Chemical equation set and complete figures set

A.Pozzer^{1,2}, J. Pollmann¹, D. Taraborrelli¹, D. Helmig³, P. Jöckel⁴, P.Tans⁵, J.Hueber³, J.Lelieveld^{1,2}

1 EEWRC, The Cyrpus Institute, 20 Kavafi Street, 1645 Nicosia, Cyprus 2 Air Chemistry Department, Max-Planck Institute of Chemistry, PO Box 3060, 55020 Mainz, Germany 3 Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, UCB 450, CO 80309, USA

4 Deutsches Zentrum fuer Luft- und Raumfahrt, Oberpfaffenhofen, Wessling, Germany

5 NOAA/ESRL CMDL, R/E/CG1, 325 Broadway, Boulder, CO 80303, USA

pozzer@cyi.ac.cy

reaction	rate coefficient ru	reference/notes
OH + C ₄ H ₁₀ → HCHO + 0.4365 CH ₃ CHO + 0.4365 PA + 4.254 PINKO ₂	$1.69 \times 10^{-17} * T^2 * e^{(145/T)}$	a, b
$CL + C_4H_{10} \rightarrow HCHO + 0.3575 CH_3CHO + 0.3575 PA + 4.57 PINKO_2$	2.18×10^{-10}	a, b
$NO_3 + C_4H_{10} \rightarrow HCHO + 0.4365 \text{ CH}_3 \text{ CHO} + 0.4365 \text{ PA} + 4.2524 \text{ PINKO}_2$	$2.76 \times 10^{-12} * e^{(-3279/T)}$	с
OH + $IC_4H_{10} \rightarrow .206 PrO_2 + .794 CH_3COCH_3 + .794 CH_3O_2 + 1.206 PINKO_2$	$1.16 \times 10^{-17} * T^2 * e^{(225/T)}$	a, b
$CL + IC_4H_{10} \rightarrow 0.564 PrO_2 + 0.436 CH_3 COCH_3 + 0.436 CH_3O_2 + 1.564 PINKO_2$	1.43×10^{-10}	a, b
$NO_3 + IC_4H_{10} \rightarrow 0.206 PrO_2 + 0.794 CH_3COCH_3 + 0.794 CH_3O_2 + 1.206 PINKO_2$	1.06×10^{-16}	с
OH + $C_5H_{12} \rightarrow 1.4765$ HCHO + 0.349 CH ₃ CHO + 0.1745 EtO ₂ + 6.302 PINKO ₂	$2.44 \times 10^{-17} * T^2 * e^{(183/T)}$	a, b
$CL + C_5H_{12} \rightarrow 1.67$ HCHO + 0.220 CH_3 CHO + 0.11 EtO ₂ + 6.56 PINKO ₂	2.80×10^{-10}	a, b
$\rm NO_3 + C_5 H_{12} \rightarrow 1.4765~HCHO + 0.349~CH_3 CHO + 0.1745~EtO_2 + 6.302~PINKO_2$	8.7×10^{-17}	с
$\mathrm{OH} + \mathrm{IC}_5 \mathrm{H}_{12} \rightarrow 0.087 \; \mathrm{HCHO} + 0.384 \; \mathrm{CH3CHO} + 0.297 \; \mathrm{PrO}_2 \\ + 0.616 \; \mathrm{CH}_3 \mathrm{COCH}_3 \\ + 0.616 \; \mathrm{EtO}_2 \\ + 1.435 \; \mathrm{PINKO}_2 \\ - 0.616 \; \mathrm{CH}_3 \mathrm{COCH}_3 \\ + 0.616 \; \mathrm{EtO}_2 \\ + 0.435 \; \mathrm{PINKO}_2 \\ - 0.616 \; \mathrm{CH}_3 \mathrm{COCH}_3 \\ + 0.616 \; \mathrm{EtO}_2 \\ + 0.435 \; \mathrm{PINKO}_2 \\ - 0.616 \; \mathrm{CH}_3 \mathrm{COCH}_3 \\ - 0.616 \; \mathrm{EtO}_2 \\ + 0.616 \; \mathrm{EtO}_2 \\ + 0.616 \; \mathrm{CH}_3 \mathrm{COCH}_3 \\ - 0.616 \; \mathrm{EtO}_2 \\ - 0.616 \; \mathrm{EtO}_2 \\ - 0.616 \; \mathrm{CH}_3 \mathrm{COCH}_3 \\ - 0.616 \; \mathrm{EtO}_2 \\ - 0.616 \;$	3.70×10^{-12}	a, b
$\mathrm{CL} + \mathrm{IC}_5 \mathrm{H}_{12} \rightarrow 0.408 \mathrm{HCHO} + 0.750 \mathrm{CH3CHO} + 0.342 \mathrm{PrO}_2 + 0.250 \mathrm{CH}_3 \mathrm{COCH}_3 + 0.250 \mathrm{EtO}_2 + 3.04 \mathrm{PINKO}_2 + 0.250 \mathrm{CH}_3 + 0.250 \mathrm{CH}_3 + 0.250 \mathrm{EtO}_2 + 3.04 \mathrm{PINKO}_2 + 0.250 \mathrm{CH}_3 + 0.250 \mathrm{CH}_3 + 0.250 \mathrm{EtO}_2 + 3.04 \mathrm{PINKO}_2 + 0.250 \mathrm{CH}_3 + 0.250 \mathrm{EtO}_2 + 0.250 \mathrm{CH}_3 + 0.250 \mathrm{EtO}_2 + 0.250 \mathrm{CH}_3 + 0.250 \mathrm{EtO}_2 + 0.250 \mathrm{EtO}_2 + 0.250 \mathrm{EtO}_3 + 0.250 \mathrm{EtO}_2 + 0.250 \mathrm{CH}_3 + 0.250 \mathrm{EtO}_2 + 0.250 \mathrm{EtO}_$	2.20×10^{-10}	a,b
$\mathrm{NO_3} + \mathrm{IC_5H_{12}} \rightarrow 0.087 \ \mathrm{HCHO} + 0.384 \ \mathrm{CH3CHO} + 0.297 \ \mathrm{PrO_2} + 0.616 \ \mathrm{CH_3COCH_3} + 0.616 \ \mathrm{EtO_2} + 1.435 \ \mathrm{PINKO_2} + 0.000 \ \mathrm{CH_3COCH_3} + 0.000 \ \mathrm{PrO_2} + 0.000 \ \mathrm{CH_3COCH_3} + 0.000 \ \mathrm{PrO_2} + 0.000 \ \mathrm{PrO_2} + 0.000 \ \mathrm{CH_3COCH_3} + 0.000 \ \mathrm{PrO_2} + 0.000 \ \mathrm{CH_3COCH_3} + 0.000 \ \mathrm{PrO_2} + 0.000 \ \mathrm{CH_3COCH_3} + 0.000 \ \mathrm{PrO_2} + 0.000 \ $	1.62×10^{-16}	c
$\mathrm{PINKO}_2 + \mathrm{NO} \rightarrow 0.95~\mathrm{NO}_2 + 0.475~\mathrm{HO}_2 + 0.475~\mathrm{PINK} + 0.05~\mathrm{PINKNO}_3$	$\left(2.54 * e^{(360./T)} + 8.10 * e^{(270./T)}\right) \times 10^{-12}/2$	h
${\rm PINKO}_2 + {\rm CH}_3{\rm O}_2 \rightarrow 0.5 \ {\rm HO}_2 + 0.335 \ {\rm CH}_3{\rm OH} + 0.665 \ {\rm HCHO} + 0.335 \ {\rm HO}_2$	2×10^{-12}	h
$PINKO_2 + HO_2 \rightarrow PINKOOH$	$\left(4.30 * e^{(1040./T)} + 2.91 * e^{(1300./T)}\right) \times 10^{-13}/2$	h
$PINK + OH \rightarrow CO_2$	2×10^{-11}	d
$PINK + hv \rightarrow HO_2$	J-CH3CHO	d
$PINKNO_3 + OH \rightarrow NO_2$	$5. \times 10^{-12}$	
$PINKNO_3 + hv \rightarrow NO_2$	3.7*J-PAN	e
$PINKOOH + hv \rightarrow OH + 0.5 HO_2$	J-CH3OOH	f
$PINKOOH + OH \rightarrow PINKO_2$	$1.90 \times 10^{-12} * e^{(190./T)}$	a, b
$PINKOOH + OH \rightarrow OH$	$2. \times 10^{-11}$	9

Table 1: Reaction added to the MECCA submodel in EMAC .

^aSaunders et al. (1997a) ^bSaunders et al. (1997b) ^cAtkinson and Arey (2003), branching ratio like the OH reaction ^das general aldehyde ^ephotolysis scale with PAN photolysis rate ^fphotolysis scale with CH₃OOH photolysis rate ^grepresentative for the H-abstraction of these peroxides ^haverage between the reactions of the two different peroxides isomers

Model-observation comparison

Ethane (C_2H_6)

Comparison of simulated and observed C_2H_6 mixing ratios in nmol/mol for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the black line and the corresponding simulated standard deviation (w.r.t. time) by the dashed line.

Propane (C_3H_8)

Comparison of simulated and observed C_3H_8 mixing ratios in nmol/mol for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the black line and the corresponding simulated standard deviation (w.r.t. time) by the dashed line.

Comparison of simulated and observed C_4H_{10} mixing ratios in nmol/mol for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the solid line and the corresponding simulated standard deviation (with respect to time) by the dashed line. The black and blue colors denote results from simulation E1 and E2, respectively.

Isobutane $(I-C_4H_{10})$

Comparison of simulated and observed $I-C_4H_{10}$ mixing ratios in nmol/mol for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the solid line and the corresponding simulated standard deviation (with respect to time) by the dashed line. The black and blue colors denote results from simulation E1 and E2, respectively.

Pentane (C_5H_{12})

Comparison of simulated and observed C_5H_{12} mixing ratios in nmol/mol for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the solid line and the corresponding simulated standard deviation (with respect to time) by the dashed line. The head and have called a monthly from simulation Et and $E\theta$ respectively.

time) by the dashed line. The black and blue colors denote results from simulation E1 and E2, respectively.

Isopentane $(I-C_5H_{12})$

Comparison of simulated and observed $I-C_5H_{12}$ mixing ratios in nmol/mol for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the solid line and the corresponding simulated standard deviation (with respect to time) by the dashed line. The black and blue colors denote results from simulation E1 and E2, respectively.

Acetone formation

Vertical profiles of CH_3COCH_3 (in pmol/mol) for some selected campaigns from Emmons et al. (2000). Asterisks and boxes represent the average and the standard deviation (with respect to space and time) of the measurements in the region, respectively. The simulated average is indicated by the solid line and the corresponding simulated standard deviation with respect to time and space by the dashed lines. On the right axis the numbers of measurements are listed. The red lines represent the simulation S1, the blue lines the simulation E2.

References

- Atkinson, R. and Arey, J.: Gas-Phase tropospheric chemistry of biogenic volatile compounds: a review, Atmos. Environ., 37, 197–297, 2003.
- Emmons, L. K., Hauglustaine, D. A., Müller, J.-F., Carroll, M. A., Brasseur, G. P., Brunner, D., Staehelin, J., Thouret, V., and Marenco, A.: Data composites of airborne observations of tropospheric ozone and its precursors, J. Geophys. Res., 105, 20497–20538, 2000.
- Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Development of a Master Chemical Mechanism for Use in Tropospheric Chemistry Models, EUROTRAC Newsletter 18, 1997a.
- Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: World Wide Web site of a Master Chemical Mechanism (MCM) for use in tropospheric chemistry models, Atmos. Environ., 31, 1249, http://www.chem.leeds.ac.uk/Atmospheric/MCM/-mcmproj.html, http://www.chem.leeds.ac.uk/ Atmospheric/MCM/\-mcmproj.html, 1997b.