002), and HONO (Zhou et al., 2001).
They have identified a large photochemical emission of NOx from snow (Honrath et al.,
1999; Ridley et al., 2000) that plays an important role in HOx cycling (Yang et al., 2002;20

Chen et al., 2004). Another unique aspect of HOx chemistry in the boundary layer is
the interaction with halogen radicals. These interactions include HOx production from
Br+HCHO (Evans et al., 2003), additional HOy reservoirs such as HOBr (Bloss et al.,
2005), and additional processes for cycling between HO2 and OH (Simpson et al.,
2007).25
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The Arctic boundary layer is very shallow (∼100 m) and capped by a strong thermal
inversion (Kahl, 1990). The atmosphere above is more relevant for the impacts of HOx
chemistry on the Arctic troposphere. It had received little exploration prior to ARC-
TAS, due to the requirement of an aircraft with comprehensive chemical payload. The
Tropospheric Ozone Production about the Spring Equinox (TOPSE) aircraft campaign5

conducted a series of flights in the North American Arctic from February to May of 2000
including measurements of total peroxy radicals (Cantrell et al., 2003a), HCHO (Fried
et al., 2003), and peroxides (Snow et al., 2003) up to 8 km altitude. Photochemical
model calculations constrained with these data found Reactions (R1) and (R3) to be
the major HOx sources (Wang et al., 2003). However, the model greatly overestimated10

the observed concentrations of peroxy radicals and H2O2 (Cantrell et al., 2003b; Wang
et al., 2003) while underestimating HCHO (Fried et al., 2003).

Observations from the ARCTAS aircraft expand greatly on TOPSE in terms of both
coverage and chemical payload. ARCTAS vertical profiles extend from the boundary
layer to the stratosphere. The payload included measurements of HOx radicals by two15

independent methods to resolve experimental uncertainty (Chen et al., 2010). It also
included an extensive suite of HOx precursors, reservoirs, and related species. As we
will see, this ensemble of observations offers strong constraints and a new perspective
on the factors controlling HOx concentrations in the Arctic spring troposphere.

2 Data and model20

2.1 The ARCTAS campaign

The ARCTAS spring campaign took place from 1–21 April 2008 (Jacob et al., 2009).
It included a DC-8 aircraft with a detailed chemical and aerosol payload and a P-3
aircraft with a detailed aerosol and radiation payload. Both were based in Fairbanks,
Alaska (65 N, 148 W). We focus our attention on the DC-8 chemical data but will also25

make reference to the P-3 aerosol data. The DC-8 conducted nine flights in the North
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American Arctic totaling 73 flight hours. These included sorties out of Fairbanks as well
as transit flights to and from Thule, Greenland (77 N, 69 W) and Iqaluit, Nunavut (64 N,
69 W). Almost all the data were collected north of 60 N. All flights included frequent
vertical profiling from 100 m to 12 km altitude.

One of the major goals of ARCTAS was to better understand radical photochem-5

istry in the Arctic. The DC-8 payload included measurements of HOx radicals,
NOx radicals, H2O2, CH3OOH, HNO4, O3, H2O, VOCs, HCHO, aerosol composi-
tion, and photolysis frequencies (Jacob et al., 2009). OH and HO2 concentrations
were measured by two independent techniques, Laser Induced Fluorescence (LIF)
and Chemical Ionization Mass Spectrometry (CIMS). There were instrumental diffi-10

culties with the CIMS HO2 measurement but intercomparison for OH shows a me-
dian ratio (OH)CIMS/(OH)LIF=0.73 (R=0.51), which agrees within the stated accuracies
(32% for LIF, 65% for CIMS) (Chen et al., 2010). We rely on the LIF measurements
here as they covered 96% of the flight hours. We use 1-min average data with re-
ported accuracies in parentheses: OH (32%), HO2(32%), H2O2(±(40%+100 pptv)),15

CH3OOH (±(40%+50 pptv)), ozone (3%), HCHO (12%±26 pptv), NO (10%±5 pptv),
NO2(5%±5 pptv), HNO4(30%±15 pptv). We also make use of fine aerosol data in-
cluding sulfate (34%) and ammonium (34%). The NO2 LIF measurement includes
methylperoxynitrate (CH3OONO2) decomposing in the inlet and this represents a sig-
nificant positive artifact in the upper troposphere (Browne et al., 2010). We correct for20

it here by using local CH3OONO2/NO2 ratios from the GEOS-Chem simulation. Mean
ratios are 0.03 at 0–3 km, 0.17 at 3–6 km, and 1.4 above 6 km.

Several halogen-catalyzed ozone and mercury depletion events were observed dur-
ing ARCTAS (Salawitch et al., 2010), but all were confined below 500 m. No obvious
signature of either bromine or chlorine radical chemistry was found above 500 m from25

the measured soluble bromide (Liao et al., 2010), BrO (Neuman et al., 2010) or VOC
indicators (Fried et al., 2010). We neglect the effect of halogen chemistry in our mod-
eling of the ARCTAS HOx data but will comment on its possible role in the boundary
layer.
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2.2 GEOS-Chem model

GEOS-Chem is a global 3-D chemical transport model driven by assimilated mete-
orological observations from the Goddard Earth Observing System (GEOS-5) of the
NASA Global Modeling and Assimilation Office (GMAO) (Bey et al., 2001). We apply
here GEOS-Chem version 8-01-04 (http://acmg.seas.harvard.edu/geos/index.html) to5

simulation of the ARCTAS period (April 2008). The GEOS-5 meteorological data have
6-h temporal resolution (3-h for surface variables and mixing depths) with 0.5◦×0.667◦

horizontal resolution and 72 vertical layers from the surface to 0.01 hPa. We regrid here
the meteorological data to 2◦ latitude×2.5◦ longitude for input to GEOS-Chem. The
model is initialized with a 1-year simulation from January 2007 to January 2008 with10

4◦×5◦ resolution, and from January 2008 on with 2◦×2.5◦ resolution. Our analysis of
the GEOS-Chem simulation focuses on HOx chemistry. The same GEOS-Chem simu-
lation is applied in companion papers to interpretation of ARCTAS observations for CO
(Fisher et al., 2010a), SO2 and sulfate (Fisher et al., 2010b), carbonaceous aerosols
(Wang et al., 2010), methane (Pickett-Heaps et al., 2010), and mercury (Holmes et al.,15

2010).
We use the standard GEOS-Chem simulation of ozone-NOx-HOx-VOC-aerosol

chemistry as described for example by Park et al. (2006). We updated the chemi-
cal mechanism with compiled data from the Jet Propulsion Laboratory (Sander et al.,
2006) (hereinafter “JPL06”) and the International Union of Pure and Applied Chem-20

istry (Atkinson et al., 2006) (hereinafter “IUPAC06”). We implemented the Fast-JX
radiative transfer code for calculation of photolysis rate constants (Wild et al., 2000;
Bian and Prather, 2002), including updates to absorption cross-sections and quantum
yields from JPL06. Total ozone columns used as input to Fast-JX are from daily mea-
surements by the Ozone Monitoring Instrument (OMI) satellite instrument with 1◦×1◦

25

resolution (ftp://toms.gsfc.nasa.gov/pub/omi/data/ozone/Y2008/). The range of ozone
columns during ARCTAS was 380∼430 Dobson Units. Surface albedo used in Fast-JX
is from the Total Ozone Mapping Spectrometer (TOMS) satellite monthly climatology
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with 1◦×1.25◦ resolution (Herman and Celarier, 1997).
A major topic of this paper will be the role of HO2 uptake by aerosol. GEOS-Chem

includes a general representation for first-order uptake of gases by aerosols parame-
terized by a reactive uptake coefficient γ and applied to the model aerosol fields (Martin
et al., 2003). The standard model includes aerosol uptake of NO2, NO3, and N2O5 (Ja-5

cob, 2000; Evans and Jacob, 2005) and aqueous-phase reaction of H2O2 with SO2 in
cloud (Park et al., 2004). Earlier versions also included aerosol uptake of HO2 (Martin
et al., 2003a), but this was removed in v7-04-06 (and hence in the v8-01-04 version we
used) on the basis of laboratory data indicating low γ values in the absence of transition
metal catalysts (Thornton and Abbatt, 2005; Sauvage et al., 2007). More recent stan-10

dard versions of GEOS-Chem (v8-02-01 and beyond), developed after this work was
initiated, include HO2 uptake following Thornton et al. (2008). As we will show below,
the ARCTAS observations suggest an important role for aerosol uptake of HO2 under
the cold, low-light, and relatively aerosol-rich conditions of Arctic spring. The GEOS-
Chem simulation of aerosols during ARCTAS is evaluated by Fisher et al. (2010b) and15

Wang et al. (2010). It provides in general a good match to observations.
Anthropogenic emissions in GEOS-Chem are as described in van Donkelaar et

al. (2008). A prominent feature of ARCTAS flights was the influence of Siberian fire
plumes (Warneke et al., 2009). Daily biomass burning emissions for 2008 with 1◦×1◦

resolution are specified from the Fire Locating and Monitoring of Burning Emissions20

(FLAMBE) emission inventory (Reid et al., 2009) constrained by GOES and MODIS
fire count data. Further details on model emissions are given by Fisher et al. (2010a).

The model wet deposition scheme is described by Liu et al. (2001). It includes
wet scavenging in convective updrafts as well as grid-resolved first-order rainout and
washout. Of particular interest here is the representation of peroxide and HCHO scav-25

enging. For warm clouds (T >268 K), H2O2, CH3OOH, and HCHO are scavenged by
liquid water based on their Henry’s law constants. For mixed clouds (248 <T <268 K),
precipitation is assumed to take place by riming of liquid cloud droplets with retention
efficiencies RH2O2

=0.05, RCH3OOH=0.02, and RHCHO=0.02 (Mari et al., 2000). In cold
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clouds (T <248 K), scavenging of H2O2 takes place by co-condensation on ice surfaces
while scavenging of CH3OOH and HCHO are considered negligible (Mari et al., 2000).

Dry deposition is calculated using a standard resistance-in-series scheme (Wesely,
1989) applied to the local surface. For snow and ice the deposition velocity of H2O2 is
in the range 0.1–0.3 cm s−1, while dry deposition of CH3OOH and HCHO are negligible.5

Snow emission could offset dry deposition for the above species (Frey et al., 2005; Frey
et al., 2006) but is not taken into account here as its effect would be confined to the
shallow boundary layer. For the same reason we find dry deposition to be unimportant
from a tropospheric column perspective.

All comparisons between model and observations use model output sampled along10

the flight tracks and at the flight time with 15-min time resolution. We exclude all mea-
surements in the stratosphere as diagnosed by an ozone/CO molar ratio greater than
1.25. This excludes 72% of the data above 10 km, 41% of the data at 8–10 km, and 9%
of the data at 6–8 km. We also exclude all measurements at latitudes lower than 60N.
In order to assess the effect of GEOS-Chem errors for species driving HOx chemistry15

(such as ozone, CO, NO), we compare results to those of a gas-phase photochem-
ical box model (Olson et al., 2004) constrained locally by the ARCTAS observations
(Olson et al., 2010). Similar comparisons between GEOS-Chem and this box model
have been conducted in previous aircraft campaigns (Olson et al., 2004; Hudman et
al., 2007; Zhang et al., 2008).20

Previous comparisons of the GEOS-Chem HOx simulation to aircraft LIF measure-
ments from the same Pennsylvania State University group have been reported for
the NASA INTEX-A campaign over North America (summer 2004) and the NASA
INTEX-B campaign over the North Pacific (spring 2006). Hudman et al. (2007) re-
ported a model overestimate of 30∼60% for both OH and HO2 in INTEX-A, but25

subsequent recalibration of the measurements resolved the discrepancy (Ren et al.,
2008). Zhang et al. (2008) found no model bias for HO2 in INTEX-B but a 27% high
bias for OH. The global mean tropospheric OH concentration in our ARCTAS sim-
ulation is 10.3×105 molecules cm−3, consistent with the multimodel annual mean of
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11.1±1.7×105 molecule cm−3 from the intercomparison by Shindell et al. (2006).

3 Median distributions

Figure 1 presents median vertical profiles of OH, HO2, H2O2, CH3OOH, NO, NO2,
HCHO and HNO4 concentrations for 1 km vertical bins during ARCTAS. We compare
here the observed profiles (black) to results from the standard GEOS-Chem simulation5

not including HO2 uptake by aerosols (dashed green line). Also shown in Fig. 1 are
model simulations including HO2 uptake, which will be discussed in Sect. 4. Most data
were collected under sunlit conditions, between 08:00 and 18:00 local time. Strato-
spheric data were excluded as described in Sect. 2. Mean observed temperature is
256 K at 0–3 km, 243 K at 3–6 km, and 226 K above 6 km, consistent with the model.10

Observed concentrations of OH are relatively low (20 ppqv=5×105 molecules cm−3 in
surface air) reflecting the low water vapor, low solar elevation, and thick ozone columns
characteristic of Arctic spring. The model reproduces the observed OH concentrations
including the vertical gradient with no significant bias.

Observed concentrations of HO2, H2O2, and CH3OOH show little altitude depen-15

dence, consistent with TOPSE (Wang et al., 2003) but in contrast to measurements in
the tropics and northern mid-latitudes that show decreases with altitude driven by wa-
ter vapor (Cohan et al., 1999; O’Sullivan et al., 1999; Hudman et al., 2007; Snow et al.,
2007; Zhang et al., 2008). The model reproduces this lack of vertical structure in the
Arctic spring observations and attributes it to a strong vertical gradient of UV radiation20

(low solar angles, thick ozone columns) compensating for the water vapor gradient and
the influx of peroxides from northern mid-latitude into upper troposphere.

The standard simulation overestimates HO2 and H2O2 by up to a factor of 2. Olson
et al. (2010) find a similar discrepancy for HO2 in their box model results, and show
that it cannot be resolved by adjusting observed concentrations of other species (such25

as NO or BrO) within their measurement uncertainties. A similar overestimate of HO2
and H2O2 was previously found in TOPSE when comparing box model calculations to
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observations (Cantrell et al., 2003b; Wang et al., 2003). We propose below that aerosol
uptake of HO2 leading to a terminal sink for HOy could be particularly efficient in the
Arctic and explain the discrepancy between model and observations.

Median observed NOx concentrations increase from 13 pptv in the boundary layer to
21 pptv in the upper troposphere. The model is consistent, increasing from 16 pptv in5

the boundary layer to 33 pptv in the upper troposphere. April observations from TOPSE
at 60–80 N showed a mean NO concentration of 6 pptv (Wang et al., 2003), consistent
with the ARCTAS observations and with the model. A sensitivity model simulation with
no fuel emissions shows a 40% mean decrease of NOx along the ARCTAS flight tracks,
while a sensitivity simulation with no biomass burning emissions shows only a 5%10

decrease. We conclude that a large fraction of the NOx in ARCTAS was anthropogenic.
Peroxynitric acid (HNO4) is an important reservoir for HOx in the upper troposphere

at northern mid-latitudes (Jaeglé et al., 2001). ARCTAS observations are below the
detection limit in the lower troposphere due to thermal dissociation but increase to
30 pptv in the upper troposphere. The model reproduces the observed concentrations15

and vertical gradient within the measurement uncertainty.
Observed HCHO decreases with altitude, from 140 pptv near the surface to 25 pptv

in the upper troposphere. TOPSE observations by a similar absorption spectrometer
using a tunable lead-salt diode laser averaged 95 pptv below 0.2 km and 60 pptv at
6–8 km (Fried et al., 2003). A different laser source, based on tunable difference fre-20

quency generation (DFG), was employed in ARCTAS (Weibring et al., 2007; Richter
et al., 2009). Model values decrease from 50 pptv near the surface to 30 pptv in the
upper troposphere. The discrepancy below 3 km is outside the stated precision of the
measurements (26 pptv). Olson et al. (2010) find a similar discrepancy in their box
model simulation of the ARCTAS data (with the point-by-point median discrepancies25

range up to 75 pptv for altitudes between 0.5 and 3 km), and Fried et al. (2003) also
reported a low model bias relative to the TOPSE data. Previous GEOS-Chem eval-
uation with observed HCHO vertical profiles at northern mid-latitudes using a tunable
lead-salt diode laser by the same investigator show no such discrepancy (Palmer et al.,
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2003; Millet et al., 2006). Halogen radial chemistry and snow emissions of HCHO could
provide additional HCHO that is not included in the model at perhaps altitudes as high
as 0.5 km. However, this does not explain discrepancies between 0.5 and 3 km given
the lifetime of HCHO (hours). Singh et al. (2000) suggested a heterogeneous con-
version from CH3OH to HCHO, but we find no correlation between these two species5

below 4 km (R <0.01). Although these discrepancies are small, it is important that they
are resolved. Fried et al. (2010) will further discuss this. As pointed out in Sect. 5,
the source of HOx and HOy implied by the observed HCHO appears inconsistent with
independent calculations of HOx and HOy sinks from the ARCTAS observations.

4 HO2 uptake by aerosols10

4.1 Parameterization of uptake

A prominent feature of the comparison between model and observations in Fig. 1 is
the overestimate of HO2. Such a discrepancy has been reported in a number of previ-
ous model studies and tentatively attributed to HO2uptake by aerosols (Cantrell et al.,
1996a, 1996b; Plummer et al., 1996; Jaeglé et al., 2000; Kanaya et al., 2000; Som-15

mariva et al., 2004; de Reus et al., 2005; Sommariva et al., 2006). This uptake has
been reported in a number of laboratory studies but rates and mechanism are uncer-
tain (Jacob, 2000). It could be particularly important in the Arctic because of the low
temperature, relatively high aerosol, and slow photochemical cycling.

Figure 2 summarizes literature data of the γ(HO2) reactive uptake coefficient γ(HO2)20

for different surface types. γ(HO2) is defined as the fraction of HO2 collisions with
the aerosol surface resulting in reaction. Consistently high values (γ(HO2)> 0.2) are
observed for Cu-doped aqueous surfaces. Soluble copper is known to drive rapid cat-
alytic conversion of γ(HO2) to H2O2 by redox chemistry (Jacob, 2000). Other values
for aqueous surfaces at room temperature are also relatively high (γ(HO2) in the range25

0.07–0.2) except for concentrated H2SO4 (γ(HO2)< 0.01). However, γ(HO2) for con-
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centrated H2SO4 increases rapidly with decreasing temperature and exceeds 0.2 at
240 K. Reactive uptake coefficients in general increase with decreasing temperature,
reflecting negative temperature dependences of both the mass accommodation coef-
ficient α on the surface and the solubility constant (Kolb et al., 1995). Solid surfaces
do not take up HO2 significantly. To our knowledge no data are available for γ(HO2) on5

organic surfaces.
A high reactive uptake probability (γ(HO2)>0.1) is needed for aerosol uptake to com-

pete in the atmosphere with other chemical sinks for HOx. This requires that the
aerosol be aqueous. Relative humidity (RH) relative to liquid water was typically in
the range 40–80% during ARCTAS. Aerosol measurements aboard the P-3 show that10

non-refractory submicron particles contributed more than 90% of total surface area
(McNaughton et al., 2010). High-resolution Aerosol Mass Spectrometer (AMS; De-
Carlo et al., 2006) measurements aboard the DC-8 show an average mass composi-
tion for non-refractory submicron particles of 58% sulfate, 32% organic aerosol, 6%
ammonium, 3% nitrate, and 0.7% chloride (Cubison et al., 2008). An ammonium vs.15

sulfate molar plot for the AMS data (Fig. 3) shows dominance of the acidic NH4HSO4
form, although in some cases the aerosol was close to sulfuric acid while in other cases
it was fully neutralized as (NH4)2SO4. Because of metastability of the aqueous phase,
both NH4HSO4 and (NH4)2SO4 are expected to remain aqueous over the range of RH
values experienced in ARCTAS (Onasch et al., 1999; Martin et al., 2003b; Colberg20

et al., 2004). Sulfuric acid is aqueous under all conditions. In addition, Parsons et
al. (2004) found that the crystallization RH of ammonium sulfate aerosol decreases as
the organic fraction increases. We assume therefore that the aerosol surface area in
ARCTAS was mainly contributed by aqueous particles.

To investigate the role of HO2 uptake by aerosol in our ARCTAS simulations, we in-25

cluded the γ(HO2) parameterization of Thornton et al. (2008) as implemented in the
most recent standard versions of GEOS-Chem (v8-02-01 and beyond). This parame-
terization describes HO2 uptake by aqueous aerosol as driven by acid-base dissocia-
tion followed by the HO2(aq)+O−

2 reaction at an assumed pH 5, producing H2O2 that
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then volatilizes to the gas phase. It is clearly inconsistent with the prevailing acidic
conditions observed in ARCTAS (Fig. 3), and is also theoretically incorrect since it
describes HO2 uptake as a second-order process while the γ(HO2) parameterization
intrinsically describes a first-order process. Nevertheless, as shown in Fig. 2 (solid
line), it yields values of γ(HO2), that are consistent with those measured in the labora-5

tory for acidic surfaces, ganging from less than 0.05 near the surface to 0.4 in the upper
troposphere. Its temperature dependence (mainly driven by the Henry’s law constant
for HO2) is consistent with the laboratory data for concentrated H2SO4 (Fig. 2). We
adopt the Thornton et al. (2008) scheme here to compute γ(HO2) for want of anything
better and because it fits the overall laboratory data for acid aerosols.10

The fate of HO2 in aerosol phase is generally assumed to involve conversion to H2O2
followed by H2O2 volatilization (Jacob, 2000). However, this would exacerbate the over-
estimate of H2O2 in ARCTAS (Fig. 1). One possible solution would be protonation of
H2O2 to HOOH+

2 , a very strong oxidant (Oiestad et al., 2001), which would rapidly
react and convert to H2O. However, this requires normal acidity (pH<0) to be effective15

(Bach and Su, 1994). Such a mechanism could conceivably take place in concen-
trated H2SO4 aerosols, but not in the less acidic aerosol that prevailed under ARCTAS
conditions (Fig. 3).

Another possible solution is that HO2 uptake may not produce H2O2. Cooper and Ab-
batt (1996) proposed that HO2 could react with HSO−

4 , forming the peroxymonosulfate20

radical SO−
5 :

HO2+HSO−
4 →SO−

5 +H2O (R6)

The possible atmospheric chemistry of the SO−
5 radical is discussed by Jacob (1986),

who proposed that the dominant sinks would be the exothermic reactions with O−
2 ,

HCOO−, and HSO−
3 , all producing the peroxide HSO−

5 (peroxymonosulfate). Peroxy-25

monosulfate is the first dissociated form of Caro’s acid (H2SO5, highly hygroscopic solid
at room temperature, melting point 45 ◦C), which has first and second acid dissociation
constants (pKa) of 0.4 and 9.1 (Elias et al., 1994). As a peroxide, HSO−

5 is a member
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of the HOy family and so its formation does not necessarily represent a terminal sink of
HOx. However, Jacob (1986) suggested that the subsequent fate of HSO−

5 in an acidic
environment might follow Reactions (R7) and (R8), terminally losing HOy by conversion
to water:

HSO−
5 +OH→SO−

5 +H2O (R7)

HSO−
5 +HSO−

3 +H+→2SO2
4+2H+ (R8)

Another possible mechanism for uptake of HO2 by sulfate aerosols might involve the5

formation of an HO2 complex. Miller and Francisco (2001) found from quantum chem-
ical calculations that a stable HO2-H2SO4 complex can be formed in the gas as well
as in the aerosol phase. HSO−

4 has similar potential for bonding with HO2 molecules
(C. Miller, personal communication, 2009). The fate of these complexes is unknown.
They must not decompose to the original reactants if they are to represent an ac-10

tual HOx or HOy sink. One possibility would be conversion to SO−
5 by Reaction (R6),

with subsequent chemistry forming HSO−
5 and eventually returning water as described

above.

4.2 Application to the ARCTAS simulation

Figure 1 shows the results of two simulations, one with HO2 aerosol uptake producing15

H2O2 (γ(HO2 → 0.5H2O2), dashed blue line), and the other with HO2 aerosol uptake
leading to a permanent HOy sink as postulated above (γ(HO2 →products), red line).
The first simulation worsens the overestimate of H2O2, as aerosol uptake now com-
petes with other HOx sinks such as OH+HO2 and CH3O2+HO2 that do not produce
H2O2. The correction to HO2 is also insufficient in the upper troposphere as H2O2 can20

be recycled to HOx by photolysis. The second simulation provides a much better fit to
the observations for both HO2 and H2O2 (within their measurement uncertainties), and
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also improves the fit for OH and CH3OOH, while not significantly affecting the fits for
the other species. OH concentrations decrease by up to 58% in the upper troposphere.

Figure 4 shows scatterplots of simulated vs. observed OH, HO2, H2O2, and
CH3OOH concentrations for the model simulation with γ(HO2 →products) and the en-
semble of tropospheric observations in ARCTAS. The slopes of the reduced-major-axis5

regression lines are within the measurement accuracy for all species. Correlation co-
efficients for OH (R=0.61) and HO2 (R=0.81) are only slightly improved from the gas-
phase-only simulation (R=0.58 and R=0.78 respectively). Correlations are weak for
H2O2(R=0.45) and CH3OOH (R=0.50), which might reflect the narrow dynamic range.
The HO2 variability is mostly correlated with solar zenith angle in both the observations10

and the model (R=−0.80 in both cases), with additional significant correlations with
water vapor (R=0.30 observed, R=0.40 model) and temperature (R=0.30 observed,
R=0.40 model) above 4 km. The correlation of HO2 concentrations with temperature
offers some supporting evidence for a sink from aerosol uptake. The DC-8 did not
include measurements of aerosol surface area that we could correlate to HO2 concen-15

trations, but in the model we find that temperature is a much stronger driver of γ(HO2)
variability than aerosol surface area. No correlation is found between HO2 and NOx
concentrations in either the model or the observations.

5 Budget of HOx radicals in Arctic spring

We now proceed to quantify the budgets of HOx and HOy in Arctic spring as constrained20

by the ARCTAS observations and derived from the model. We use for that purpose
the model including terminal loss of HOy from reactive uptake of HO2 by aerosols as
described in Sect. 4.1. Even though the process is uncertain, it represents our best
hypothesis for explaining the HOx and peroxide observations in ARCTAS.

Figure 5 shows the median vertical profiles of HOx sources and sinks computed from25

the observed ARCTAS concentrations, gas-phase reaction rate constants from JPL06
and IUPAC06, and γ (HO2 → products) from Thornton et al. (2008). The CH3O2 con-
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centration is assumed to be 30% of that of HO2on the basis of the model HO2/CH3O2
ratio. HO2 aerosol uptake is computed using local model values for γ and aerosol
surface area. O (1D)+H2O and HCHO photolysis are the major HOx sources below
4 km. Above that altitude the photolysis of H2O2 becomes dominant, a remarkable
feature that has not been reported to our knowledge anywhere else in the troposphere.5

It reflects the low OH concentrations in Arctic spring and therefore the dominance of
photolysis as a H2O2 sink rather than reaction with OH (Fig. 5).

The HO2+HO2 reaction is the principal HOx sink in the lower troposphere but HO2
uptake by aerosol becomes dominant above 5 km. HOx sinks from CH3O2 + HO2
and OH+HO2 are relatively small. The NOx-based HOx sinks including HO2+NO2,10

OH+HNO4, and OH+NO2 are negligibly small because of the low NOx concentra-
tions, so that ozone production is NOx-limited throughout the troposphere (Jaeglé et
al., 2001). In contrast, previous aircraft campaigns at northern mid-latitudes (SONEX,
INTEX-A) found that the NOx-based reactions dominated the HOx sink in the upper
troposphere, implying NOx-neutral or NOx-saturated conditions for ozone production15

(Jaeglé et al., 2000; Ren et al., 2008). The observed NOx concentrations in the upper
troposphere in these campaigns (medians of 93 pptv in SONEX, 440 pptv in INTEX-A)
are much higher than in ARCTAS (33 pptv), reflecting major sources at northern mid-
latitudes from convective injection of pollution and lightning (Jaeglé et al., 1998; Allen
et al., 2000; Hudman et al., 2007).20

We see from Fig. 5 that HO2 uptake by aerosols is crucial for balancing the HOx
sources with the HOx sinks independently computed from observations, at least in
the upper troposphere. There the main gas-phase sinks (HO2+HO2, CH3O2+HO2,
OH+HO2) can balance only 20% of the HOx source. With HO2 uptake by aerosol in-
cluded in the budget, the total HOx sinks balance 50% of the HOx sources in the lower25

troposphere and 70% in upper troposphere. The imbalance in the lower troposphere
reflects the high observed HCHO concentrations (Fig. 1), for which we have no expla-
nation. The aerosol sink is ineffective in the lower troposphere because of the relatively
high temperatures (average T=258 K at 0–2 km, resulting in γ(HO2)=0.06).
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Figure 5 also shows the median vertical profiles of instantaneous HOy source and
sink terms, again computed from the measurements. The main HOy sources are O

(1D)+H2O and HCHO photolysis. The main sinks are HO2 uptake by aerosol and
the gas-phase OH+CH3OOH reaction. OH+H2O2 is relatively unimportant due to its
much slower rate constant (1.8×10−12 cm3 molecules−1 s−1, no temperature depen-5

dence) compared to OH + CH3OOH (3.8×10−12 exp(200/T) cm3 molecules−1 s−1) as
given by JPL06. Such a dominance of the gas-phase HOy sink by the OH+CH3OOH
reaction has not been reported before to our knowledge, except in deep convective
outflow where H2O2 has been scavenged but not CH3OOH (Cohan et al., 1999). We
attribute it to the low concentrations of NOx in Arctic spring, suppressing the NOx-based10

HOx sinks (see discussion above) and promoting CH3OOH formation.
Figure 5 shows an imbalance between HOy chemical sources and sinks that reverses

sign with altitude. The HOy sink balances 30% of the source below 3 km, 92% at 3–
6 km, and 170% above 6 km. The HOy lifetime is 2–6 d, sufficiently long that additional
terms may be relevant in the HOy budget including long-range transport, wet and dry15

deposition, and aqueous-phase oxidation of SO2 by H2O2 in clouds. To consider the
effect of these terms, we conducted a HOy budget analysis in the GEOS-Chem model
averaged over the 60–90 N circumpolar Arctic cap. Results are shown in Fig. 6. The
budget in the model is balanced by mass conservation; the excess of HOy sources
over HOy sinks in the tropospheric column reflects accumulation of peroxides over the20

course of April.
We see from Fig. 6 that influx of peroxides from northern mid-latitudes in the model

accounts for 50% of the total HOy source above 6 km and 20% at 3–6 km. This explains
the chemical imbalance in the HOy budget constrained by the ARCTAS observations
(Fig. 5). Considering the dominant role of H2O2 photolysis as a source of HOx above25

5 km (Fig. 5), this implies a significant contribution of northern mid-latitudes to the
HOx budget of the Arctic free troposphere. Below 3 km, we find in the model that cloud
chemistry and deposition of H2O2 together account for 40% of the HOy sink. This helps
but is insufficient to correct the chemical imbalance in the HOy budget constrained by
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the observations. As in the case of the HOx budget, the residual imbalance reflects the
high observed HCHO.

Figure 7 gives a summary diagram of the HOx and HOy cycling as represented by our

model for Arctic spring. Primary sources include the O (1D)+H2O reaction within the
region (70%) and transport of peroxides from northern mid-latitudes (30%). Photolysis5

of HCHO produced from oxidation of methane by OH is a major amplifying source of
HOy, of comparable magnitude to the primary source from O (1D)+H2O. HO2 aerosol
uptake accounts for 35% of the HOy sink. Cycling within the HOx family (between
OH and peroxy radicals) is relatively efficient (chain length=3.4) given the low NOx
concentrations. This is because formation of peroxides to terminate the chain is slow10

as a result of the low HOx concentrations.

6 Implications

The ARCTAS observations show a large missing sink of HOx and HOy in Arctic spring
relative to current understanding. If our hypothesis that this reflects a fast terminal loss
of HO2 to aerosols is correct, then it implies a significant sensitivity of the oxidizing15

power of the Arctic atmosphere to aerosol perturbations. A measure of this effect is
provided by the difference in Fig. 1 between our standard simulation (solid red line)
and the gas-only simulation (dashed green line). In the absence of aerosols, OH and
HO2 concentrations would increase on average respectively by 48% and 45% in the
tropospheric column, the largest effects being in the upper troposphere where uptake20

by aerosol is particularly efficient (low temperatures).
Laboratory data show a wide range for the reactive uptake coefficient γ(HO2), as

summarized in Fig. 2. Values are generally high for aqueous surfaces and appear to
have a strong temperature dependence. Both of these factors are important for HO2
uptake in the Arctic and require further study. In particular, we have no information on25

HO2 uptake by organic aerosol.
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The HO2 chemistry in the aerosol phase is another critical issue to resolve. The
only product study to our knowledge is that of Loukhovitskaya et al. (2009), who found
H2O2 to be the main product for solid NaBr surfaces. It is conventionally assumed
that uptake by aqueous aerosols would also produce H2O2 from the HO2(aq)+O−

2 self-
reaction (Thornton et al., 2008) or from catalytic cycles involving transition metal ions5

(Graedel et al., 1986). We find that an HO2 uptake mechanism producing H2O2 would
greatly overestimate the observed H2O2 concentrations in ARCTAS. In order to fit the
observations, we propose an alternate mechanism involving reaction of HO2 with acid
sulfate to produce peroxymonosulfate (HSO−

5 ). This mechanism and its sensitivity to
aerosol acidity need to be tested in the laboratory. HO2 uptake by aerosols has op-10

posite effects on H2O2 depending on whether H2O2 is produced or not as a result of
uptake. Changes in aerosol types (biomass burning vs. fossil fuel) or aerosol acidity
(sulfuric acid vs. ammonium) could thus have large effects on H2O2. This may be
relevant to explaining the complex long-term trend of H2O2 observed in Greenland ice
cores (Möller, 1999).15
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Jaeglé, L., Jacob, D. J., Brune, W. H., Faloona, I., Tan, D., Heikes, B. G., Kondo, Y., Sachse,
G. W., Anderson, B., Gregory, G. L., Singh, H. B., Pueschel, R., Ferry, G., Blake, D. R., and15

Shetter, R. E.: Photochemistry of HOxin the upper troposphere at northern midlatitudes, J.
Geophys. Res.-Atmos., 105, 3877–3892, 2000.
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Figure 1 Median vertical profiles of HO2, OH, H2O2, CH3OOH, NO, NO2, HCHO, 
and HNO4 concentrations during ARCTAS in the North American Arctic (1-21 April 
2008). Observations from the DC-8 aircraft (black lines) are compared to three GEOS-
Chem model simulations: 1) without HO2 uptake by aerosol (green dashed line), referred 
to in the text as “standard GEOS-Chem”; 2) with HO2 uptake yielding H2O2 (blue dashed 
line); 3) with HO2 uptake not yielding H2O2 (solid red line). All concentrations are in unit 
of pptv except OH (ppqv). Most data were collected under sunlit conditions, between 
0800 and 1800 local time. Stratospheric data were excluded as described in the text. 

 

 

 

 

 

Fig. 1. Median vertical profiles of HO2, OH, H2O2, CH3OOH, NO, NO2, HCHO, and HNO4
concentrations during ARCTAS in the North American Arctic (1–21 April 2008). Observations
from the DC-8 aircraft (black lines) are compared to three GEOS-Chem model simulations: (1)
without HO2 uptake by aerosol (green dashed line), referred to in the text as “standard GEOS-
Chem”; (2) with HO2 uptake yielding H2O2(blue dashed line); (3) with HO2 uptake not yielding
H2O2 (solid red line). All concentrations are in unit of pptv except OH (ppqv). Most data were
collected under sunlit conditions, between 08:00 and 18:00 local time. Stratospheric data were
excluded as described in the text.
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Figure 2 Laboratory data reported in the literature for the reactive uptake coefficient γ 
(HO2) by different surfaces as a function of temperature. Vertical arrows indicate “greater 
than” or “less than”. Open symbols indicate aqueous surfaces, closed symbols indicate 
copper-doped aqueous surfaces, and other symbols indicate solid surfaces (noted as (s) in 
the legend). The solid red line is the median value of γ(HO2) computed in GEOS-Chem 
along the ARCTAS flight tracks using the Thornton et al. [2008] parameterization. 
Literature references are given by footnotes in legend: (a) Mozurkewich et al. [1987]; (b) 
Hanson et al. [1992]; (c) Gershenzon et al. [1995]; (d) Cooper and Abbatt [1996]; (e) 
Saathoff et al. [2001]; (f) Remorov et al. [2002]; (g) Thornton and Abbatt [2005]; (h) 
Taketani et al. [2008]; (i) Taketani et al. [2009], (j)Loukhovitskaya et al. [2009]. 

 

 

 

Fig. 2. Laboratory data reported in the literature for the reactive uptake coefficient γ (HO2)
by different surfaces as a function of temperature. Vertical arrows indicate “greater than” or
“less than”. Open symbols indicate aqueous surfaces, closed symbols indicate copper-doped
aqueous surfaces, and other symbols indicate solid surfaces (noted as (s) in the legend). The
solid red line is the median value of γ(HO2) computed in GEOS-Chem along the ARCTAS
flight tracks using the Thornton et al. (2008) parameterization. Literature references are given
by footnotes in legend: (a) Mozurkewich et al. (1987); (b) Hanson et al. (1992); (c) Gershen-
zon et al. (1995); (d) Cooper and Abbatt (1996); (e) Saathoff et al. (2001); (f) Remorov et
al. (2002); (g) Thornton and Abbatt (2005); (h) Taketani et al. (2008); (i) Taketani et al. (2009),
(j) Loukhovitskaya et al. (2009).
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Figure 3 Scatterplot of observed ammonium vs. sulfate submicron aerosol 
concentrations measured aboard the DC-8 aircraft during ARCTAS-A (April 2008). The 
observed points are colored by altitude (km). The data from the first two flights (April 1 
and 4) are excluded due to low quality of the ammonium data. In red is the linear least 
squares regression line for all altitudes.  

 

 

 

Fig. 3. Scatterplot of observed ammonium vs. sulfate submicron aerosol concentrations mea-
sured aboard the DC-8 aircraft during ARCTAS-A (April 2008). The observed points are colored
by altitude (km). The data from the first two flights (1 and 4 April) are excluded due to low quality
of the ammonium data. In red is the linear least squares regression line for all altitudes.
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Figure 4 Scatterplots of simulated vs. observed HO2, OH, H2O2, and CH3OOH 
concentrations, for the model simulation with γ(HO2→products) and the ensemble of 
tropospheric observations during ARCTAS (April 2008). The red solid line is the reduced 
major axis regression line. Panel titles give the correlation coefficients and regression 
slopes. 

 

 

 

Fig. 4. Scatterplots of simulated vs. observed HO2, OH, H2O2, and CH3OOH concentrations,
for the model simulation with γ(HO2 →products) and the ensemble of tropospheric observations
during ARCTAS (April 2008). The red solid line is the reduced major axis regression line. Panel
titles give the correlation coefficients and regression slopes.
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Figure 5 Median vertical profiles of major HOx and HOy sources and sinks computed 
from observed tropospheric concentrations in ARCTAS (April 2008). Values are 
instantaneous rates. Gas-phase rate constants are from JPL06 and IUPAC06. HO2 uptake 
by aerosol is computed with a reaction probability γ(HO2 → products) from Thornton et 
al. [2008].  Stratospheric data are excluded as described in the text.   

Fig. 5. Median vertical profiles of major HOx and HOy sources and sinks computed from
observed tropospheric concentrations in ARCTAS (April 2008). Values are instantaneous rates.
Gas-phase rate constants are from JPL06 and IUPAC06. HO2 uptake by aerosol is computed
with a reaction probability γ(HO2 →products) from Thornton et al. (2008). Stratospheric data
are excluded as described in the text.
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Figure 6 Circumpolar GEOS-Chem model budget of HOy for the Arctic tropospheric 
column (60-90N) during ARCTAS (1-21 April 2008). Mean production rates (P) and loss 
rates (L) are shown for three altitude bands. The transport term describes exchange with 
northern mid-latitudes south of 60N.  

 

 

 

 

 

 

Fig. 6. Circumpolar GEOS-Chem model budget of HOy for the Arctic tropospheric column
(60–90 N) during ARCTAS (1–21 April 2008). Mean production rates (P) and loss rates (L)
are shown for three altitude bands. The transport term describes exchange with northern mid-
latitudes south of 60 N.
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Figure 7 Schematic diagram of HOx-HOy chemistry in Arctic spring as constructed 
from the GEOS-Chem model simulation of the ARCTAS observations. Values are 
tropospheric column averages for April 2008 over the Arctic cap (60-90N). Masses of 
chemicals within the domain (in parentheses) are in units of Mmol and rates are in units 
of Mmol d-1.  The dashed line for HCHO production indicates that it is not a HOy sink.  

 

 

 

 

 

 

Fig. 7. Schematic diagram of HOx-HOy chemistry in Arctic spring as constructed from the
GEOS-Chem model simulation of the ARCTAS observations. Values are tropospheric column
averages for April 2008 over the Arctic cap (60–90 N). Masses of chemicals within the domain
(in parentheses) are in units of Mmol and rates are in units of Mmol d−1. The dashed line for
HCHO production indicates that it is not a HOy sink.
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