4543

Atmos. Chem. Phys. Discuss., 10, 4543–4592, 2010 www.atmos-chem-phys-discuss.net/10/4543/2010/ © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

S. E. Bauer^{1,2}, S. Menon³, D. Koch^{1,2}, T. C. Bond⁴, and K. Tsigaridis¹

¹NASA Goddard Institute for Space Studies, New York, NY, USA
 ²The Earth Institute, Columbia University, New York, NY, USA
 ³Lawrence Berkeley National Laboratory, Berkeley, CA, USA
 ⁴University of Illinois, Urbana-Champaign, IL, USA

Received: 20 January 2010 – Accepted: 8 February 2010 – Published: 15 February 2010

Correspondence to: S. E. Bauer (sbauer@giss.nasa.gov)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

10

Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact 5 with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing.

Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m². However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m² depending on these

- carbonaceous particle properties at emission. Assuming that sulfates, nitrates and 15 secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate
- coatings, but even more strongly by organic coatings. Black carbon mitigation scenar-20 ios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

ACPD 10, 4543-4592, 2010 Carbonaceous aerosol microphysics S. E. Bauer et al. **Title Page** Introduction Abstract Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

1 Introduction

Anthropogenic and natural aerosols impact the Earth's radiation balance and thus exert a forcing on global climate. Black carbon (BC) has a positive radiative forcing, while other aerosol species mainly lead to atmospheric cooling. Therefore cleaning up most

aerosol emissions, which is much needed due to their severe health impacts, could strengthen the global warming trend. However, mitigation of BC has the potential to be beneficial in mitigating both climate warming and air pollution. Emission reductions that target light-absorbing aerosol might also reduce warming quickly (Hansen et al., 2000; Jacobson, 2002; Bond and Sun, 2005). However, BC's indirect (cloud microphysics)
 and semi-direct contributions to net climate forcing remain an outstanding uncertainty. For example, the model study of Penner et al. (2003) suggested that "smoke" did not produce net warming, considering both direct and cloud effects. In addition, model experimental results are very sensitive to treatment of aerosol microphysics.

The aerosol direct effect (ADE) is caused by absorption and scattering of solar radiation by liquid and solid aerosol particles in the atmosphere. Most absorbing, and therefore enhancing climate warming, are black carbon (BC) particles. The mass absorption strength and scattering ability of a BC particle strongly depends on the particle effective size and mixing state. Both of those quantities depend on the size and chemical composition of black carbon as it is released into the atmosphere as well as its microphysical and chemical evolution during transport through the atmosphere. Most

- other aerosol species scatter radiation back to space, such as sulfate, nitrate, organic carbon (although some organics can be slightly absorbing), sea salt, aerosol water and to a certain extent mineral dust, and therefore these counterbalance climate warming, by cooling the atmosphere. However, if BC is mixed with these scattering components,
- ²⁵ the result is enhanced absorption. Laboratory studies by Khalizov et al. (2009) showed that for soot particles with an initial mobility diameter of 320 nm and a 40% H_2SO_4 mass coating fraction, absorption and scattering are increased by 1.4 – and 13 fold at 80% RH, respectively. Also, the single scattering albedo of soot aerosol increases from 0.1

ACPD 10, 4543-4592, 2010 Carbonaceous aerosol microphysics S. E. Bauer et al. **Title Page** Abstract Introduction Conclusions References **Figures** Þ١ Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

to 0.5 after coating and humidification. Jacobson (2000) performed global simulations with core-shell treatment and found BC forcings 50% higher and 40% lower than forcings obtained with externally mixed and well-internally mixed treatments, respectively. Therefore, correct treatment of the aerosol size and mixing state is crucial in order to calculate their net radiative forcing.

Attempts to quantify the aerosol direct radiative forcing (ADF), the difference in top of the atmosphere forcing between pre-industrial and present day conditions, by the Aero-Com initiative gave estimates between -0.41 and +0.04 W/m² (Schulz et al. 2006) and by the IPCC AR4 report a range from -0.9 to -0.1 W/m² (IPCC, 1007). The wide range of uncertainty is caused on the one hand by large discrepancies among the model systems, ranging from emission strength, transport, aerosol transformation, removal and optical properties. However, the models are also poorly constrained by limited avail-

10

ability of aerosol measurements. Furthermore, Myhre (2009) explains large deviations between models and satellite retrieved ADF estimates by the lack of considering correct pre-industrial aerosol distributions in the satellite data derived forcing calculations and in failure to sample the model like the retrieval.

The aerosol indirect effect (AIE) is caused by an increase in the number of hygroscopic aerosols, with a corresponding increase in cloud droplet number concentrations, reduction in cloud droplet size, increase in cloud albedo (first indirect effect) and sup-

- ²⁰ pression of precipitation and increased cloud life time (second indirect effect), thereby cooling the planet (IPCC, 2007). The role of BC in determining cloud droplet number concentrations (CDNC) is unknown (Adams and Seinfeld, 2003), as it depends upon the size distribution and mixing state of BC with soluble species such as sulfate, nitrate and organic carbon. Furthermore, insoluble black carbon or dust aerosols can act as
- ice nuclei and therefore alter cirrus and mixed-phase clouds; however these effects are poorly known (e.g. Lohmann et al., 2008). Here again the microphysical evolution of the aerosol population in terms of size and mixing state is crucial in order to identify the number of particles are suitable for cloud activation. The IPCC AR4 report estimates the aerosol indirect radiative forcing (AIF) to lie between -1.8 and -0.3 W/m².

ACPD 10, 4543-4592, 2010 Carbonaceous aerosol microphysics S. E. Bauer et al. **Title Page** Abstract Introduction Conclusions References **Figures** Þ١ Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

The AeroCom initiative, linking models to satellite-based estimates gives a range of $-0.7\pm0.5 \text{ W/m}^2$ for the AIF (Quaas et al., 2009). The models on which these estimates were based generally did not include sophisticated treatment of aerosol mixing state, and the contribution of BC mixing to the AIF uncertainty was not evaluated.

- In this study we are particularly interested in the microphysical evolution of black carbon. The size and mixing state of carbonaceous particles at emission must be assumed for this investigation. Once emitted, BC can grow by coagulation and condensation. Although freshly emitted pure BC is hydrophobic, inorganic and organic coatings will attract water and convert particles to be hygroscopic. Materials likely to
 condense on a BC particle, as on any other particle, are sulfate and nitrate precursors
- as well as secondary organics (Riemer et al., 2009). Those particles are likely to form core shell particles, where the insoluble BC fraction would form the core and the other species would enclose that core with a shell.
- In addition to surface condensation processes, coagulation is a very effective mixing pathway. In the atmosphere every aerosol shape is unique, complex and not necessarily spherical. Transmission electron microscopy (TEM) images support the theory that BC particles become coated once emitted. Although BC may be internally mixed with other components, BC cannot be "well-mixed" (diluted) in the particle, since soot, which contains BC, is irregularly shaped and mostly solid. Thus most likely BC is distinct and not well mixed within particles.

As we explore the role of BC in aerosol forcing we will study the following questions: How important is the size distribution of carbonaceous particles at emission time (Sect. 3)? How sensitive are the forcings to mixing assumptions of BC particles (Sect. 4)? How well can we constrain our simulations with observational data (Sect. 5)?

²⁵ And how well can we assess BC reduction strategies given the previously discussed microphysical modeling uncertainties (Sect. 6)?

This paper is linked to a study by Menon et al. (2010) (hereafter referred to as SM10) where the same model version and configuration as in this study is used, but the analysis is more detailed with respect to the AIF. SM10 includes evaluation and comparison

of the performance of a new AIE scheme coupled to aerosol microphysics or to the previous mass based GISS aerosol model (Koch et al., 2006; Menon and Rotstayn, 2006).

2 Model description

⁵ The Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) climate modelE (Hansen et al., 2005; Schmidt et al., 2006) coupled to the aerosol microphysics and chemistry model MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) (Bauer et al., 2008), hereafter BA08, is used in this study. MATRIX is designed to support model calculations of the direct and indirect effect and permit detailed treatment of aerosol mixing state, size and aerosol-cloud activation.

MATRIX is based on the quadrature methods of moments. For each aerosol population, defined by mixing state and size distribution, the tracked species are number concentration, and mass concentration of sulfate, nitrate, ammonium, aerosol water, black carbon, organic carbon, mineral dust, and sea salt. Here we use the aerosol population setup called "mechanism 1" (BA08), given in Table 1. MATRIX dynamics includes nucleation, new particle formation, particle emissions, gas-particle mass transfer, aerosol phase chemistry, condensational growth, coagulation, and cloud activation. New additions to BA08 are linking the aerosol scheme to a recent aerosol indirect effect scheme that uses prognostic equations (Morrison and Gettelman, 2008) to calculate the cloud droplet number concentrations, as described in SM10. A further

addition to BA08 is the coupling of mixed aerosol populations to the radiation scheme as described below.

2.1 Aerosol radiation coupling

Previously the GISS radiation scheme treated only externally mixed aerosol populations, suitable for our mass based aerosol scheme (Koch et al., 2006). Here we de-

ACPD 10, 4543–4592, 2010	
Carbonaceous aerosol microphysics	
S. E. Bauer et al.	
Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
I4	۶I
•	•
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

scribe the new coupling scheme for internally mixed aerosol populations. The GISS model radiation scheme (Hansen et al., 1983) includes explicit multiple scattering calculations for solar radiation (shortwave – SW) and explicit integrations over both the SW and thermal (longwave – LW) spectral regions. Gaseous absorbers of LW radiation are H₂O, CO₂, O₃, O₂, and NO₂. Size dependent scattering properties of clouds and aerosols are computed from Mie scattering, ray tracing, and T-matrix theory (Mishchenko et al., 1996) to include non-spherical cirrus and dust particles. The k-distribution approach (Lacis and Oinas, 1991) utilizes 15 non-contiguous spectral intervals to model overlapping cloud aerosol and gaseous absorption.

The MATRIX module calculates the optical properties single scattering albedo, asymmetry factor and extinction for the 16 aerosol populations (see Table 1) for six wavelength bands in the SW and 33 bands in LW and passes those to the GISS radiation code. Each population can include multiple chemical species. Each aerosol population, as indicated in Table 1, is treated as an external mixture, a homogeneous internal mixture are a particle, depending on its chemical species.

- ¹⁵ mixture or a core-shell particle, depending on its chemical composition. If a particle contains only one chemical species, for example a freshly emitted pure organic carbon particle, then the optical properties are those of an externally mixed particle. In those cases MATRIX calculates the refractive index for each population and then uses Mie-code pre-calculated lookup tables in order to assign the corresponding optical pa-
- rameters. A homogeneous internal mixture is assumed to be a well-mixed particle, most likely containing soluble species including aerosol water. MATRIX calculates the optical properties for those particles by using the volume mixing approach. Black carbon containing particles can exist in various shapes. A pure BC particle is externally mixed (part of population BC1). BC coated by condensed sulfate, nitrate, organics and
- ²⁵ aerosol water can form a core-shell particle, where the insoluble BC forms the core and the soluble material the shell. Pre-calculated lookup tables using the core-shell model by Toon and Ackerman (1981) provide optical specifications for all possible combinations of BC core sizes and shell thicknesses of various compositions formed from sulfate, nitrate, organics and aerosol water. Alternatively, we may assume that BC is ho-

mogeneously mixed with the other species. The following refractive indices at 550 nm are used in this study: Sulfate (1.528-1.e-7i), nitrate (1.528-1.e-7i), OC (1.527-0.014i), BC (1.85-0.71i), sea salt (1.45-0.i), dust (1.564-0.002i) and water (1.334-3.91e-8i).

- Here, we did not perform special optical calculations for core-shell particles involving mineral dust. This was not necessary as the potential shell thicknesses of such particles would be too thin for them to optically make any significant impact (Bauer et al., 2007). Therefore the optical properties for the populations DD1, DS1, DD2 and DS2 are close to those of externally mixed mineral dust. However, this might not be true for the dust particles included in the mixed mode (MXX), as here mineral dust is
- ¹⁰ mainly mixed with sea salt, and therefore mineral dust is not necessarily the dominating species. Population MXX is treated as homogeneously internally mixed, due to the complicated mixing involving all eight components, dust, sea salt, sulfate, nitrate, ammonium, BC, OC, and water. In this study the base case simulation uses the volume mixing approach for all internally mixed particles. The impact of BC-containing ¹⁵ core-shell particles is discussed separately in Sect. 4.

2.2 Model configuration

Anthropogenic and natural emissions for present day and pre-industrial conditions are taken from the AeroCom project (Dentener et al., 2006 and http://dataipsl.ipsl.jussieu. fr/AEROCOM/). We use fluxes for "natural" emissions of dust, sea salt and dimethyl sulfide (DMS), and organic carbon (OC) assuming secondary organic aerosol as a 15% yield from terpene emissions, and in addition, anthropogenic emissions from biomass burning and fossil and bio fuel burning of SO₂, OC and BC. The inventory provides data for the year 2000 (present-day conditions) and for the year 1750 (pre-industrial conditions).

²⁵ Model simulations for present day and pre-industrial conditions only differ by emission levels. The model runs are performed fully interactive, therefore aerosol and cloud changes will impact the general circulation. Present day atmospheric conditions, including present day sea surface temperature, are also applied for the pre-industrial

emission runs. The model is employed on a horizontal resolution of $4^{\circ} \times 5^{\circ}$ latitude by longitude and 23 vertical layers. The model uses a 30 min time step for all physics calculations. Every model simulation is integrated for 5.5 years, and if not otherwise noted, five-year mean conditions are discussed in this paper.

- We will discuss direct and indirect aerosol effects by looking at aerosol direct radiative impacts (ADE) and cloud radiative impacts (AIE) at present-day conditions. ADE is calculated by taking the difference between radiative transfer calculations at the top of the atmosphere with and without aerosols. AIE is calculated from changes to the net cloud forcing obtained from differences between total and clear skies for each call to the radiation excluding aerosols. Aerosol direct (ADE) and indirect radiative forcing
- to the radiation excluding aerosols. Aerosol direct (ADF) and indirect radiative forcing (AIF) is calculated as the difference in forcing between pre-industrial and present day conditions. AIF and AIE include indirect as well as semi-direct effects. Semi-direct effects are cloud changes caused by changed vertical heating profiles in the atmosphere caused by aerosol forcing changes.

15 3 Effects of chosen particle size for emission

In order to calculate emission fluxes in microphysical aerosol models, the mass, number concentration and the mixing state of those emissions need to be known. Information about size distributions is very important for particulate emission fluxes such as dust, sea salt and carbonaceous emissions. Usually some size information is provided for dust and sea salt emissions, or interactively calculated in models, but not for carbonaceous aerosols. Current emission inventories, such as Bond et al. (2004) or Cooke et al. (1999) provide only mass emission information, so that each modeler has to choose what sizes to assign for carbonaceous emission fluxes. Textor et al. (2006) summarized the sizes of the emitted particles as used by 16 different models that participated in the AeroCom study. Mass median diameter ranging from 0.02 to 0.85 µm

were used for BC and OC emissions. Some AeroCom models used different sizes for fossil and biomass burning sources, and some models emitted BC and OC emissions

ACPD 10, 4543–4592, 2010	
Carbonaceous aerosol microphysics	
5. E. Dauer et al.	
Title	Page
Abstract	Introduction
Conclusions	References
Tables	Figures
14	۶I
•	•
Back	Close
Full Screen / Esc	
Printer-friendly Version	

into several size bins. These choices differed greatly among the models; furthermore there is very little information available about actual emission sizes. Bond et al. (2006, Table 3.) collected particle size distribution observations at combustion sources from the literature and reported mass median diameters of 0.038–0.32 μ m for diesel vehi-

- cles, 0.02–1.5 μm for gasoline vehicles, 0.1–1.3 μm for small solid fuel combustors (excluding coal briquettes), such as wood fireplaces or cooking stoves, and 0.05–0.78 μm for large stationary sources such as industrial boilers. However these sizes obtained close to emitters may not be appropriate for global model gridbox-scale initial particle sizes.
- ¹⁰ In order to understand the importance of emission size distribution of carbonaceous particles, we performed a series of sensitivity studies where only the sizes of carbonaceous emissions are varied. Note that those sizes are just the emission sizes, and that aged particle sizes are determined by the subsequent microphysical processes. In our simulations, carbonaceous aerosols grow by roughly a factor of three, through coagu-
- lation, condensation and water uptake. We assume that fossil and bio fuel BC and OC emissions enter the atmosphere as external mixtures, entering population BC1 and OCC, and biomass burning emissions are internally mixed, entering population BOC in our model. However the model is rather insensitive towards this last assumption, as BC and OC from biomass burning sources coagulate very quickly even if emitted as
 external mixtures (not shown here).

The geometric mean emission particle diameters chosen for the single experiments are reported in Table 2. Three sensitivity experiments are performed around the base case simulation (BASE), one experiment with smaller emission sizes (S1) and two experiments with larger emission sizes (S3, S4). The set of experiments covers approximately the range of observed emission sizes.

25

The design of the sensitivity experiments is rather simple, but analyzing the results is difficult as nearly everything in the aerosol simulation is affected. First we will analyze the differences between the base case BASE and S1, the experiment with the smallest BC/OC emission sizes. The largest differences occur in the coagulation calculation.

AC	ACPD	
10, 4543–4	4592, 2010	
Carbon aerosol mi	Carbonaceous aerosol microphysics	
S. E. Bauer et al.		
Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
14	►I	
•	•	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

Smaller carbonaceous particles in experiment S1 impact the mixing state and size distribution in all of MATRIX's populations. Size is the most important particle property affecting coagulation. The differences in sulfate, OC and BC mixing state between BASE and S1 (S1-BASE) are presented in Fig. 1 for present day conditions. Smaller initial OC/BC sizes lead to more coagulation between sulfate and BC. The sulfate co-5 agulation rate to form BCS (a BC-sulfate mixture) increases from 1087 (BASE) to 8655 (S1) Gg/a, leaving less externally mixed sulfate in the system (sulfate ACC and AKK loads decrease from 188 (BASE) to 41 Gq (S1)). Table 3 in BA08 may be consulted to put those budget numbers into perspective. Net sulfate condensation rates are rather similar between the experiments, but the particles on which surfaces condensation 10 happens changes. In BASE most H2SO4 condenses on ACC, OCC and BOC particles and aqueous phase H_2SO_4 condensations within clouds favors ACC and BOC. In S1 most dry and wet condensation forms sulfates on BOC surfaces. Again leading to more internally mixed particles, due to less condensation of H_2SO_4 on pure sulfate (ACC) particles. Changes in H₂SO₄ condensation rates also affect sulfate pri-15 mary particle production, and decreases sulfate nucleation rates (1800 Gg/a (BASE), 1168 Gg/a (S1)), hence changing the size distribution. BC (Fig. 1 row 2) itself favors coagulation with OC for S1, this however increases the sulfate ratio in the BCS popu-

lation. So overall sulfate predominantly mixes with BC and BC mixes more with OC,
 leaving fewer externally mixed OC (OCC) in the atmosphere. Furthermore, the smaller overall OC/BC size leads to more coagulation of OC and BC with coarse particles. Figure 3 shows the zonal mean BC mass mixing concentrations, the sum over BC from all BC containing populations, of the BASE case and the differences between BASE and the size experiments S1, S3 and S4. The total BC mass increases from the BASE

case 1195 Gg to 1287 Gg in S1, with all of the increase happening in the Northern Hemisphere. This is caused by the extended lifetime of smaller pollution BC particles and the fact that smaller particles can be transported over larger distances.

Figure 3 presents the differences of experiments S1 and S3 with BASE. Comparing BASE and S1, AOT increases over the oceans and decreases in biomass burning

areas. The aerosol direct effect shows a similar pattern but of opposite sign. ADE increases over land, due to internal mixing of BC and therefore enhancing overall BC absorption, which leads to more warming due to BC particles. However the dominating feature here is the enhanced cooling effect over the oceans, which is caused by a strong contribution from the mixed population, MXX. The smaller particles in S1 lead to overall more mixing. If all 7 species are mixed together, or none of the other 15 populations can be used, MXX is populated. However MXX is always representing a coarse mode as usually some sea salt or dust is present in MXX.

Changes in AIE depend on particle chemistry and number concentrations, and therefore strongly on the size distribution, leading to different changes than seen in the mass concentrations as shown in Fig. 1. Regionally the negative or cooling AIE (Fig. 3) is caused by the increased cloud droplet number concentration (CDNC) in those regions. Most important is the shift in size and mixing state. Particles are smaller, but still large enough to activate clouds, and more internally mixed in S1, leading to a larger number

of cloud activating particles in polluted sulfate rich regions, but to regional decreases in CDNCs in biomass burning, OC/BC rich regions. In the BASE case CDNCs in biomass burning regions are dominated by externally mixed OC, e.g. OCC, whereas in S1 more of OC is mixed with BOC leading to overall smaller number concentrations in biomass burning areas. Globally cloud-forcing increases over the oceans leading to a difference
 of -0.83 W/m² in AIE.

The second set of experiments, S3 and S4, tests the sensitivity of our model at larger BC/OC emission sizes. These experiments show many similarities towards each other, so that it is sufficient here to discuss the results of case S3. Larger initial OC/BC particles lead to less internal mixing of the aerosol populations, leaving more externally

²⁵ mixed sulfate and OC particles. Externally mixed sulfate increases from 188 Gg/a (BASE) to 575 Gg/a (S4) and more sulfate condenses on coarse particles. Also OC and BC are less mixed with each other, but BC in the biomass burning regions is more mixed with sulfate, leading again to an increase of sulfate in the BCS population. These changes in mixing state are generally the reverse of case S1; however this does not

ACPD 10, 4543-4592, 2010 Carbonaceous aerosol microphysics S. E. Bauer et al. **Title Page** Abstract Introduction Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

translate into a reverse response for the aerosol optics (Fig. 3). AOT globally decreases due to less extinction by the slightly larger and more externally mixed particles. The direct aerosol (ADE) effect relative to BASE is slightly positive, with more warming in dust regions. This is caused by less coagulation with the overall larger OC/BC/SU
particles with dust, hence increasing dust lifetime in S4. The BC load (Fig. 2) is strongly reduced in S3 to 1041 Gg and 822 Gg in S4.

CDNC particle concentrations are reduced by -15% (S3) and -20% (S4) leading to a weakened indirect effect, the aerosol indirect effect is approximated from changes to net radiation at the TOA and therefore also includes semi-direct effects, by 3% (S3) and 4% (S4); however there was also an increase in liquid water path (LWP) (0.5% (S3) and 0.8% (S4)) and increased cloud cover (1% (S3) and 0.3% (S4)).

After discussing the complex interactions a simple summary (Fig. 4) can be given for the impact of carbonaceous aerosol emission sizes on radiative forcings: Smaller BC/OC emission sizes lead to larger, more negative direct and indirect aerosol forcings

¹⁵ and larger BC/OC emission sizes to smaller forcings and therefore less aerosol cooling.

4 Particle mixing state and radiative transfer

20

Black carbons absorption depends strongly on its mixing state. It has been demonstrated in numerous publications (Fuller et al., 1999; Bond et al., 2006; Lesins et al., 2002; Jacobson, 2000) that when BC is treated solely as an external mixture, aerosol absorption can be underestimated by a factor of 1.5 to 4. We will not repeat these comparison of external versus internal mixtures, because it is well established that most BC is internally mixed; instead we will test the differences between homogeneous internal mixtures and core-shell structured particle.

A large fraction of BC mass is mixed with other aerosol species, either at emission or during transport in the atmosphere. The solubility of the involved species and the processes that lead to the formation of an internally mixed particle determines the structure of the mixed aerosol. Here we distinguish between three different basic types

ACPD 10, 4543–4592, 2010		
Carbonaceous aerosol microphysics S. E. Bauer et al.		
Title	Title Page	
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
I4	۶I	
•	•	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

of particles. First, an externally mixed particle, e.g. a dry sulfate, BC, etc is a particle without any coating or added components. Second, a homogeneously internally mixed particle consists of two or up to eight constituents, such as sulfate, nitrate, ammonium, OC, BC, sea salt, dust and water. In order to form a homogeneously internally mixed

particle, all involved species need to be soluble. For example, we would assume that an ammonium-sulfate aerosol that is coated by nitrate and OC and has taken up aerosol water could form a homogeneously mixed droplet. The third type of particle is made of an insoluble particle, such as BC, which is more likely to form a core-shell particle. The insoluble core is always assumed to be at the center of the particle, with either one
 species, or well-mixed multiple species in its shell.

Most aerosol models that treat internally mixed aerosol populations (Stier et al, 2005) use a volume mixing rule approach or use for example other mixing-based approaches like the Maxwell-Garnett (Garnett 1904, 1906) or Bruggeman (1935) mixing rule to calculate the optical properties of aerosols. In this study, we included core-shell model calculations, which should more accurately describe BC including particles (Kim et al., 2008).

In this section we will test the assumptions of homogenously internally mixed (HI) and core-shell (CS) structures of particles containing BC. The following experiments are tested:

20

25

15

- BASE (HI): The volume mixing approach is used for all internally mixed aerosols.
 - CS₁₀₀: BC coated by sulfate, nitrate, organics and water has a core shell structure, all other particles are either externally or homogeneously internally mixed (see Table 1).
 - CS₁₀: as CS₁₀₀ but only 10% of the organics are considered for coating a BC particle. The remaining 90% will be considered homogeneously internally mixed.

Figure 5 and Table 3 shows the present day short wave TOA radiative impacts for certain species and mixing states for our BASE experiment. The net ADE is -1.78 W/m^2 ,

with contributions from externally mixed sulfates and nitrates -0.05 W/m^2 (ACC), organics -0.16 W/m^2 , black carbon sulfate mixtures 0.05, BC-OC mixtures 0.1 W/m², mineral dust -1.35 W/m^2 and sea salt -0.4 W/m^2 . Note that sea salt and dust forcing numbers are given for aerosols that mostly include sea-salt or dust, but still can

- ⁵ be mixed with other species. Sulfate, nitrate, organic carbon, dust and sea salt lead to cooling of the atmosphere; only over the poles a positive warming appears due to the strong surface reflection. BC – sulfate (BC-SU) mixtures have positive forcing, but BC-OC mixtures have positive or negative forcing depending on the dominant mixing component, OC or BC, in the aerosol particle.
- ¹⁰ In order to understand the radiative impacts of black carbon, we have to know its mixing state. In BASE, the total global load of BC is 0.12 Tg, with roughly 75% of the BC mass in population BOC. Therefore, BC is mixed mostly with OC but also with sulfate and nitrate, and the remaining 25% is present in mixtures including sulfates and nitrates, such as population BCS, BC1, BC2 and BC3.
- Figure 6 gives the fractions of BC, sulfate/nitrate, and OC (which is only included in BOC) in populations BOC and BCS. The remaining fraction is taken up by aerosol water. Neglecting aerosol water, BC is the dominant component in population BCS, and that component has a positive radiative impact globally. The BOC population is dominated by OC and SU. BC mass contributes only 1% on a global average, and up to 10% in biomass burning areas. The mixing state greatly influences the radiative
- ²⁰ to 10% in biomass burning areas. The mixing state greatly inductices the radiative impact. Small BC fractions in the aerosol mixture are sufficient to result in a positive forcing, so the BOC mixture can also have a positive impact for very small fractions of BC.

In simulation CS_{100} and CS_{10} only the optical properties of BC mixtures are changed.

²⁵ Therefore the radiative forcings of non-BC species remain mainly unchanged, however small changes occur due to feedbacks from the radiative impacts to the climate system. Table 3 gives global forcing numbers for BASE, CS_{100} and CS_{10} , showing that only population BOC gives significantly different forcing numbers. Furthermore the differences between CS_{100} and CS_{10} are similar, so it will be sufficient here to discuss

only experiment CS_{10} . Even coatings that result from only 10% of the available OC mass are sufficient to change the optical properties between HI and CS significantly.

First we will take a look at sulfate coatings. In the left column of Fig. 7 the absorption optical thickness for BCS particles are displayed. BCS absorption is higher in the ⁵ core-shell case, CS₁₀, in sulfate rich areas, and slightly lower in the biomass burning areas. Globally BCS absorption is increased by a factor of 1.1. For BC particles that are mainly coated by non-absorbing materials like sulfate and nitrate, the HI or CS Mie calculations give fairly similar results.

The difference between BOC and BCS particles is that BOC particles can include OC in addition to sulfates, nitrates and water. OC is 10 times more abundant in the atmosphere than BC, so it is not surprising that these particles have a much smaller BC fraction than BCS (Fig. 6). The combination of a very small BC fraction and a large fraction of slightly absorbing organics in the shell leads to a large difference in absorption between the HI and CS assumption. Figure 7 shows that AAOT is enhanced

- ¹⁵ by a factor of 3.3 between BASE and CS₁₀. However we were surprised to see such a strong impact on aerosol absorption, especially as several studies (Lesins et al., 2002; Fuller et al., 1999) have demonstrated that absorption calculated for coated BC particles are higher when they were treated as HI mixtures. To understand this behavior we plotted the percentage difference between CS and HI Mie calculations
- (Fig. 8) for BC/OC mixtures (left) and BC/sulfate mixtures (right). Previous studies (Fuller et al., 1999; Bond et al., 2006; Lesins et al., 2002; Jacobson, 2000), mainly looked at sulfate coated BC particles. For BC-sulfate mixtures and for most sizes and BC mixing fractions below 40% we also see stronger absorption for HI, and therefore agree with those studies. However this is different when BC is coated by OC, which is less scattering than sulfate and slightly absorbing itself.

In our model most BOC particle radii are around $0.2 \,\mu$ m, and the BC fraction is below 1%. In this case we get a much stronger absorption when treating the particles as CS. However in our case this leads to such a strong positive BOC forcing (see Table 3) that the total net aerosol radiative forcing change between present day and pre-industrial

would be positive.

The strong forcing of coated BOC particles raises the question on how realistic this scenario could be. We suspect that in the real atmosphere such small BC fractions within a particle might be unrealistic. If the core is much smaller than the shell, the lo-

cation of the core within the particle matters. The Toon and Ackerman model assumes the core to be in the center of the particle, and therefore strongly enhances absorption, this enhancement would be much reduced, when the core is not in the center. The smaller the core is relative to the particle, the less likely it is to be exactly in the center. The high enhancements occur only when the particle is perfectly concentric (Fuller, 1995, 1999).

Before we can draw any conclusions about the core – shell simulations we need to evaluate the simulated mixing state. We assume that we model unrealistically low BC fractions in the BOC populations and therefore will explore this problem in our ongoing work.

15 **5** Observational constraints

20

The experiments performed in this study show large sensitivities of the overall aerosol simulations to the chosen carbonaceous emission sizes and towards optical particle mixing configuration assumptions. In this section the results of sensitivity experiments are compared to observational datasets, including BC mass measurements and AERONET (Holben et al., 1998) products.

Table 4 compares the model with the averaged surface BC mass concentrations of the European EMEP (2002–2003) and the North American IMPROVE (1995–2001) network. The base model underestimates European BC concentrations by a factor of 1.6. Decreasing BC emission sizes (S1) improves the simulation, but surface BC concentrations in Europe are still too low by a factor of 1.5. The model also underestimates surface BC concentrations in North America by a factor of 1.8, but with improved correlation coefficients compared to the European network. The IMPROVE

ACPD 10, 4543-4592, 2010 Carbonaceous aerosol microphysics S. E. Bauer et al. **Title Page** Abstract Introduction Conclusions References **Figures** Þ١ Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

network includes mainly rural stations and therefore can better be simulated by coarse models, whereas the EMEP network includes more urban stations, that observe more detailed sub-grid scale features. Comparing surface observations in polluted regions to a coarse 4°×5° model is questionable, but we can conclude that the model understimates North American and European surface concentrations. The S1 experiment leads to increased and therefore slightly improved surface concentrations in those regions.

Comparisons between surface concentrations, particularly in regions distant from sources, raise the question of how the BC is distributed vertically. Figure 2 already demonstrated the large variable of BC loads among the single experiments. The causes for the large diversity in aerosol load are the differences in aerosol mixing state, solubility and size distributions, which impacts BC lifetime through wet and dry removal changes and transport. Recent aircraft measurements provide BC profile measurements with Single Particle Soot absorption Photometers (SP2) onboard NASA and

- NOAA research aircrafts (Schwartz et al., 2006; Slowik et al., 2007). In this paper we used the same campaign data and averaging technique as in Koch et al. (2009). Figure 9 shows profiles measured in North American mid-latitude regions (a, d), in the tropics (b, c) and at high latitudes (e–i). The base model simulation generally agrees better with some observed profiles in the mid- and high-latitude regions, overestimates
- BC concentrations in the tropics and underestimates BC concentrations in some cases at high latitudes. The sensitivity experiments show a rather uniform response globally. Smaller particle size BC/OC emissions (exp. S1) increases the overall BC mass in the troposphere while larger particles (S3, S4) leads to a decrease. However, no simulation significantly improves the vertical distribution of BC mass concentrations, as we
- ²⁵ already get over and underestimations of BC mass concentrations in different latitude regions. Some measurements (g and i) are strongly impacted by biomass burning events, and these instantaneous events are not reflected in the climate model simulation. In summary we do see some systematic errors in the vertical distribution of BC (However our regional observational coverage is quite limited.):

ACPD 10, 4543-4592, 2010 Carbonaceous aerosol microphysics S. E. Bauer et al. **Title Page** Introduction Abstract Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

- The model overestimates upper-level BC in regions near sources, while surface concentrations in those regions look reasonable.
- The model usually, but not always, underestimates surface BC in the Arctic.

5

- The model always fails to reproduce the measured discontinuity (or rapid change) in the vertical distribution in the Arctic.
- Finally, the changes in microphysics do not affect the smoothness of the vertical profile, so microphysics does not explain the model's failure to reproduce the observed sharp discontinuities, however we have to keep in mind that we compare observed snap shots to modeled average mean conditions.
- AERONET (Dubovik et al., 2002) observations provide column amounts and absorption of aerosols. These are seasonally averaged for the year 2000. We use the aerosol optical thickness (AOT), which is the most reliable measurement from this network, and the absorption AOT (AAOT), the non-scattering part of the aerosol optical thickness, which involves a higher degree of uncertainty at low AOT conditions.
- ¹⁵ Figures 10 and 11 show the seasonal comparison between the AERONET data and the base model simulations. The simulation of AOT shows a good seasonal comparison with AERONET. Many seasonal and regional features are well captured. Modeled AOT is underestimated in some megacities, including some European sites and in South America. Table 4. Presents the global as well as regional comparisons of AOT
 ²⁰ and AAOT. AOT is best simulated in S1. With larger BC/OC emission sizes, BASE, S3 and S4 AOT gets further underestimated. The core-shell experiments CS₁₀₀ and CS₁₀ show similar AOT values compared to BASE.

S1 shows as well the best simulation of AAOT. Modeled AAOT values are systematically too low in South America and Asia in all experiments. However, AOT was already too low in South America and Asia and therefore the AAOT values cannot be evaluated

too low in South America and Asia and therefore the AAOT values cannot be evaluated in those two regions.

ACPD 10, 4543–4592, 2010		
Carbor aerosol mi	Carbonaceous aerosol microphysics	
S. E. Ba	S. E. Bauer et al.	
Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
I	►I	
•	•	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

The model simulates AOT and AAOT in the strongly dust influenced regions of Africa and the Arabian Peninsula best in experiments S3, and absorption is too strong in experiments CS_{100} and CS_{10} .

- In summary, BC surface concentrations are systematically underestimated in Europe and the US, but the vertical distribution over the North American continent do not show a systematic bias. Aerosol optical measures, such as AOT and AAOT, are fairly well simulated, and improve with the assumption of smaller BC particles, which results in larger BC loads and more internal mixing. Larger BC particles (experiments S3 and S4) or extremely strong absorption due to BC (CS₁₀₀, CS₁₀) worsen the simulation. ¹⁰ Mineral dust is an important absorber and also impacts the comparisons in this study,
 - but we have not carefully examined these effects here.

6 Black carbon reduction experiments

Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. Although the BC direct effect is definitely warm-

- ing, there remains high uncertainty in estimates of indirect (cloud) changes associated with reductions, due to the complex nature of aerosol evolution and its climate interactions. Furthermore, BC emission reductions must be achieved by controlling individual sources. Therefore co-emitted, cooling species would be reduced as well. Here we conduct two idealized experiments where we simply reduce BC emissions from fossil and biofuel burning by 50% (BC_50), and a scenario where BC fossil fuel emissions
- and biofuel burning by 50% (BC_50), and a scenario where BC fossil fuel emissions are reduced by 100% (BC_BCFF). Because OC is not reduced, these experiments evaluate the net effect of BC but not of individual sources.

We also test two more realistic cases where both OC and BC from biofuel sources are reduced by 50% (BCOCBF), and a scenario where BC and OC emissions from on-road and off-road diesel were removed (BC_diesel). Particles emitted from diesel engines have the highest BC fraction of any major source, and the OC:BC ratio of 2:1 is common to all engines. Thus, BC_diesel reflects the likely impact of any control

strategy that reduces diesel emissions, although it does not account for reductions in sulfur emissions which would be required to implement advanced controls. On the other hand, biofuel sources have different OC:BC ratios, ranging from 3:1 or 4:1 for wood cooking stoves to 6:1 for fireplaces or cooking with animal waste. The average

⁵ OC:BC reduction of 5.6:1 in the BCOCBF case provides an estimate of the response to reductions in high-OC sources, but may not exactly reflect the impact of individual sources. See Table 5 for emission budgets.

The BC reduction experiments are performed under present day conditions and are compared to PD to PI changes of the BASE experiment. In addition to the fuel emis-

- sions, biomass burning emissions for PD runs are 3 Tg/a BC and 24.8 Tg/a OC. Note that also the non-biomass burning OC emissions levels are reduced in experiment BCOCBF and BC_diesel. The results of all BC reduction experiments are summarized in Table 5 and Fig. 12. In all experiments reducing BC emissions leads to less positive direct aerosol impacts (ADE), with changes ranging from -0.05 to -0.15 W/m².
- BC_50 and BCFF show very similar results for ADE, whereas BCOCBF and BC_diesel show much weaker effects. This is caused in the diesel case by smaller BC emission changes as well by a slight decrease in OC emissions. In the BCOCBF case some of the negative forcing change that is achieved by the BC emission reduction is counterbalanced by the positive forcing change caused by the reduced co-emitted OC
- emissions. In both cases the reduced OC emissions over Europe and the US lead to reduced (BC_diesel) or reversed (BCOCBF) BC mitigation effects, less positive forcing, in those regions, whereas in Asia and the high latitudes both measures would weaken the positive direct aerosol forcing.

Table 5 and Fig. 12 also give changes in cloud diagnostics. Reducing BC emissions leads to a slight increase in CDNCs in all experiments, except BCOCBF. Changes to CDNC come from a change in the aerosol mixing state. Reducing the number concentration of BC particles leads to less internally mixed BC-sulfate particles, and therefore to an increase in the number concentrations of externally mixed sulfate particles, which serve very effectively as CDNC.

ACPD 10, 4543-4592, 2010 Carbonaceous aerosol microphysics S. E. Bauer et al. **Title Page** Abstract Introduction Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version**

Interactive Discussion

First we will discuss the experiments which resulted in reduced CDNCs: BC_50, BCFF, and BC_diesel. Regionally, for example over Europe where the strongest change in CDNCs occurs, more CDNCs lead to an increase in cloud cover and therefore to a negative cloud forcing. However, globally, even though there are more CDNCs,
there is reduction in cloud cover and positive and negative AIEs ranging from 0.11 to -0.05 W/m² per experiment. These cloud cover changes are caused by a competition between indirect and semi-direct effects. Figure 12 shows the surface forcing changes in the single experiments. Reduced BC loads lead to surface heating, due to the missing absorbers in the atmosphere. More radiation can reach and warm the Earth surface, heat the lower atmosphere and lead to a decrease of low-cloud cover and LWP, leading to a positive cloud radiative forcing. These semi-direct effect cloud changes dominate over the smaller cloud changes that result from CDNC enhance-

ment.
 Case BCOCBF, where BC as well as OC emissions are reduced, shows a decrease
 of -5% in CDNCs. Less CDNCs, leads to reduced LWP and cloud cover and therefore logically to a smaller (less negative) overall cloud forcing, resulting in a cloud radiative impact (AIE) change of 0.2 W/m² compared to the BASE case.
 In Summary:

20

25

- Reducing BC emissions by 50% (BC_50) compared to the BASE case leads globally to increased CDNC, decreased cloud cover and LWP and a positive AIE change of +0.12 W/m². Together with the direct aerosol impact of -0.15 W/m² this leads to net forcing difference of -0.03 W/m². In principle we would expect a negative AIE with increased CDNCs. However we see a negative AIE (Fig. 12) in the regions with increased CDNCs, e.g. Europe, South East Asia, Easter US, however the global mean AIE is positive due to positive AIE contributions from remote ocean regions that are not directly impacted by CDNC changes. We speculate, that those changes, e.g. ADE leads to cooling at the surface and TOA over the Southern Hemispheric ocean and positive AIF, are caused by semi-direct effects that are related to aerosol direct impacts.

ACPD 10, 4543-4592, 2010 Carbonaceous aerosol microphysics S. E. Bauer et al. **Title Page** Abstract Introduction Conclusions References **Figures** Tables Þ١ Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

- Removing fossil fuel emissions (BC_FF) leads as well to an increase in CDNC, decreased cloud cover but an allover negative AIE of -0.05 W/m^2 . Together with the direct aerosol impact of -0.15 W/m^2 this leads to net forcing difference of -0.2 W/m^2 .
- Removing diesel emissions (BC_diesel) still leads to globally increased CDNCs but to a lesser extend than the above discussed cases. India and South East Asia show a decrease in CDNC. Allover this leads to a strong negative AIE over Europe and a global mean cloud forcing of -0.05 W/m². Combined with a negative ADE this results in a net forcing difference of -0.1 W/m².
- Reducing biofuel sources (BCOCBF) is the only scenario where we see decreased CDNC concentrations. The strong reduction in BC and especially OC particles finally resulted in a reduced number concentration of activated particles, which was not the case in the prior discussed scenarios. Eventually this leads to an positive AIE +0.2 W/m² and a net radiative change of +0.13 W/m².
- These model experiments show that the success of BC mitigation in reducing warming depends on the combination of direct and indirect effects, and the resulting change in the net radiative forcing. As a reference, our BASE model estimates a net forcing of -0.56 W/m² for PD-PI. Our simple BC mitigation scenarios which ignore co-emitted species, BC_50 and BCFF, show an increase in aerosol cooling and therefore reduce global warming by -0.03 and -0.2 W/m². The two more "realistic" scenarios, BCOCBF and BC_diesel, show that eliminating diesel emissions will also slow global warming by -0.1 W/m², whereas reducing biofuel sources would even accelerate global warming, due to the combined reduction of BC and OC emissions and the resulting reductions in cloud cover.

AC	PD		
10, 4543–4	4592, 2010		
Carbonaceous aerosol microphysics S. E. Bauer et al.			
Title Page			
Abstract	Introduction		
Conclusions	References		
Tables	Figures		
14	I4 FI		
•	•		
Back	Close		
Full Scre	Full Screen / Esc		
Printer-friendly Version			
Interactive Discussion			

Discussion and conclusions 7

In this paper we studied the sensitivity of BC effects on climate forcings with a climate model that includes detailed microphysical processes. Since BA08, MATRIX internally and externally mixed aerosol populations are now coupled to the radiation scheme and

to cloud indirect effects (SM10). We examined single processes and particle properties 5 and their impacts on cloud and aerosol forcings. This study allows us to evaluate which processes need to be further studied, and what observational data are needed.

First we discussed the importance of initial size distributions for particulate emissions such as BC and OC. Evaluating the model with ambient BC mass and AERONET AOT

- and AAOT measurements leads to the conclusion that best results are seen when 10 BC/OC emission sizes are assumed to be between 0.01 and 0.05 µm. Aerosol microphysical models such as MATRIX now require particulate emission inventories that include information about aerosol mass, number, surface area, composition, and mixing state, and possibly including subgrid scale effects, such as source-plume mixing,
- that can not be treated by current climate models. 15

Koch et al. (2009) showed that the previous generation of aerosol models without aerosol microphysics and mixing state influencing optical properties generally underestimate AAOT. In contrast, this study demonstrated a greatly improved agreement with retrieved AAOT, as the internal mixing of BC enhances absorption. On the other hand,

Koch et al. (2009) found that these older models generally did not underestimate BC surface concentration; the rapid BC aging of the microphysical scheme in our model caused faster washout near source regions and consequent underestimation of BC surface concentrations. Thus it seems that the microphysics required to improve BC optical properties has excessively reduced model BC surface concentrations. Careful examination of regional tendencies may help resolve the new discrepancy. 25

We found extremely large differences in aerosol radiative forcing amounts, -0.56 up to 0.35 W/m², when testing different BC mixing configuration assumptions when internally mixed with other species. In the extreme case, assuming that all internally

mixed OC forms a shell structure around BC, the net anthropogenic aerosol forcing would be positive. Simply assuming volume mixing rules for internally mixed particles is physically not realistic, but we found that for mainly sulfate coated BC particles the calculations using a simple volume mixing treatment are approximately equal to the

- ⁵ more complex core-shell calculations. However, we found large differences between assuming homogeneously mixed or core-shell configuration, when OC formed a large coating around a very small BC particle. Absorption can be amplified by a factor of 3 when BC cores take up only 1% or less of the particle volume. In our model this is typically the case in the BC-OC population we simulate. However this is physically un-
- realistic and comparison to AeroNet absorption optical depth showed that this extreme simulation overestimates absorption. However in order to better understand this behavior we will need to better evaluate the aerosol mixing state simulated by our model. The largest volume fraction is taken up by aerosol water, a quantity that is hardly validated in aerosol models. Chemical and morphological analysis of different individual particles is needed, along with size selective bulk analysis, to understand such processes,
- taking into account aerosol microphysical processes.

One possible approach to observe mixing state including BC coating estimates was discussed by Shiraiwa et al. (2008), where the mixing state of BC in Asian air masses was examined by a combination of aerosol mass spectroscopy (AMS) and single-

- ²⁰ particle soot photometer SP2 data. The AMS data provide a detailed chemical analysis of the measured species, and the SP2 was able to measure the size distribution, and the mixing state of BC. Shiraiwa et al. (2008) found a median value of the shell/core diameter ratio increased to 1.6 in Asian continental and maritime air masses with a core diameter of 200 nm, while in free tropospheric and in Japanese air masses it was
- 1.3–1.4. It was estimated that internal mixing enhanced the BC absorption by a factor of 1.5–1.6 compared to external mixing. The calculated absorption coefficient was 2–3 times higher in Asian continental air masses than in clean air. A further approach would be the combination of AMS with single particle mass spectroscopy ATOF-MS (Prather et al., 1994), or chemical ionization mass spectroscopy, CIMS (Hearn and Smith, 2004)

ACPD 10, 4543-4592, 2010 Carbonaceous aerosol microphysics S. E. Bauer et al. **Title Page** Introduction Abstract Conclusions References **Figures** Þ١ Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

data. Our ongoing research will focus on the validation of mixing state with these newly emerging datasets.

In light of the analysed model sensitivities towards microphysical BC characterization, we performed a set of BC mitigation studies. The model suggests that BC mitiga-

- tion is always beneficial if only BC sources are reduced, as the direct radiative forcing is lowered, and the effects on clouds are weak. BC mitigation led to enhanced CDNC production and a slightly stronger indirect effect; this finding is in contrast to assumptions about reducing primary particle concentrations. However, semi-direct effects, induced by changed vertical heating profiles in the atmosphere, as well as the first and production and a slightly stronger upper term and the atmosphere.
- ¹⁰ second indirect effect, are very important components of the response to altered BC emissions. The two more 'realistic' scenarios which include reduction of OC show that mitigating diesel emissions will slow global warming by -0.1 W/m^2 , whereas reducing biofuel sources could even accelerate global warming, mainly due to the impacts on clouds.
- ¹⁵ This study did not include ice cloud feedbacks or BC-snow ice albedo feedbacks (Koch et al., 2009) that may enhance warming by BC. Despite the various limitations explored in this study regarding emission sizes and mixing state of BC particles, our model results suggest that a reduction in BC diesel emissions would help reduce positive forcing even when including cloud changes. However, we stress that strategies
- ²⁰ that include a reduction in BC emissions should not delay any GHG reduction plans, as the likely reductions in positive forcing from BC emissions are small und uncertain (from +0.12 up to -0.19 W/m^2) compared to GHG forcings of 2.7 W/m² and growing. Furthermore, BC reductions also reduce co-emitted species, many of which have negative forcings, such as OC and sulfate. For sources sufficiently rich in black carbon,
- ²⁵ mitigation is beneficial, but aerosol microphysical processes and their interactions with atmospheric dynamics need to be better constrained in order to estimate warming benefits from those measures.

Acknowledgements. This work has been supported by the NASA MAP program Modeling, Analysis and Prediction Climate Variability and Change (NN-H-04-Z-YS-008-N) and (NNH08ZDA001N-MAP). KT was supported by an appointment to the NASA Postdoctoral Program at the Goddard Institute for Space Studies, administered by Oak Ridge Associated

- ⁵ Universities through a contract with NASA. We thank Andy Lacis for never getting tired of explaining the GISS radiation code to us, and Jessica Sagona for her work with the AERONET data sets. We acknowledge AERONET data, available at http://aeronet/gsfc.nasa.gov; IM-PROVE data available from http://vista.cira.colostate.edu/IMPROVE; and EMEP data from http://tarantula.nilu.no/projects/ccc. We are acknowledging the aircraft measurements made
 ¹⁰ available to us by groups at NOAA: David Fahey, Ru-shan Gao, Joshua Schwarz, Ryan Spack-
- man, Laurel Watts; University of Tokyo: Yutaka Kondo, Nobuhiro Moteki; and University of Hawaii: Antony Clarke, Cameron McNaughton, Steffen Freitag.

References

Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., and

- ¹⁵ Welton, E. J.: Reduction of tropical cloudiness by soot, Science, 288, 1042–1047, doi:10.1126/science.288.5468.1042, 2000.
 - Adams, P. J., and J. H. Seinfeld, Disproportionate impact of particulate emissions on global cloud condensation nuclei concentrations, Geophys. Res. Lett., 30(5), 1239, doi:10.1029/2002GL016303, 2003.
- Bauer, S. E., Wright, D., Koch, D., Lewis, E., McGraw, R., Chang, L.-S., Schwartz, S., and Ruedy, R.: Matrix (multiconfiguration aerosol tracker of mixing state): An aerosol microphysical module for global atmospheric models, Atmos. Chem. Phys., 8, 6603–6035, 2008, http://www.atmos-chem-phys.net/8/6603/2008/.

Bauer, S. E.,. Mishchenko, M. I., Lacis, A. A., Zhang, S., Perlwitz, J., and Metzger, S. M.: Do

- ²⁵ sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling? J. Geophys. Res., 112, D06307, doi:10.1029/2005JD006977, 2007.
 - Bond, T., Streets, D., Yarber, K., Nelson, S., Wo, J.-H., and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109, D14203, doi:10.1029/2003JD003697, 2004.

ACPD 10, 4543-4592, 2010 Carbonaceous aerosol microphysics S. E. Bauer et al. **Title Page** Abstract Introduction Conclusions References Tables **Figures** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

- Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Technol., 40, 27–67, 2006.
- Bond, T. C. and Sun, H.: Can reducing black carbon emissions counteract global warming?, Environ. Sci. Tech., 39, 5921–5926, 2005.
- ⁵ Boucher, O., Moulin, C., Belviso, S., Aumont, O., Bopp, L., Cosme, E., von Kuhlmann, R., Lawrence, M. G., Pham, M., Reddy, M. S., Sciare, J., and Venkataraman, C.: DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation, Atmos. Chem. Phys., 3, 49–65, 2003, http://www.atmos-chem-phys.net/3/49/2003/.
- Bruggeman, D.: Calculation of various physics constants in heterogenous substances i dielectricity constants and conductivity of mixed bodies from isotropic substances, Annalen der Physik, 24, 636–664, 1935.

Clarke, A. D., McNaughton, C., Kapustin, V. N., Shinozuka, Y., Howell, S., Dibb, J., Zhou, J., Anderson, B., Brekhovskikh, V., Turner, H., and Pinkerton, M.: Biomass burning and pollution aerosol over North America: Organic components and their influence on

and pollution aerosol over North America: Organic components and their influence on spectral optical properties and humidification response, J. Geophys. Res., 112, D12S18, doi:10.1029/2006JD007777, 2007.

Cooke, W. F., Liousse, C., Cachier, H., and Feichter, J.: Construction of a 1x1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model, J. Geophys. Res., 104, 22137–22162, 1999.

- Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generos, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J., Putaud, J.-P., Textor, C., Schulz, M., v. d. Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases for the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, 2006, http://www.atmos-chem-phys.net/6/4321/2006/.
- 25 2006, http://www.atmos-chem-phys.net/6/4321/2006/.

20

30

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y., King, M. D., Tanre, D., and Slutsker, I.: Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590–608, 2002.

Fuller, K. A., Malm, W. C., and Kreidenweis, S. M.: Effects of Mixing on Extinction By Carbonaceous Particles, J. Geophys. Res., 104(D13), 15941–15954, 1999.

Garnett, J.: Colours in metal glasses and in metallic films, Philos. Trans. R. Soc. London, 203, 385–420, 1904.

Garnett, J. C. M.: Colours in metal glasses, in metallic films, and in metallic solutions - II,

AC	ACPD	
10, 4543–4	10, 4543–4592, 2010	
Carbonaceous aerosol microphysics		
S. E. Bauer et al.		
Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
14	۶I	
•	•	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

BY

Philos. Trans. R. Soc. London, 205, 237–288, 1906.

30

- Gong, S. L.: A parameterization of sea-salt aerosol source function for sub- and super-micron particles, Global Biogeochemical Cycles, 17(4), 1097, doi:1029/2003GB002079, 2003.
- Hansen, J. E., Russell, G. L., Rind, D., Stone, P., Lacis, A., Ruedy, R., and Travis, L.: Efficient three-dimensional models for climatic studies, Mon. Weather Rev., 111, 609–662, 1983.
- Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response, J. Geophys. Res., 102, 6831–6864, doi:10.1029/96JD03436, 1997.
 - Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Cheng, Y., Genio, A. D., Faluvegi,
- G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, D., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S.: Efficacy of climate forcing, J. Geophys. Res, 110, D18104, doi:10.1029/2005JD005776, 2005.
- ¹⁵ Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V.: Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci., 97, 9875–9880, doi:10.1073/pnas.170278997, 2000.
 - Hearn, J. D. and Smith, G. D.: A chemical ionization mass spectrometry method for the online analysis of organic aerosols, Anal. Chem., 76(10), 2820–2826, 2004.
- Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET—A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, 1998.

Howell, S. G., Clarke, A. D., Shinozuka, Y., Kapustin, V. N., McNaughton, C. S., Huebert, B.

- J., Doherty, S., and Anderson, T.: The Influence of relative humidity upon pollution and dust during ACE-Asia: size distributions and implications for optical properties, J. Geophys. Res., 111 D06205, doi:10.1029/2004JD005759, 2006.
 - Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report, Climate Change 2007 Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007.
 - Jacobson, M. Z.: A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols, Geophys. Res. Lett., 27, 217–220, 2000.

Jacobson, M. Z.: Control of fossil-fuel particulate black carbon and organic matter, possi-

ACPD		
10, 4543–4592, 2010		
Carbonaceous aerosol microphysics S. E. Bauer et al.		
Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
14	►I	

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Back

bly the most effective method of slowing global warming, J. Geophys. Res., 107(D19), doi:10.1029/2001JD001376, 2002.

Khalizov A. F., Xue, H., Wang, L., Zheng, J., and Zhang, R.: Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid, J. Phys. Chem., 113, 1066–1074, 2009.

5

25

- Kim, D., Wang, C., Ekman, A. M. L., Barth, M. C., and Rasch, P. J.: Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size-resolving aerosolclimate model, J. Goephys. Res, 113, D16309, doi:10.1029/2007JD009756, 2008.
 Koch, D., Schmidt, G. A., and Field, C. V.: Sulfur, sea salt and radionuclide aerosols in GISS
- ModelE, J. Geophys. Res., 111, D06206, doi:10.1029/2004JD005550, 2006.
 Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y., Bauer, S.,
 - Berntsen, T., Bond, T. C., Boucher, O., Chin, M., Clarke, A., De Luca, N., Dentener, F., Diehl, T., Dubovik, O., Easter, R., Fahey, D. W., Feichter, J., Fillmore, D., Freitag, S., Ghan, S., Ginoux, P., Gong, S., Horowitz, L., Iversen, T., Kirkevåg, A., Klimont, Z., Kondo, Y., Krol, M.,
- Liu, X., Miller, R., Montanaro, V., Moteki, N., Myhre, G., Penner, J. E., Perlwitz, J., Pitari, G., Reddy, S., Sahu, L., Sakamoto, H., Schuster, G., Schwarz, J. P., Seland, Ø., Stier, P., Takegawa, N., Takemura, T., Textor, C., van Aardenne, J. A., and Zhao, Y.: Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9, 9001–9026, 2009, http://www.atmos-chem-phys.net/9/9001/2009/.
- Lacis, A. A. and Oinas, V.: A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 9027–9063, 1991.
 - Lesins, G., Chylek, P., and Lohmann, U.: A Study of Internal and External Mixing Scenarios and Its Effect on Aerosol Optical Properties and Direct Radiative Forcing, J. Geophys. Res., 107(D10), 4094 doi:10.1029/2001JD000973, 2002.
 - Lohmann, U., Spichtinger, P., Jess, S., Peter, T., and Smit, H.: Cirrus cloud formation and ice supersaturated regions in a global climate model, Env. Res. Lett., 3, 045022, doi:10.1088/1748-9326/3/4/045022, 2008.

McNaughton, C. S., Clarke, A. D., Kapustin, V. N., Shinozuka, Y., Howell, S. G., Anderson, B.

E., Winstead, E., Dibb, J., Scheuer, E., Cohen, R. C., Wooldridge, P. J., Perring, A. E., Huey,
 L. G., Kim, S., Jimenez, J. L., Dunlea, E. J., DeCarlo, E. H., Wennberg, P. O., Crounse, J.
 D., Weinheimer, A. J., and Flocke, F. M.: Observations of heterogeneous reactions between
 Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B, Atmos.

AC	ACPD	
10, 4543–	4592, 2010	
Carbor aerosol mi S. E. Ba	Carbonaceous aerosol microphysics S. E. Bauer et al.	
Title	Title Page	
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
14	►I	
•	•	
Back	Close	
Full Scr	Full Screen / Esc	
Printer-frie	Printer-friendly Version	
Interactive Discussion		

Chem. Phys., 9, 8283-8308, 2009, http://www.atmos-chem-phys.net/9/8283/2009/.

- Morrison, H. and Gettelman, A.: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmospheric Model (CAM3), Part I: Description and Numerical Tests J. Climate, 21(15), 3642–3659, 2008.
- ⁵ Moteki, N. and Kondo, Y.: Effects of mixing state on black carbon measurement by Laser-Induced Incandescence, Aerosol Sci. Technol., 41, 398–417, 2007.
 - Moteki, N., Kondo, Y., Miyazaki, Y., Takegawa, N., Komazaki, Y., Kurata, G., Shirai, T., Blake, D. R., Miyakawa, T., and Koike, M.: Evolution of mixing state of black carbon particles: Aircraft measurements over the western Pacific in March 2004, Geophys. Res. Lett., 34, L11803, doi:10.1029/2006GL028943. 2007.
- Menon, S., Bauer, S. E., Sednev, I., Koch, D., Morrison, H., and DeMott, P.: Aerosol-climate interactions: Evaluation of cloud processes and regional climate impacts from varying GHG and aerosol amounts, Atmos. Chem Phys., to be submitted, 2009.

10

25

Menon, S. and Rotstayn, L.: The radiative influence of aerosol effects on liquidphase cumulus and stratiform clouds based on sensitivity studies with two climate models. Clim. Dynam..

- and stratiform clouds based on sensitivity studies with two climate models, Clim. Dynam 27, 345–356, doi:10.1007/s00382-006-0139-3, 2006.
 - Myhre, G: Consistency between satellite-derived and modeled estimates of the direct aerosol effect, Science, 325, 187–190, 2009.

Miller, R. L., Cakmur, R., Perlwitz, J., Geogdzhayev, I., Ginoux, P., Kohfeld, K., Koch, D., Prigent,

- 20 C., Ruedy, R., Schmidt, G., and Tegen, I.: Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model, J. Geophys. Res., 111, D06208, doi:10.1029/2005JD005796, 2006.
 - Mishchenko, M. I., Travis, L. D., and Mackowski, D. W.: Tmatrix computations of light scattering by nonspherical particles: A review, J. Quant. Spectrosc. Radiat. Transfer, 55, 535–575, 1996.
 - Penner, J. E., Zhang, S. Y., and Chuang, C. C.: Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108(D21), 4657, doi:10.1029/2003JD003409, 2003.
 - Prather, K. A., Nordmeyer, T., and Salt, K.: Real-Time Characterization of Individual Aerosol-Particles Using Time-Of-Flight Mass-Spectrometry, Anal. Chem., 66(9), 1403–1407, 1994.
- Quaas, J., Ming, Y., Menon, S., Takemura, T., Wang, M., Penner, J. E., Gettelman, A., Lohmann, U., Bellouin, N., Boucher, O., Sayer, A. M., Thomas, G. E., McComiskey, A., Feingold, G., Hoose, C., Kristjánsson, J. E., Liu, X., Balkanski, Y., Donner, L. J., Ginoux, P. A., Stier, P., Grandey, B., Feichter, J., Sednev, I., Bauer, S. E., Koch, D., Grainger, R. G., Kirkevåg,

AC	PD	
10, 4543–4	4592, 2010	
Carbonaceous aerosol microphysics S. E. Bauer et al.		
Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
I	۶I	
•	•	
Back	Close	
Full Scre	Full Screen / Esc	
Printer-friendly Version		
Interactive Discussion		

A., Iversen, T., Seland, Ø., Easter, R., Ghan, S. J., Rasch, P. J., Morrison, H., Lamarque, J.-F., Iacono, M. J., Kinne, S., and Schulz, M.: Aerosol indirect effects general circulation model intercomparison and evaluation with satellite data, Atmos. Chem. Phys., 9, 8697–8717, 2009, http://www.atmos-chem-phys.net/9/8697/2009/.

⁵ Riemer, N., West, M.,Zaveri, R. A., and Easter, R. C.: Simulating the evolution of soot mixing state with a particle-resolved aerosol model, J. Geophysical Res., 114, D09202, doi:10.1029/2008/JD011073, 2009.

Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X.,

¹⁰ Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and Takemura, T.: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246, 2006, http://www.atmos-chem-phys.net/6/5225/2006/.

Schmidt, G. A., Ruedy, R., Hansen, J., Aleinov, I., Bell, N., Bauer, M., Bauer, S., Cairns, B.,

- ¹⁵ Cheng, Y., DelGenio, A., Faluvegi, G., Friend, A., Hall, T. M., Hu, Y., Kelley, M., Kiang, N., Koch, D., Lacis, A. A., Lerner, J., Lo, K. K., Miller, R. L., Nazarenko, L., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Russell, G. L., Shindell, D. T., Stone, P. H., Sun, S., Tausnev, N., and Yao, M.-S.: Present day atmospheric simulations using giss modele: Comparison to in-situ, satellite and reanalysis data, J. Climate, 19, 153–192, 2006.
- Schuster, G. L., Dubovik, O., Holben, B. N., and Clothiaux, E. E.: Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals, J. Geophys. Res., 110, D10S17, doi:10.1029/2004JD004548, 2005.
 - Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts, L. A., Wilson, J. C., Reeves, J. M., Darbeheshti, M., Baumgardner, D. G., Kok, G. L., Chung, S. H., Schulz, M., Hendricks,
- J., Lauer, A., Karcher, B., Slowik, J. G., Rosenlof, K. H., Thompson, T. L., Langford, A. O., Loewenstein, M., and Aikin, K. C.: Single-particle measurements of midlatitude black carbon and lightscattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res., 111, D16207, doi:10.1029/2006JD007076, 2006.

Schwarz, J. P., Spackman, J. R., Fahey, D. W., Gao, R. S., Lohmann, U., Stier, P., Watts, L.

A., Thomson, D. S., Lack, D. A., Pfister, L., Mahoney, M. J., Baumgardner, D., Wilson, J. C., and Reeves, J. M.: Coatings and their enhancement of black carbon light absorption in the tropical atmosphere, J. Geophys. Res., 113, D03203, doi:10.1029/2007JD009042, 2008. Shinozuka, Y., Clarke, A. D., Howell, S. G., Kapustin, V. N., McNaughton, C. S., Zhou, J., and

aerosol mi	aceous crophysics	
S. E. Bauer et al.		
Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
14	۶I	
•	Þ	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

BY

Anderson, B. E.: Aircraft profils of aerosol microphysics and optical properties over North America: Aerosol optical depth and its association with PM_{2.5} and water uptake, J. Geophys. Res., 112, D12S20, doi:10.1029/2006JD007918, 2007.

Shiraiwa, M., Kondo, Y., Moteki, N., Takegawa, N., Sahu, L. K., Takami, A., Hatakeyama, S., ⁵ Yonemura, S., and Blake, D. R.: Radiative impact of mixing state of black carbon aerosol in

Asian outflow, J. Geophys. Res., 113, D24210, doi:10.1029/2008JD010546, 2008.

- Slowik, J. G., Cross, E. S., Han, J. H., Davidovits, P., Onasch, T. B., Jayne, J. T., Williams, L. R., Canagaratna, M. R., Worsnop, D. R., Chakrabarty, R. K., Moosmuller, H., Arnott, W. P., Schwarz, J. P., Gao, R. S., Fahey, D. W., Kok, G. L., and Petzold, A.: An intercomparison of instruments measuring black carbon content of soot particles, Aerosol Sci. Technol., 41,
- of instruments measuring black carbon content of soot particles, Aerosol Sci. Technol., 4 295, doi:10.1080/02786820701197078, 2007.
 - Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold, A.: The aerosolclimate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, 2005,

15 http://www.atmos-chem-phys.net/5/1125/2005/.

25

- Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Feichter, J., Fillmore, D., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, T., Kloster, S., Koch, D., Kirkevåg, A., Kristjaansson, J., Krol, M., Lauer, A., Lamarque, J., Liu, X., Montanaro, V.,
- ²⁰ Myhre, G., Penner, J., Pitari, G., Reddy, S., Stier, P., Takemura, T., and Tie, X.: The effect of harmonized emissions on aerosol properties in global models an aerocom experiment, Atmos. Chem. Phys., 7, 4489–4501, 2007, http://www.atmos-chem-phys.net/7/4489/2007/.
 - Tsigaridis, K., Balkanski, Y., Schulz, M., and Benedetti, A.: Global error maps of aerosol optical properties: an error propagation analysis, Atmos. Chem. Phys. Discuss., 8, 16027–16059, 2008, http://www.atmos-chem-phys-discuss.net/8/16027/2008/.
 - Toon, O. B. and Ackerman, T. P.: Algorithms for the calculation of scattering by stratified spheres, Appl. Opt. 20, 3657–3660, 1981.
 - van der Werf, G. R., Randerson, J. T, Collatz, G. C., and Giglio, L.: Carbon emissions from fires in tropical and subtropical ecosystems, Global Change Biol., 9(4), 547–562, 2003.

AC	ACPD	
10, 4543–4	10, 4543–4592, 2010	
Carbonaceous aerosol microphysics		
S. E. Bauer et al.		
Title Page		
The second	. ugo	
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
I4 >		
•	•	
Back Close		
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

Table 1. Populations, constituents, and possible particle mixing state considerations in the radiation calculations: homogeneously internally mixed (HI), externally mixed (EM), core shell particles (CS).

population description	symbol	constituents	mixing state
sulfate Aitken mode	AKK	SO ₄ ⁻² , NO ₃ ⁻ , H ₂ O	EM/ HI
sulfate accum. mode	ACC	SO_4^{-2} , NO_3^{-} , H_2O	EM/HI
dust accum. mode (≤%5 inorg.)	DD1	dust, SO_4^{-2} , NO_3^{-} , H_2O	EM
dust accum. mode (>%5 inorg.)	DS1	dust, SO_4^{-2} , NO_3^{-} , H_2O	EM/HI
dust coarse mode (≤%5 inorg.)	DD2	dust, SO_4^{-2} , NO_3^{-} , H_2O	EM
dust coarse mode (>%5 inorg.)	DS2	dust, SO_4^{-2} , NO_3^{-} , H_2O	EM/HI
sea salt accum. mode	SSA	sea salt, SO_4^{-2} , NO_3^{-} , H_2O	EM/HI
sea salt coarse mode	SSC	sea salt, SO_4^{-2} , NO_3^{-} , H_2O	EM/HI
organic carbon (OC)	000	OC, SO_4^{-2} , NO_3^{-} , H_2O	EM/HI
Black carbon (BC) (≤5% inorg.)	BC1	$BC, SO_4^{-2}, NO_3^{-1}, H_2O$	EM/HI or CS
BC (5–20% inorg.)	BC2	BC, SO_4^{-2} , NO_3^{-} , H_2O	EM/HI or CS
BC (>20% inorg.)	BC3	$BC, SO_4^{-2}, NO_3^{-}, H_2O$	HI or CS
BC-OC	BOC	BC, OC, SO_4^{-2} , NO_3^{-} , H_2O	HI or CS
BC-sulfate	BCS	$BC, SO_4^{-2}, NO_3^{-}, H_2O$	HI or CS
(formed by coagulation)			
BC-mineral dust	DBC	dust, BC,SO ₄ ⁻² , NO ₃ ⁻ , H ₂ O	HI
mixed	MXX	dust, sea salt, BC, OC, SO_4^{-2} , NO_3 , H_2O	Н

ACPD

10, 4543-4592, 2010

Carbonaceous aerosol microphysics

ACPD

10, 4543–4592, 2010

Carbonaceous aerosol microphysics

S. E. Bauer et al.

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	ÞI					
•	•					
Back	Close					
Full Scre	en / Esc					
Printer-friendly Version						
Interactive Discussion						
	Dioodoololl					

Table 2. Emission sizes, geometric mean diameters in $\left[\mu m\right]$ of carbonaceous aerosols.

	OC [OCC] fossil & biofuel	BC [BC1] fossil & biofuel	BC-OC [BOC] biomass burning
S1 BASE S3 S4	0.01 0.05 0.1 0.5	0.01 0.05 0.1 0.5	0.025 0.10 0.25 1

Table 3. Global annual average values for the net aerosol direct effect (ADE), for sulfate and
nitrate (ACC), OC (OCC), BC, sulfate and nitrate (BC-SU, population BC1, BC2, BC3, BCS),
BC, sulfate, nitrate and OC (BC-OC, population BOC); AIF is indirect and semi-direct effect; NR
is net radiative forcing (AIF + ADF) _{TOA} .

	ADE _{toa} ACC PD	ADE _{toa} OCC PD	ADE _{toa} BC-SU PD	ADE _{toa} BC-OC PD	ADE _{toa} total PD	AIF PD- PI	ADF _{toa} PD-PI	NR PD-PI
BASE	-0.05	-0.16	0.05	0.1	-1.78	-0.45	-0.11	-0.56
			Er	nission size e	experiments			
S1	-0.01	-0.01	0.01	0.36	-2.68	-0.65	-0.09	-0.74
S3	-0.15	-0.34	0.09	0.09	-1.71	-0.35	-0.25	-0.60
S4	-0.37	-0.05	0.03	0.08	-1.18	-0.13	-0.19	-0.32
				Radiation exp	periments			
CS	-0.05	-0.16	0.05	1.61	-0.27	-0.60	1.09	0.49
CS10	-0.05	-0.16	0.05	1.33	-0.55	-0.53	0.88	0.35

ACPD

10, 4543–4592, 2010

Carbonaceous aerosol microphysics

Table 4. Comparison between model simulations and EMEP (EU) and IMPROVE (US) surface BC concentrations, and AERONET absorption optical thickness (AAOT) and optical thickness (AOT). Year 2000 AERONET data are used. Model data are averaged at station locations. Gray shadings mark model values that are lower than the observation, red shadings show higher modeled values, and yellow shading indicates best simulation. Global and regional comparisons are presented for, North America, South America, Europe, Africa (including Arabian peninsula) and Asia.

	EU	US		AERONET										
	BC m	ass [µg/m ³]	³] AAOT					AOT						
	EU	US	Global	N. Am.	S. Am.	Europe	Africa	Asia	Global	N. Am.	S. Am	Europe	Africa	Asia
# stat.	14	55	77	33	9	13	10	6	77	33	9	13	10	6
Obs.	0.65	0.29	0.018	0.0061	0.0014	0.0035	0.0032	0.0031	0.19	0.063	0.011	0.041	0.035	0.031
BASE	0.41	0.16	0.014	0.0054	0.0004	0.0026	0.0037	0.0016	0.16	0.057	0.003	0.032	0.041	0.017
S1	0.44	0.17	0.018	0.0066	0.0005	0.0036	0.0032	0.0022	0.19	0.066	0.004	0.040	0.041	0.020
S3	0.38	0.14	0.010	0.0032	0.0003	0.0018	0.0032	0.0013	0.14	0.047	0.004	0.028	0.035	0.015
S4	0.31	0.12	0.008	0.0019	0.0002	0.0013	0.0033	0.0009	0.11	0.033	0.003	0.022	0.033	0.011
CS100	0.42	0.16	0.023	0.0090	0.0007	0.0043	0.0045	0.0028	0.16	0.057	0.003	0.032	0.042	0.017
CS ₁₀	0.43	0.16	0.021	0.0082	0.0006	0.0043	0.0044	0.0024	0.16	0.057	0.003	0.033	0.043	0.017

ACPD

10, 4543-4592, 2010

Carbonaceous aerosol microphysics

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	P1					
•	•					
■ Back	► Close					
 Back Full Scre 	Close en / Esc					
Back Full Scre	Close en / Esc					
 Back Full Scre Printer-frien 	Close en / Esc dly Version					

Table 5. Global mean budgets of the BASE experiment, for present day conditions (PD), differences between PD and PI, and differences between BASE run and BC reduction experiments under PD conditions. The following variables are listed: Non-biomass burning BC and OC emissions, (\otimes Biomass burning emissions are 3 Tg/a BC and 24.8 Tg/a OC for present-day and 1. T/g BC and 9.1 Tg/a OC for pre-industrial times), CDNC (cm³), Liquid water path [mg/m²], total cloud cover [%], the indirect and semi-direct effect (AIE), aerosol direct effect (ADE) at the surface and TOA, and total net radiative change (NR) [W/m²].

	BC1 Emission [Tg/a]	OCC Emission [Tg/a]	CDNC [cm ³]	LWP [mg/m ²]	Cloud Cover [%]	AIE _{TOA} [W/m ²]	ADE _{TOA} [W/m ²]	NR _{TOA} [W/m ²]	ADE _{SURF} [W/m ²]
BASE (PD) BASE (PD-PI) [⊗]	4.6 0.4	22.1 14.6	162 41	702 7.0	60.1 0.2	-0.45	-1.78 -0.11	-1.75 -0.56	-4.62 -1.32
		Mitigation	n experiments: D	Delta between ex	periment and BASI	E, (BASE-E	XP)		
BC_50 (PD) BCFF (PD) BCOCBF (PD) BC_diesel(PD)	-2.3 -3.0 -1.6 -1.3	0 0 -6.4 -0.4	4 3 -5 2	-0.2 -0.43 -2.52 0.98	-0.05 -0.07 -0.14 0	0.12 -0.05 0.20 -0.05	-0.15 0.15 -0.07 -0.05	-0.03 -0.20 0.13 -0.10	0.13 0.20 0.21 0.11

ACPD

10, 4543-4592, 2010

Carbonaceous aerosol microphysics

Fig. 1. Differences in present day total column aerosol mass concentrations $[\mu g/m^2]$ per mixing state between experiment S1 and BASE (S1-BASE). The first row shows externally mixed sulfate (population ACC and AKK), sulfate predominantly mixed with OC (OCC, BOC), BC (BC1, BC2, BC3, BCS), and sulfate mixed with coarse aerosols (DS1, DS2, SSC, MXX). Rows two and three show the corresponding changes in mixing state for BC and OC mixtures. Graphs show only the sulfate, or BC, OC respectively, mass present in those mixtures. Some aerosol concentrations are divided by a factor of ten to match the color bar as indicated in the individual title of the map

ACPD

10, 4543–4592, 2010

Carbonaceous aerosol microphysics

Fig. 2. Zonal mean BC mass mixing ratios for the BASE case and the differences between BASE (BA) and the size experiments, S1, S3, S4 and the radiation experiments CS_{100} and CS_{10} . Global mean BC mass concentrations per experiment are given in the figure titles.

ACPD

10, 4543–4592, 2010

Carbonaceous aerosol microphysics

S1-BASE

Fig. 3. Changes between BASE and S1 (S1-BASE) (upper panels) and (S3-BASE) (lower panels) for AOT, CDNC [#/cm³], ADE [W/m²] and AIE [W/m²]. All maps show differences between the experiments for present day conditions.

ACPD

10, 4543–4592, 2010

Carbonaceous aerosol microphysics

ACPD

10, 4543–4592, 2010

Carbonaceous aerosol microphysics S. E. Bauer et al.

Fig. 4. Global mean AIE and ADE $[W/m^2]$ values for all size experiments, (S1 - 4) and the base experiment, BA, for present day conditions.

Fig. 5. Present day radiative forcing, ADE, at the top of the atmosphere by species for the BASE experiment. Externally mixed sulfates and nitrates (ACC), organics (OCC), black carbon/ sulfate/nitrate mixture (BC – SU), black carbon/organic carbon mixture (BC – OC), dust and sea salt. Units are $[W/m^2]$.

ACPD

10, 4543–4592, 2010

Carbonaceous aerosol microphysics

BOC BC BOC SU BOC OC Image: Signed state st

Fig. 6. Fractional contributions of BC, sulfate/nitrate and OC, in population BOC (upper row), and BCS (lower row). Aerosol water is not displayed.

ACPD

10, 4543–4592, 2010

Carbonaceous aerosol microphysics

Fig. 7. Absorption optical thickness of BC – sulfate/nitrate mixtures (left column), and BOC (right column), for experiments BASE and CS_{10}

ACPD

10, 4543–4592, 2010

Carbonaceous aerosol microphysics

ACPD

10, 4543–4592, 2010

Carbonaceous aerosol microphysics

S. E. Bauer et al.

Fig. 8. Percentage difference [((CS-HI)–CS)/CS] in absorption between a core-shell and a homogeneous mixing Mie calculation, for BC cores with OC coating (left) and sulfate coating (right).

Fig. 9. Modeled (colored) and observed (black lines) BC mass profiles in [ng/kg] in the tropics and mid-latitudes **(a–d)** and ARCPAC and ARCTAS campaign **(e–i)**. Observations are averaged for the respective campaigns, with standard deviations where available. The two black lines in (a) show measurements on two different days. All other profiles give multiple day averages. Mean (solid) and median (dashed) observed profiles are provided except that (g) the ARCPAC campaign has distinct profiles for the mean of the 4 flights that probed long-range biomass burning plumes (dashed) and mean for the1flight that sampled aged Arctic air (solid).

ACPD

10, 4543-4592, 2010

Carbonaceous aerosol microphysics

S. E. Bauer et al.

Fig. 10. Aerosol optical thickness at 550 nm for clear sky conditions shown for the four seasons. Left column shows model data and the filled circles in the right column give the AERONET data.

Fig. 11. Aerosol absorption optical thickness at 550 nm for clear sky conditions shown for the four seasons. Left column shows model data and in the right column AERONET data.

ACPD 10, 4543–4592, 2010 Carbonaceous aerosol microphysics S. E. Bauer et al. Title Page Abstract Introduction

Fig. 12. Differences in CDNC $[cm^{-3}]$, total cloud cover [%], top of the atmosphere cloud (AIE), aerosol (ADE) and surface aerosol forcing $[W/m^2]$, between the PD and PI in the BASE case (first panel) and the difference between BASE and the four BC reduction cases. Cloud cover and ADE are multiplied by a factor of 10 to fit the color scheme.

ACPD

10, 4543–4592, 2010

Carbonaceous aerosol microphysics

