Supplementary Material for the paper

Heterogeneous chemistry of monocarboxylic acids on α -Al₂O₃ at ambient condition

By:

S. R. Tong, L. Y. Wu, M. F. Ge, W. G. Wang, and Z. F. Pu

Correspondence to: M. F. Ge (gemaofa@iccas.ac.cn)

Surface species	Absorbance bands	Vibrational mode assignment					
Adsorbed formate species ^a							
	1378	C–H in plane bend					
	1393	OCO symmetric stretch					
	1600	OCO antisymmetric stretch OCO symmetric stretch and C–H in plane bend					
	2750						
	2866	C–H stretch					
	2985	OCO symmetric stretch and C-H in plane bend					
Adsorbed acetate	e species ^b						
	1343	symmetric bend of CH ₃					
	1424	deformation mode of CH ₃					
	1468	OCO symmetric stretch					
	1578	OCO antisymmetric stretch					
	2935	CH ₃ symmetric stretch					
	2986	C-H antisymmetric stretch					
	3016	C-H antisymmetric stretch					
Adsorbed propionate species ^c							
	1259	out-of-phase twisting of CH ₂					
	1303	in-plane wagging mode of CH ₂					
	1383	symmetric deformation of CH ₃					
	1424	asymmetric bending of CH ₃ and OCO symmetric stretch					
	1478	antisymmetric deformation of CH ₃ , scissoring modes of CH ₂ , and OCO symmetric stretch					
	1568	OCO antisymmetric stretch					
	2886	C–H symmetric stretch of CH ₂					
	2946	C–H symmetric stretch of CH ₃					
	2981	C–H antisymmetric stretch of CH ₂					

Table S1. Assignment of the vibrational frequencies (cm^{-1}) for adsorbed carboxylates following exposure of Al₂O₃ particles surfaces to carboxylic acids.

^{*a*} from Chauvin et al. (1990), Amenomiya (1979), and Walmsley et al. (1981).

^{*b*} from Chen and Bruce (1995) and Walmsley et al. (1981).

^c from Yang et al. (2006), Kakihana and Akiyama (1987), and Yuzawa et al. (1997).

Mode	Optimized structural parameters					Vibrational mode			
	Bond length (Å)			Angle (degrees)		Calculated frequencies (cm ⁻¹)			
	C-01	C-O2	Al1-02	01-C-02	Al1-O2-C	δ(CH)	v _s (OCO)	$v_{as}(OCO)$	
Monodentate	1.22	1.31	1.78	125.8	126.0	1405	1304	1698	
						(1367)	(1268)	(1651)	
Bidentate	1.27	1.27	1.89	116.8	86.1	1296	1400	1556	
						(1260)	(1362)	(1513)	
Bridging	1.25	1.26	1.86	126.6	134.0	1422	1432	1651	
						(1383)	(1393)	(1606)	

Table S2. Structural parameters and vibration frequencies (in cm⁻¹) for the calculated model formates I-III, calculated at B3LYP/6-311++G(3df,3pd) level of theory.

- Mode	Optimized structural parameters					Vibrational mode			
	Bond length (Å)			Angle (degrees)		Calculated frequencies (cm ⁻¹)			
	C-01	C-O2	Al1- 02	01-C-02	Al1-O2- C	δ(CH)	v _s (OCO)	v _{as} (OCO)	
Monodentate	1.23	1.32	1.78	123.4	126.6	1410	1344	1690	
						(1371)	(1307)	(1644)	
Bidentate	1.28	1.28	1.91	114.9	87.1	1444	1468	1529	
						(1404)	(1428)	(1487)	
Bridging	1.26 1	1.20	1.84	124.0	131.2	1470	1513	1616	
		1.20				(1430)	(1472)	(1572)	

Table S3. Structural parameters and vibration frequencies (in cm^{-1}) for the calculated model acetates I-III, calculated at B3LYP/6-311++G(3df,3pd) level of theory.

Mode _		Optimi	zed structu	Vibrational mode				
	Bond length (Å)			Angle (degrees)		Calculated frequencies (cm ⁻¹)		
	C-01	C-02	A11-O2	O1-C-O2	Al1-02-C	$\delta(CH_3)+$ $\nu_s(OCO)$	$\delta(CH_3)+$ $\nu_s(OCO)$	v _{as} (OCO)
Monodentate	1.23	1.32	1.77	123.3	126.5	1284	1408	1686
						(1249)	(1369)	(1640)
Bidentate	1.28	1.28	1.87	114.7	87.1	1449	1525	1508
						(1409)	(1483)	(1467)
Bridging	1.27 1.20	1.26	.26 1.84	123.8	135.7	1493	1514	1608
		1.20				(1452)	(1473)	(1564)

Table S4. Structural parameters and vibration frequencies (in cm⁻¹) for the calculated model propionates I-III, calculated at B3LYP/6-311++G(3df,3pd) level of theory.