Global distribution of the effective aerosol hygroscopicity parameter for CCN activation

K. J. Pringle¹, H. Tost¹, A. Pozzer^{1,2}, U. Pöschl¹, and J. Lelieveld^{1,2}

¹Max Planck Institute for Chemistry, Mainz, Germany ²The Cyprus Institute, Energy, Environment and Water Research Centre, Nicosia, Cyprus

1 Introduction

This supplement contains an alternative data-set of simulated κ values in which κ is calculated considering the hydrophillic particles only. This is equivalent to the κ_a parameter as presented and discussed by Rose et al. (2008) and Gunthe et al. (2009). This is different from the values in the main text, which show the κ calculated considering both CCN active and inactive particles.

Alternative (κ_a) versions of Tables 1 to 4, and Figures 1 and 2 are shown.

Correspondence to: K. J. Pringle (kirsty.pringle@mpic.de)

References

- Allan, J. D., Baumgardner, D., Raga, G. B., Mayol-Bracero, O. L., Morales-Garca, F., Garca-Garca, F., Montero-Martnez, G., Borrmann, S., Schneider, J., Mertes, S., Walter, S., Gysel, M., Dusek, U., Frank, G. P., and Krmer, M.: Clouds and aerosols in Puerto Rico – a new evaluation, Atmospheric Chemistry and Physics, 8, 1293–1309, http://www.atmos-chem-phys.net/8/1293/2008/, 2008.
- Bougiatioti, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., Nenes, A., and Mihalopoulos, N.: Cloud condensation nuclei measurements in the marine boundary layer of the Eastern Mediterranean: CCN closure and droplet growth kinetics, Atmospheric Chemistry and Physics, 9, 7053–7066, 2009.
- Broekhuizen, K., Chang, R.-W., Leaitch, W. R., Li, S.-M., and Abbatt, J. P. D.: Closure between measured and modeled cloud condensation nuclei (CCN) using size-resolved aerosol compositions in downtown Toronto, Atmospheric Chemistry and Physics, 6, 2513–2524, 2006.
- Chang, R. Y.-W., Slowik, J. G., Shantz, N. C., Vlasenko, A., Liggio, J., Sjostedt, S. J., Leaitch, W. R., and Abbatt, J. P. D.: The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: Relationship to degree of aerosol oxidation, Atmospheric Chemistry and Physics Discussions, 9, 25 323–25 360, 2009.
- Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles, Science, 312, 1375–1378, doi:10.1126/science.1125261, 2006.
- Guibert, S., Snider, J. R., and Brenguier, J.-L.: Aerosol activation in marine stratocumulus clouds: 1. Measurement validation for a closure study, J. Geophys. Res. - Atmos., 108(D15), doi:10.1029/2002JD002 678, 2003.
- Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pschl, U.: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity, Atmospheric Chemistry and Physics, 9, 7551–7575, http: //www.atmos-chem-phys.net/9/7551/2009/, 2009.
- Hudson, J. G.: Variability of the relationship between particle size and cloud-nucleating ability, Geophys. Res. Lett., 34, doi:10.1029/2006GL028 850, 2007.
- Kandler, K. and Shütz: Climatology of the Average Water-soluble Volume Fraction of Atmospheric Aerosol, Atmos. Res, 07, 77– 92, 2007.
- Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O., and U., P.: Cloud condensation nuclei in polluted air and biomass burning smoke near the megacity Guangzhou, China Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity, Atmospheric Chemistry and Physics Discussions, 8, 17 343–17 392, http://www.atmos-chem-phys-discuss. net/8/17343/2008/acpd-8-17343-2008.pdf, 2008.
- Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L., Dunlea, E. J., Roberts, G. C., Tomlinson, J. M., Collins, D. R., Howell, S. G., Kapustin, V. N., McNaughton, C. S., and Zhou, J.: Aerosol optical properties relevant to regional remote sens-

ing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B, Atmospheric Chemistry and Physics Discussions, 9, 12519–12558, http://www. atmos-chem-phys-discuss.net/9/12519/2009/, 2009.

- Vestin, A., Rissler, J., Swietlicki, E., Frank, G. P., and Andreae, M. O.: Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling, J. Geophys. Res. - Atmos., 112, doi: 10.1029/2006JD008 104, 2007.
- Zhou, J., Swietlicki, E., Hansson, H. C., and Artaxo, P.: Submicrometer aerosol particle size distribution and hygroscopic growth measured in the Amazon rain forest during the wet season, Journal of Geophysical Research (Atmospheres), p. doi:10.1029/2000JD000203, 2002.
 - •••

Table 1. Simulated global and regional mean κ_a values (and standard deviation (St Dev)) at the surface and at the simulated PBL height under present day conditions. Standard deviation is calculated for the year from 5-hourly average data. Difference columns show the absolute difference between κ_t and κ_a for the region.

Region	Area (10 ¹³ m ²)	Mean κ_a Surface	St Dev Surface	Mean <i>k_a</i> PBL height	St Dev PBL height	Surface difference $(\kappa_a - \kappa_t)$	PBL difference $(\kappa_a - \kappa_t)$
Global (Continental)	14.4	0.34	0.21	0.34	0.20	0.07	0.07
Global (Marine)	37.0	0.75	0.23	0.64	0.23	0.04	0.04
N. America	1.61	0.37	0.16	0.36	0.15	0.07	0.07
S. America	1.90	0.24	0.18	0.26	0.16	0.07	0.07
Africa	3.48	0.25	0.15	0.26	0.13	0.10	0.09
Europe	1.14	0.45	0.17	0.42	0.16	0.10	0.10
Asia	3.64	0.28	0.16	0.28	0.14	0.07	0.07
Australia	0.87	0.29	0.19	0.31	0.17	0.09	0.08
N. Atlantic	1.25	0.64	0.16	0.52	0.17	0.05	0.04
Southern Ocean	1.56	0.93	0.09	0.83	0.15	0.01	0.02

Table 2. Comparison between observed and modelled κ_a values. ^{*A*} κ calculated from reported aerosol soluble fraction, following Gunthe et al. (2009). Most measurement sites were surface campaigns, with the exception of Shinozuka et al. (2009) and Hudson (2007), which are flight data. For flight data an average altitude of approx. 1500 (m) was assumed.

Site	Region Reference		κ observed	κ model
1	Amazan	$C_{\rm unthe at al.}$ (2000)	0.16+0.06	0.16
1	Alliazoli	Guilline et al. (2009)	0.10 ± 0.00	0.10
2	China	Rose et al. (2008)	0.3	0.46
3	Mexico	Shinozuka et al. (2009)	0.2 - 0.3	0.38
4	US West Coast	Shinozuka et al. (2009)	0.176 - 0.47	0.25
5	Puerto Rico	Allan et al. (2008)	0.6 ± 0.2	0.72
6	Antigua	Hudson (2007)	0.87 ± 0.24	0.75
8	Amazon	Vestin et al. $(2007)^A$	0.148	0.11
9	Amazon	Zhou et al. $(2002)^{A}$	0.115	0.15
10	Tenerife	Guibert et al. $(2003)^A$	0.43	0.67
11	Germany (Feldberg)	Dusek et al. (2006)	0.15 - 0.3	0.41
12	Germany (Munich)	Kandler and Shütz (2007) ^A	0.36	0.37
13	Eastern Mediterranean	Bougiatioti et al. (2009)	0.24	0.49
14	Toronto	Broekhuizen et al. $(2006)^A$	0.15 - 0.3	0.38
15	Ontario	Chang et al. (2009)	0.3	0.33

Region	Area	Mean <i>k</i>	x, y, t ₅		х, у		t ₅		t _m	
	(10^{13} m^2)	Surface	St Dev	n	St Dev	n	St Dev	n	St Dev	n
Global (Cont.) Global (Marine)	14.4 37.0	0.34	0.21	4761936	0.17	2718	0.02	1752	0.02	12 12
N. America	1.61	0.38	0.16	420480	0.05	240	0.02	1752	0.02	12
S. America Africa	1.90 3.48	0.24 0.25	0.18 0.15	367920 672768	0.15 0.11	210 384	0.02 0.03	1752 1752	0.01 0.03	12 12
Europe Asia	1.14 3.64	0.46 0.28	0.17 0.16	350400 1038936	0.09 0.08	200 593	0.06 0.03	1752 1752	0.05 0.03	12 12
Australia	0.87	0.30	0.19	173448	0.14	99	0.04	1752	0.02	12
N. Atlantic Southern Ocean	1.25 1.56	0.63 0.93	0.16 0.09	264552 346896	0.07 0.05	151 198	0.10 0.04	1752 1752	0.09 0.04	12 12

Table 3. Standard deviation (St Dev) of κ values calculated considering variation in i) all dimensions (x, y, t₅ = area and time (t₅ = 5 hourly time intervals), ii) area only (x, y), iii) time only (t₅ = 5 hourly time intervals) and iv) time only (t_m = monthly mean values used). For each standard deviation value the adjacent column (to the right) shows the number of data points used in the calculation (n).

Table 4. Simulated global and regional mean κ_a values (and standard deviation) at the surface and at the simulated PBL height under preindustrial conditions. Difference columns show the absolute difference between κ_t and κ_a for the region.

Region	Area (10 ¹³ m ²)	Mean <i>k_a</i> Surface	St. Dev Surface	Mean κ_a PBL height	St. Dev PBL height	Surface difference $(\kappa_a - s\kappa_t)$	PBL difference $(\kappa_a - \kappa_t)$
Global (Continental)	14.4	0.30	0.25	0.30	0.24	0.06	0.06
Global (Marine)	37.0	0.79	0.22	0.68	0.25	0.03	0.05
N. America	1.61	0.32	0.20	0.32	0.19	0.06	0.06
S. America	1.90	0.23	0.18	0.24	0.17	0.06	0.06
Africa	3.48	0.17	0.14	0.18	0.13	0.08	0.07
Europe	1.14	0.41	0.24	0.39	0.23	0.11	0.12
Asia	3.64	0.21	0.18	0.21	0.16	0.06	0.06
Australia	0.87	0.32	0.21	0.33	0.19	0.09	0.08
N. Atlantic	1.25	0.76	0.17	0.62	0.21	0.05	0.05
Southern Ocean	1.56	0.95	0.06	0.87	0.12	0.00	0.02

Figure 1. Annual mean distribution of κ_a at the surface simulated by EMAC.

Figure 2. Annual mean distribution of κ_a at the altitude of the planetary boundary layer.

www.jn.net