Chemical equation set and complete figures set

A.Pozzer ${ }^{1,2}$, J. Pollmann ${ }^{1}$, D. Taraborrelli ${ }^{1}$, D. Helmig ${ }^{3}$, P. Jöckel ${ }^{4}$, P.Tans ${ }^{5}$, J.Hueber ${ }^{3}$, J.Lelieveld ${ }^{1,2}$

1 EEWRC, The Cyrpus Institute, 20 Kavafi Street, 1645 Nicosia, Cyprus 2 Air Chemistry Department, Max-Planck Institute of Chemistry, PO Box 3060, 55020 Mainz, Germany
3 Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, UCB 450, CO 80309, USA
4 Deutsches Zentrum fuer Luft- und Raumfahrt, Oberpfaffenhofen, Wessling, Germany
5 NOAA/ESRL CMDL, R/E/CG1, 325 Broadway, Boulder, CO 80303, USA

```
pozzer@cyi.ac.cy
```


${ }_{6}$		
$q^{\text {a }}$	$\begin{array}{r} \mathrm{II}-0 \mathrm{I} \times \mathrm{Z}^{2} \\ (\mathrm{~L} / \cdot 06 \mathrm{I})^{2 *} \mathrm{ZI}_{\mathrm{I}-0 \mathrm{I}} \times 06^{\prime} \mathrm{I} \end{array}$	HO $z_{\text {OYNId }} \leftarrow$ HO + HOOY H + HOOYNId
,	ноовно-г	$z_{\mathrm{OH}} \mathrm{s} \cdot 0+\mathrm{HO} \leftarrow \wedge$ ¢ + HоояNId
ว		$z_{\text {ON }} \leftarrow \wedge \underline{ }+\varepsilon_{\text {ONYNId }}$
	zi-0i \times ¢	$z_{\text {ON }} \leftarrow$ HO $+\varepsilon_{\text {ONYNId }}$
p	оноєно-г	$z_{\mathrm{OH}} \leftarrow \wedge \mathrm{¢}+\mathrm{YNId}$
p	${ }_{\text {¢ }}$-0t \times z	${ }^{\text {OOO }}$ ¢ HO + Y YNId
4		HOOYNId $\leftarrow z_{\text {OH }}+z_{\text {OYNId }}$
${ }^{4}$	zг-01 \times ' z	
4		
0	$9 \mathrm{¢}-0 \mathrm{~T} \times \mathrm{z9} \mathrm{~T}^{\text {I }}$	
$q^{\text {a }}$	от-0t \times oz'z	
$9{ }^{\text {a }}$	zi-0t $\times 02.8$	
\bigcirc	$2 \mathrm{~L}-01 \times 2.8$	
$q^{\text {a }}$	0t-01 $\times 08$ z	
$q{ }^{\text {' }}$		
\bigcirc	$9 \mathrm{~T}-\mathrm{OT} \times 9 \mathrm{O}^{\text {T }}$	
9^{9}	от-0t \times ¢\%'T	
$q^{\prime \prime}$		
\bigcirc	$(L / 6 L z 8-)^{\text {a * }} \mathrm{z} \mathrm{\tau}$	
$9^{\text {a }}$	0i-0t $\times 8 \mathrm{I}^{\prime} \mathrm{Z}$	
$9^{9} \mathrm{p}$		
		ио!ุวюә.

Model-observation comparison

Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$

Comparison of simulated and observed $\mathrm{C}_{2} \mathrm{H}_{6}$ mixing ratios in $\mathrm{nmol} / \mathrm{mol}$ for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the black line and the corresponding simulated standard deviation (w.r.t. time) by the dashed line.

Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$

Comparison of simulated and observed $\mathrm{C}_{3} \mathrm{H}_{8}$ mixing ratios in $\mathrm{nmol} / \mathrm{mol}$ for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the black line and the corresponding simulated standard deviation (w.r.t. time) by the dashed line.

Butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$

Comparison of simulated and observed $\mathrm{C}_{4} \mathrm{H}_{10}$ mixing ratios in nmol/mol for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the solid line and the corresponding simulated standard deviation (with respect to time) by the dashed line. The black and blue colors denote results from simulation E1 and E2, respectively.

Isobutane $\left(\mathrm{I}-\mathrm{C}_{4} \mathrm{H}_{10}\right)$

Comparison of simulated and observed $\mathrm{I}-\mathrm{C}_{4} \mathrm{H}_{10}$ mixing ratios in nmol $/ \mathrm{mol}$ for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the solid line and the corresponding simulated standard deviation (with respect to time) by the dashed line. The black and blue colors denote results from simulation E1 and E2, respectively.

Pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$

Comparison of simulated and observed $\mathrm{C}_{5} \mathrm{H}_{12}$ mixing ratios in nmol/mol for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the solid line and the corresponding simulated standard deviation (with respect to time) by the dashed line. The black and blue colors denote results from simulation E1 and E2, respectively.

Isopentane $\left(\mathrm{I}-\mathrm{C}_{5} \mathrm{H}_{12}\right)$

Comparison of simulated and observed $\mathrm{I}-\mathrm{C}_{5} \mathrm{H}_{12}$ mixing ratios in nmol $/ \mathrm{mol}$ for some selected location (ordered by latitude). The red line and the bars represent the monthly average and the standard deviation (w.r.t. time) of the measurements in the region. No instrumental error has been included in this standard deviation. The simulated monthly average is indicated in the solid line and the corresponding simulated standard deviation (with respect to time) by the dashed line. The black and blue colors denote results from simulation E1 and E2, respectively.

Acetone formation

Vertical profiles of $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ (in pmol/mol) for some selected campaigns from Emmons et al. (2000). Asterisks and boxes represent the average and the standard deviation (with respect to space and time) of the measurements in the region, respectively. The simulated average is indicated by the solid line and the corresponding simulated standard deviation with respect to time and space by the dashed lines. On the right axis the numbers of measurements are listed. The red lines represent the simulation S 1 , the blue lines the simulation E2.

References

Atkinson, R. and Arey, J.: Gas-Phase tropospheric chemistry of biogenic volatile compounds: a review, Atmos. Environ., 37, 197-297, 2003.

Emmons, L. K., Hauglustaine, D. A., Müller, J.-F., Carroll, M. A., Brasseur, G. P., Brunner, D., Staehelin, J., Thouret, V., and Marenco, A.: Data composites of airborne observations of tropospheric ozone and its precursors, J. Geophys. Res., 105, 20 497-20 538, 2000.

Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Development of a Master Chemical Mechanism for Use in Tropospheric Chemistry Models, EUROTRAC Newsletter 18, 1997a.

Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: World Wide Web site of a Master Chemical Mechanism (MCM) for use in tropospheric chemistry models, Atmos. Environ., 31, 1249, http://www.chem.leeds.ac.uk/Atmospheric/MCM/-mcmproj.html, http://www.chem.leeds.ac.uk/ Atmospheric/MCM/\-mcmproj.html, 1997b.

