Supplement 1. PFC emissions from UNFCCC data

Perfluorocarbon (PFC) emission are reported to UNFCCC by 34 Annex I countries as part of their obligations as signatories to the 2 Kyoto Protocol (UNFCCC, 2009). Emissions are reported for CF₄, C₂F₆, C₃F₈, c-C₄F₈, C₄F₁₀, C₅F₁₂ and C₆F₁₄ in Gg for individual PFCs, 3 and total PFC emissions are reported in Gg (CO₂-e, using the GWPs (100-yr period) 6500 (CF₄), 9200 (C₂F₆), 7000 (C₃F₈), 8700 (c-4 C_4F_8), 7000 (C_4F_{10}), 7500 (C_5F_{12}), and 7400 (C_6F_{14}). Some countries also or solely (in particular the UK) report emissions of an 5 unspecified mix of PFCs in CO₂-e. To derive total individual PFC emissions in any one year (T), the global total of unspecified PFC 6 emissions is assumed to contain the same PFC mix as the global total of specified PFC emissions in that year (S). 7 Table S1 shows global emissions (in Gg) of specific PFCs as reported to UNFCCC (S), and total emissions (T) where any unspecified 8 mix of PFCs has been distributed according to the global total of specified PFC emissions. The UNFCCC data contain emissions from the 9 10 27 member countries of the European Community (EUC, Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, 11 Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, 12 Romania, Slovakia, Slovenia, Spain, Sweden, and the UK) as well as other individual European countries. The global totals reported 13 below contain emissions from all reporting countries and the EUC excluding individual countries which also report under the EUC sum. 14 Portugal, Ukraine and the UK (3) report total PFC emissions only. Australia, Austria, Belgium, Canada, Croatia, Czech Republic, 15 Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Monaco, Netherlands, New Zealand, 16 Norway, Poland, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the USA (31) report individual PFC 17 emissions. Austria, Finland, Germany, Japan, and the Netherlands (5) also report an unspecified PFC mix.

Table S1. PFC emission from UNFCCC (2009) data

	Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
CF ₄	S	8.58	7.86	7.16	6.77	6.19	6.16	6.31	6.04	5.87	5.74	5.59	4.63	4.47	4.08	3.86	3.8	3.6
	T	9.34	8.7	7.99	7.9	7.71	7.93	8.15	8.05	7.52	7.06	6.79	5.65	5.37	4.95	4.78	4.66	4.43
C_2F_6	S	1.27	1.18	1.11	1.1	1.06	1.03	1.07	1.03	1.03	1.03	0.93	0.78	0.81	0.72	0.67	0.64	0.64
	T	1.38	1.3	1.23	1.29	1.33	1.32	1.38	1.37	1.32	1.26	1.14	0.95	0.98	0.88	0.83	0.79	0.78
C_3F_8	S	0.025	0.024	0.026	0.026	0.03	0.036	0.041	0.043	0.035	0.021	0.046	0.049	0.044	0.06	0.046	0.046	0.049
	T	0.027	0.026	0.029	0.03	0.037	0.046	0.054	0.058	0.045	0.025	0.055	0.06	0.053	0.073	0.057	0.057	0.06

Supplement 2. CF₄ emissions from primary aluminum production

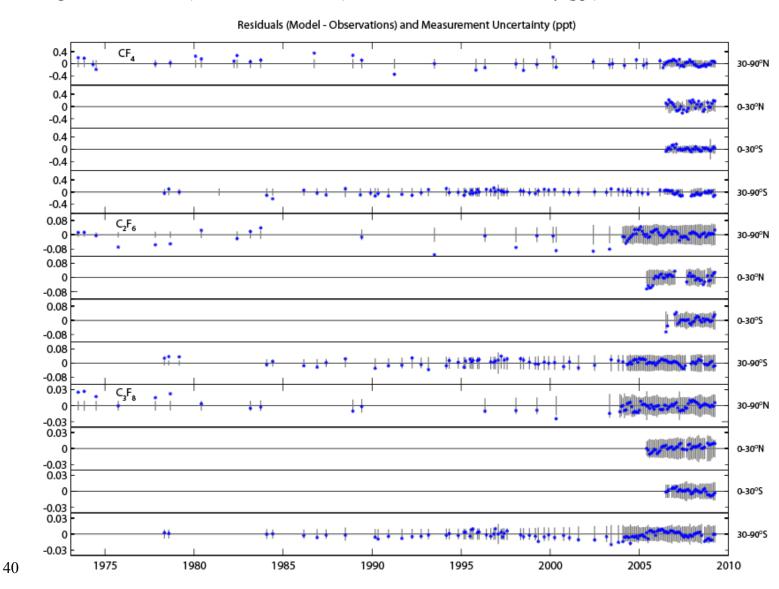
The International (Primary) Aluminium Institute (IAI) estimates PFC emissions from the global aluminum (AI) smelting industry, using data on smelting technology-specific Al production and PFC (CF₄ and C₂F₆) emission factors (EF) in their IAI Anode Effect surveys (1996; 2000, 2001, 2003-2008, 2009b, a). Until recently IAI advised that most Chinese Al was produced via PFPB (Point Feed Pre-Bake) technology, and assumed that the time-dependent Chinese CF₄ EF are the same as the average deduced for PFPB smelters participating in the global IAI Anode Effect surveys as China did not participate (2009b, a). In 1990, the Al producers surveyed by IAI emitted CF₄ at ~0.3 kg/tonne Al, declining to ~0.04 kg/tonne Al in 2006 (2009b). IAI now advises that PFPB EF for Chinese Al production may be higher based on a recent survey of 8 PFPB Chinese smelters with an average EF 2.6 times the global PFTB technology average (2009a). Assuming the EF is constant in time, revised time dependent CF₄ emissions were calculated for Chinese and global Al smelting (Table S2).

Table S2. CF₄ emissions from primary aluminum production

31

	1990	1995	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
1. Global CF ₄ emissions (Gg) ⁺	11.4	7.39	7.70	7.69	7.10	4.71	5.00	4.50	4.60	3.46	3.19	3.41	3.37
2. Chinese aluminum production (Mt)*				2.60	2.79	3.37	4.32	5.55	6.69	7.81	9.35	12.6	13.1
3. PFPB CF ₄ emission factor (kg/tonne) ⁺	0.310	0.097	0.080	0.091	0.080	0.080	0.061	0.053	0.047	0.038	0.038	0.038	0.038
4. Chinese CF ₄ emissions (Gg) ^{&}				0.24	0.22	0.25	0.26	0.29	0.31	0.30	0.36	0.48	0.50
5. Global CF ₄ emissions (excl. China) ^{\$}				7.46	6.88	4.55	4.73	4.21	4.28	3.17	2.83	2.94	2.87
6. Revised Chinese CF ₄ emissions (Gg) ⁼				0.61	0.58	0.66	0.69	0.76	0.82	0.77	0.92	1.24	1.29
7. Revised global CF ₄ emission (Gg) ^{&}				8.07	7.46	5.11	5.42	4.97	5.10	3.94	3.75	4.18	4.16

⁺International (Primary) Aluminium Institute (1996; 2000, 2001, 2003-2008, 2009b, a)


- $^{\$}$ Global CF₄ emissions (excl. China) = global China (= 1 4)
- ⁼Revised CF₄ Chinese emissions = Chinese CF₄ emissions * 2.6 (= 4 * 2.6)
- Revised global CF₄ emissions = Global CF₄ emissions (excluding China) + Revised Chinese CF₄ emissions (= 5 + 6)

^{*}International Aluminium Institute (IAI) http://www.world-aluminium.org/Statistics/Historical+statistics)

[&]Chinese CF₄ emissions = Chinese aluminum production * standard PFPB emission factor (= 2 * 3)

Supplement 3. Residuals and Measurement Uncertainty

Figure S3. Residuals (Model – Observations) and Measurement Uncertainty (ppt)

Residuals as modeled minus observed mixing ratios (blue dots) vs. measurement uncertainty (gray bars) for CF_4 , C_2F_6 , and C_3F_8 in each semi-hemispheric model box. Residuals are generally smaller than the measurement uncertainty indicating that the derived emissions are consistent with the measurements. Residuals that lie outside of the measurement uncertainty may have occurred when the sampled air was not truly representative of the semi-hemispheric background.