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Abstract

The purpose of the present study is to investigate the sensitivity of ozone concentration
([O3]) predictions in Mexico City to meteorological initial uncertainties and planetary
boundary layer (PBL) parameterization schemes using state-of-the-art meteorological
and photochemical prediction models through ensemble forecasts. The simulated pe-5

riods (3, 9, 15, and 29 March 2006), represent four typical meteorological episodes
(“South-Venting”, “O3-North”, “O3-South” and “Convection-North”, respectively) in the
Mexico City basin during the MCMA-2006/MILAGRO campaign. Our results demon-
strate that uncertainties in meteorological initial conditions have significant impacts on
O3 predictions, including the peak time [O3], as well as the horizontal and vertical [O3]10

distributions, and temporal variations. The ensemble spread of the simulated peak [O3]
averaged over the city’s ambient monitoring sites can reach up to 10 ppb. The magni-
tude of the ensemble spreads varies with different PBL schemes and meteorological
episodes. The uncertainties in O3 predictions caused by PBL schemes mainly come
from their ability to represent the mixing layer height, but overall, these uncertainties15

are smaller than those from uncertainties in meteorological initial conditions.

1 Introduction

The predictability of the weather is inherently limited because of the chaotic nature
of the atmosphere (Lorenz, 1969). The limited deterministic predictability in numerical
weather prediction (NWP) has been extensively studied (see e.g., Leith and Kraichnan,20

1972; Anthes et al. 1985; Errico and Baumhefner, 1987; Vukicevic and Errico, 1990;
Zhang et al., 2002, 2003; Tribbia and Baumhefner, 2004; Zhang et al., 2006; Bei and
Zhang, 2007). It has been found that the error grows with the background dynamics
and this is strongly nonlinear. Smaller amplitude initial errors, which are far smaller
than those of current observational networks, may grow rapidly and quickly saturate at25

smaller scales. These errors successively grow upscale, leading to significant forecast
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uncertainties at increasingly larger scales. Besides, moist convection is found to be the
key to the rapid error growth that leads to limited predictability at the mesoscales. En-
semble techniques are commonly used to improve the forecast ability of meteorological
models (e.g., Kalnay, 2003) and have been successfully applied to dispersion forecasts
of radionuclides and inert tracers (Galmarini et al., 2004, and references therein).5

An ensemble forecast system is composed of multiple individual numerical forecasts
(members) generated from a set of different initial conditions and/or different numerical
configurations (Leith, 1974). In addition, probabilistic forecasts, which have been pre-
sented elsewhere (e.g., Buizza et al., 1993; Toth and Kalnay, 1993; Mullen and Buizza,
2002), can also be obtained from the relative frequencies of events represented in the10

ensemble.
Ensemble prediction systems have been widely used operationally in meteorological

centers around the world, such as the National Centers for Environmental Prediction
(NCEP) (Toth and Kalnay, 1993), the European Center for Medium-Range Weather
Forecasts (ECMWF) (Buizza, 1997), and the Meteorological Service of Canada (MSC)15

(Houtekamer and Lefaivre, 1997). It has been found that the ensemble mean is more
accurate than an individual model realization, when verified for numerous cases. NWP
ensembles could be implemented by using different model initial conditions (Toth and
Kalnay, 1993, 1997; Molteni et al., 1996), different parameterizations within a single
model (Stensrud et al., 1998), different numerical schemes (Thomas et al., 2002), and20

different models (Hou et al., 2001; Wandishin et al., 2001). This allows the ensemble
to consider different sources of uncertainty.

The ensemble technique can yield similar benefits to real-time air quality prediction,
because there are similar model complexities and constraints. For example, a proba-
bilistic approach to air quality forecasting has been recommended by the US Weather25

Research Program and its Prospectus Development Team on Air Quality Forecasting
(Dabberdt et al., 2003) because of the chaotic nature of the atmosphere and chemistry
nonlinearity. Delle Monache and Stull (2003) have discussed the benefits of the ensem-
ble approach through the use of different Chemical Transport Models (CTMs) and the
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associated photochemical reactions. Galmarini et al. (2004b) have tested a multimodel
ensemble dispersion system by considering several operational long-range transport
and dispersion models. They found that the median member of the forecast ensem-
ble exhibited the best forecast skill. McKeen et al. (2005) have presented results for
a multimodel (i.e., seven CTMs) Ozone Ensemble Forecast System (OEFS), statisti-5

cally evaluated for 53 days against 340 monitoring stations over Eastern US and South-
ern Canada. Their results showed that the ensemble mean is the preferred forecast
when compared to any individual model. Mallet and Sportisse (2006) have conducted
the ensemble photochemical simulations by using different physical parameterizations.
Delle Monache et al. (2006a) have tested a new OEFS to improve the accuracy of10

real-time photochemical air quality modeling using different meteorological and photo-
chemical models together with different emission scenarios. In all cases, the ensemble
means perform better than most models individually.

Recent studies have also demonstrated that the air quality forecasts can be fur-
ther improved through weighted ensemble means (e.g., Delle Monache et al., 2006b;15

Pagowski et al., 2005). Using both meteorological and photochemical ensemble fore-
casts, it has been shown that there are large uncertainties in the ozone prediction
in Houston and surrounding areas due to initial meteorological uncertainties (Zhang
et al., 2007). This further demonstrates the importance of accurate representation of
meteorological conditions and the need for probabilistic evaluation and forecasting for20

air pollution in urban areas. The ozone prediction sensitivities due to PBL schemes
through deterministic forecast have been conducted by Mao et al. (2006). Their results
show that the option of PBL schemes in MM5 does not appreciably affect the CMAQ
performance when the evaluations are averaged throughout the entire modeling do-
main. However, on an urban scale the differences in O3 prediction across different PBL25

schemes are considerable.
The Mexico City Metropolitan Area (MCMA) is situated inside a basin at an eleva-

tion of 2240 m above sea level (a.s.l.) at 19.4◦ N latitude and is surrounded on three
sides by mountains averaging over 3000 m a.s.l. (see Fig. 1b). The main opening of
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the basin is towards the Mexico Plateau to the north. To the southeast there is a gap
in the mountains, referred to as the Chalco passage, which leads to significant gap
winds. The combination of weak winds and numerous emission sources results in high
levels of air pollution (Molina and Molina, 2002). Because of its complex topography,
the meteorology of the MCMA depends on the interplay of the basin with the Mexica5

Plateau and the lower coastal areas (along the eastern Pacific Ocean and the Gulf of
Mexico). Both regional and synoptic-scale meteorological conditions are important for
understanding flows and dispersions within the Mexico City basin (Bossert, 1997). The
complex wind circulation in the Mexico City basin and its role in the formation of sur-
face air pollution distributions in the basin have been analyzed extensively in previous10

studies (e.g., Wellens et al., 1994; Williams et al., 1995; Streit and Guzman, 1996; Jau-
regui, 1997; Fast and Zhong, 1998; Doran and Zhong, 2000; Jazcilevich et al., 2003;
de Foy et al. 2005, 2006a, b, 2008). Tie et al. (2007) used a newly developed regional
chemical/dynamical model (WRF-Chem) to study the formation of chemical oxidants,
particularly ozone in Mexico City. As a major field study investigating the atmospheric15

chemistry of the MCMA, the MCMA-2003 campaign revealed important new insights
into the meteorology, primary pollutant emissions, ambient secondary pollutant precur-
sor concentrations, photochemical oxidant production, and secondary aerosol particle
formation in North America’s most populated megacity (Molina et al., 2007).

To better understand the evolution of trace gases and particulates originating from20

anthropogenic emissions in the MCMA and their impact on regional air quality and
climate, a field campaign called the Megacities Initiative: Local And Global Research
Observations (MILAGRO) collected a wide range of meteorological, gaseous and par-
ticulate measurements during March 2006 (Molina et al., 2008). Fast et al. (2007)
described the large-scale meteorological conditions that affected atmospheric chem-25

istry over Mexico during March 2006 and defined three regimes that characterized the
overall meteorological conditions: the first regime prior to 14 March, the second regime
between 14 and 23 March, and the third regime after 23 March. de Foy et al. (2008)
used cluster analysis to identify the dominant wind patterns in the Mexico City basin
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both during the campaign and within the past 10 years of operational data from the
warm dry season. Six episodes were identified for the basin-scale circulation, which
includes “O3-South”, “O3-North”, “Cold Surge”, “South-Venting”, “Convection-South”,
and “Convection-North”. Bei et al. (2008) investigated the effects of using a 3DVAR
data assimilation system in meteorological modeling to improve [O3] simulations in the5

Mexico City basin during the MCMA-2003 campaign, and demonstrated the importance
of applying data assimilation in meteorological simulations of air quality in the Mexico
City basin. Still, there are discrepancies between ozone predictions and observations
due to meteorological field simulations for some of the days (Lei et al., 2007, 2008).

The purpose of this study is to investigate the uncertainties of ozone predictions10

in the Mexico City basin due to meteorological uncertainties, which arise from initial
conditions and PBL parameterization schemes. The impacts of meteorological un-
certainties on ozone predictability are investigated through ensemble forecasts using
state-of-the-art meteorological and photochemical prediction models for four selected
days (3, 9, 15, and 29 March 2006) that represent four typical meteorological episodes15

(“South-Venting”, “O3-North”, “O3-South”, and “Convection-North”) in O3 predictions in
the Mexico City basin during MILAGRO/MCMA-2006 (de Foy et al., 2008). The models
and experimental designs are presented in Sect. 2. The synoptic situations of the se-
lected days are overviewed in Sect. 3. The control ensemble forecasts are introduced
in Sect. 4. The ensemble forecasts with different PBL schemes and ensemble simula-20

tions on other three days are presented in Sects. 5 and 6, respectively; the conclusions
are summarized in Sect. 7.

2 Forecast models, ensemble generation, and experimental design

The Advanced Research WRF (ARW) (WRF v2.2.1; Skamarock et al., 2005) is used
in meteorological deterministic and ensemble forecasts. The model simulations adopt25

three one-way nested grids with horizontal resolutions of 36, 12, and 3 km and 35
sigma levels in the vertical direction (Fig. 1a). The grid cells used for the three domains
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are 145×95, 259×160, and 193×193, respectively. The WRF model is initialized at
00:00 UTC and integrated for 30 h. The physical process parameterization schemes
used in the reference deterministic forecasts include the modified Kain-Fritsch cumulus
scheme (KF-Eta) (Kain and Fritsch, 1993), the WRF Single Moment (WSM) three-class
microphysics (Hong et al., 2004), and Mellor-Yamada-Janjic Eta Model (ETA) (Janjic,5

2002) for PBL processes. The NCEP global final (FNL) analysis are used to create the
initial and boundary conditions.

The initial ensemble is generated with the WRF-3DVAR (Barker et al. 2004) using
BES option cv5. A set of random control vectors with a normal distribution was gen-
erated. The control increment vector is then transformed back to model space via an10

empirical orthogonal functions (EOF) transform, a recursive filter, and physical transfor-
mation via balance equation. The perturbed variables include the horizontal wind com-
ponents, potential temperature, perturbation pressure, and mixing ratio for water vapor
whose error statistics are defined by the domain-specific climatological background er-
ror covariance, which are derived from the one-month simulations in the same domain15

using the NMC method (Parrish and Derber, 1992). Other prognostic variables such
as vertical velocity (w) and mixing ratios for cloud water (qc), rain water (qr), snow (qs)
and graupel (qg) are not perturbed.

Figure 2 shows the vertical distribution of the initial ensemble spread, which is 0.4–
1.3 m/s for horizontal winds (u, v), 0.3–1.0 K for temperature (T ), 0–0.4 hPa for pres-20

sure (p), and 0–1.2 g/kg for the water vapor mixing ratio (q). The 3DVAR perturbations
are added to the GFS FNL analysis to form an initial ensemble, which is then inte-
grated for 30 h to produce the ensemble forecasts. The perturbations created through
this method are basically balanced and large scale; and their magnitude are also small
compare to the typical sounding observational and analysis errors (Nielsen-Gammon25

et al., 2007). Similar methods to generate the initial ensemble are also employed by
Meng and Zhang (2008) and Barker (2005). The boundary conditions (created by the
GFS analysis at different times) are perturbed in the same manner as the initial en-
semble.

3235

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/3229/2010/acpd-10-3229-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/3229/2010/acpd-10-3229-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 3229–3263, 2010

Ozone
predictabilities due to

meteorological
uncertainties

N. Bei et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The 3-km meteorological ensemble simulations are then used to drive a 20-member
photochemical ensemble forecast using the Eulerian photochemical grid model CAMx
v4.40 (Environ, 2006). The CAMx model domain (70×70 grids, Fig. 1b) is much smaller
than the WRF domain 3 because of available computing resources and emissions data.
The model set-up and the input data used for CAMx in this study are the same as5

those described in Song et al. (2009) except the meteorological fields. The emission
input is constructed based on the official MCMA emissions inventory for the year 2006
(SMA-DF, 2008) and is adjusted based on comprehensive field measurements of O3
precursors, as described in Song et al. (2009). For all the experiments, the initial and
boundary conditions for chemical fields are the same, since we only focus on the effects10

due to changes in the meteorological fields.
Both meteorological and photochemical ensemble forecasts are conducted on four

selected days (3, 9, 15, and 29 March 2006). We choose 3 March as a control en-
semble run (CTRL), and most analyses will only be conducted on this day since we
believe that the selected day will not affect our results. The physical process parame-15

terization schemes used in the CTRL run are the same as those used in the reference
deterministic forecast.

Uncertainties in air quality modeling arise when different physical parameterization
schemes are used in meteorological models (see, e.g., Alapaty et al., 1994; Pielke
and Uliasz, 1998). One of the most important meteorological parameters that affect20

the uncertainties in models predictions is the planetary boundary layer. We study the
impact of PBL parameterization schemes on the ozone simulation of 3 March 2006
by conducting ensemble forecasts using other two different PBL schemes (PBL2 and
PBL3 described below), which include the Yonsei University (YSU) scheme (Noh et al.,
2003) and the Medium-Range Forecast (MRF) model (Hong and Pan, 1996).25
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3 Overview of the synoptic conditions

The four days selected in this paper represent four different meteorological episodes
types in Mexico City. 3 March is a “South-Venting” day, which represents northeasterly
winds aloft and strong southward transport at the surface. There is an anti-cyclone on
700 hPa over the border of Mexico and US (Fig. 3a), which leads to northeasterly wind5

over the Mexico City basin. The prevailing southerly winds on surface are affected by
the high pressure system on the north (Fig. 4a). 9 March represents an “O3-North”
day, which has stronger southwesterly winds over the basin rim and a north-south con-
vergence zone. On that day, there is an anti-cyclone located at southwest of Mexico
on 700 hPa (Fig. 3b), leading to a divergence zone over Mexico City. During the day-10

time, there is a weak surface high over Mexico City, which is finally replaced by the
local wind circulation (Fig. 4b). 15 March is an “O3-South” day when an anticyclone
on 700 hPa is located in the Gulf of Mexico (Fig. 3c), resulting in the southeasterly
wind aloft. Northerly surface winds in the morning (not shown) meet the southeast gap
flow in the afternoon (Fig. 4c), which leads to an east-west convergence zone moving15

northwards in the evening. 29 March is classified as “Convection-North”, which repre-
sents weak southerly wind aloft and rain in the northern part of the basin. There is an
anti-cyclone on 700 hPa over Mexico (Fig. 3d), which leads to subsidence over Mexico
City basin. The wind circulation on the surface is mostly affected by the local topog-
raphy (Fig. 4d). The convergence develops in daytime while the divergence occurs in20

nighttime and early morning due to the surrounding mountain area.

4 Control ensemble simulation

4.1 Overview of the control ensemble performance

Figure 5 shows the time evolution of the ensemble mean and spread of the surface
[O3] for the average at the Ambient Air Monitoring Network sites (squares shown in25

Fig. 1b, referred as RAMA sites in the following text) in the Mexico City basin and the
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selected five single stations (XAL, CES, MER, PED, and TLA, denoted in Fig. 1b).
Two highlighted members (bold green lines in Fig. 5a) are EN-11 and EN-14, which
represent a low [O3] case and a high [O3] case, which will be discussed in the follow-
ing section. For both the average and the single stations, the ensemble mean captures
reasonably well the sharp buildup of [O3] in the morning. However, the ensemble mean5

tends to overestimate the [O3] during the afternoon on this day, especially during the
peak ozone period. The ensemble spread of simulated surface [O3] averaged over the
RAMA sites can reach up to 10 ppb (Fig. 5a) during the peak time period. In general,
the ensemble spread is much bigger at the selected five single stations (Fig. 5b–f), with
the maximum of more than 15 ppb. The observations are principally within the spread10

of the ensemble simulations, while the ensemble mean is slightly higher than the ob-
servations but generally better than the reference deterministic forecast. It indicates
that shortage still exist in the ensemble simulation.

Figure 6 shows the evolution of the ensemble mean of the surface ozone distributions
along with the ensemble mean wind vectors in Mexico City basin and the surrounding15

area simulated by the CNTL ensemble. At the initial time (00:00 CDT), the lower en-
semble mean ozone area is located within the urban area of the Mexico City basin due
to the titration from NO emissions and the lack of photochemical activities and contin-
ues towards the early morning (06:00 CDT). From 06:00 to 12:00 CDT, the ozone level
starts to elevate inside the basin with the increased southerly winds, mainly due to20

increasing photochemical activities. From 12:00 to 15:00 CDT, in association with the
increase of northerly wind, a convergence zone is formed in the southwest of Mexico
City basin, leading to the occurrence of maximum [O3] inside the basin around 15:00
CDT, which is consistent with the observations from the RAMA sites (squares). From
15:00 to 18:00 CDT, the high ensemble mean ozone area moves southward along with25

the increased northerly winds. Toward the end of the day (21:00 CDT), the ensemble
mean of ozone decreases again inside the basin.

Figure 7 shows the surface winds measured at the RAMA sites along with the sim-
ulated ensemble mean surface winds in the basin around peak time. In general, the
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ensemble mean of surface winds agree better with the measurements inside the basin
than those in the surroundings. However, the discrepancies between the ensemble
mean and observations are still obvious, which could be caused by the systematic er-
rors in initial conditions and uncertainties in meteorological models. Another important
reason could be the 3-km horizontal resolution adopted in our simulations. Basically,5

the effective resolution in numerical simulations is about 7 times of the horizontal res-
olution used in the model (Skamarock, 2004), which is 21 km in our case. It should be
noted that the distances between most of the RAMA sites are less than 21 km, there-
fore higher-resolution simulations might be necessary to more accurately simulate the
basin scale phenomenon.10

4.2 Uncertainties during the peak ozone period

Although the initial meteorological uncertainties used in our study (see Fig. 2) are
smaller than typical observational and analysis errors, our ensemble forecasts demon-
strate large uncertainties in ozone prediction, especially during peak ozone period
(12:00–18:00 CDT), are possible during the peak time period (see Fig. 5a).15

To illustrate the discrepancy between different ensemble members, we have selected
two ensemble members: EN-11 and EN-14, which represent the lowest and highest
[O3] averaged over 19 RAMA sites, respectively (bold green lines shown in Fig. 5a).
Figure 8 presents the horizontal distribution of surface [O3] along with surface winds
from EN-11 and EN-14. There are obvious differences in the surface winds between20

these two extreme members, which are also closely related to the dramatic difference
in ozone distributions in Mexico City basin. The surface winds have stronger (weaker)
northwesterly component in EN-11 (EN-14) before peak ozone time (Fig. 8a and b)
in the northwest of the basin, which results in less (more) ozone precursors inside the
Mexico City basin in EN-11 (EN-14). At the peak time (Fig. 8c and d), the northwesterly25

surface winds are still stronger (weaker) in EN-11 (EN-14) in the northwest of the basin
and the southerly gap winds are weaker (stronger) in EN-11 (EN-14), which leads
to less (more) ozone precursors and lower (higher) ozone inside the basin in EN-11
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(EN-14). After the peak time (Fig. 8e and f), the high ozone area in both case has been
moved outside of the basin.

The vertical distributions of [O3], potential temperature, wind vectors, and PBL height
further demonstrate the large differences between EN-11 and EN-14 (Fig. 9). Before
peak ozone time (upper panels), both southeasterly low-level winds and northwesterly5

upper-level winds are stronger (weaker) in EN-11 (EN-14) over the basin, causing less
(more) ozone precursors inside the Mexico City basin in EN-11 (EN-14). At the peak
time (middle panels), both low-level winds and upper-level winds remain stronger in
EN-11 than in EN-14 and thence more ozone precursors are transported outside of the
basin in EN-11 than in EN-14. More ozone precursors and higher temperature in EN-10

14 are favorable for the O3 formation in the basin. After the peak time (bottom panels),
the plumes in both members start to decay due to the intensified upslope winds.

4.3 Connections between meteorological uncertainties and ozone prediction
uncertainties

Meteorological conditions, such as wind fields, temperature, water vapor mixing ratio,15

and boundary layer height are known to have direct impacts on the air quality simula-
tion (Seaman, 2000). The ensemble simulations are a good technique to examine the
relationship between the uncertainties in meteorological fields and the uncertainties
in ozone simulations. To evaluate the model results we interpolate the model output
variables (PBL height, wind speed, and surface temperature) to the location of the20

19 RAMA sites (shown in Fig. 1b) and then calculate the average. Figure 10 shows
the time evolution of PBL height, wind speed, and surface temperature from the initial
time of the meteorological model (6 h earlier than the initial time of the photochemical
model). The ensemble spread of these variables among different members is initially
small but gradually grows along the integration time. However, during the morning25

hours (06:00–12:00 CDT), the ensemble spread of the above-mentioned meteorologi-
cal variables is relatively small compare with other periods during the simulation time,
leading to the smaller ensemble spread of [O3] for this period. During peak ozone
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period (12:00–18:00 CDT), the maximum ensemble spreads of the wind speed, PBL
height, and surface temperature are around 1.25 m s−1, 0.5 km, and 1.5 K, respec-
tively, and are much larger than those during other periods, demonstrating that the
large ozone prediction uncertainties are attributed to the large meteorological uncer-
tainties. The ensemble spreads of PBL heights and wind speeds start to increase from5

12:00 CDT, which correspond well to the enhancement of the ensemble spread of [O3].
The PBL height and wind speed affect the surface [O3] through vertical and horizontal
transport of pollutants. The convergence caused by the wind circulation determines
the location and affects the level of the high ozone area as mentioned in the previous
section. All these factors are combined together to affect the ozone distributions. For10

example, we have highlighted (brown lines) the two extreme members (EN-11 and EN-
14). For the low ozone case (EN-11), it has lower PBL height, higher wind speed, and
lower surface temperature, which act together to lower [O3] in EN-11. The high ozone
case (EN-14) has higher PBL height, lower wind speed, and higher surface tempera-
ture.15

5 Effects of PBL parameterization schemes

In order to investigate the impact of PBL parameterization schemes on the ozone simu-
lation, we have conducted ensemble forecasts using two other PBL schemes, the YSU
scheme (Noh et al., 2003) and the MRF scheme (Hong and Pan, 1996) in addition to
the ETA scheme used in the control case.20

Figure 11 shows the time evolution of simulated surface [O3] averaged over the
RAMA sites using the YSU (PBL2) and MRF schemes (PBL3). The differences in
ozone simulations between different PBL schemes mainly remain at night and early
morning hours (00:00–06:00 CDT) and peak ozone hours (12:00–18:00 CDT). The
ozone simulations during the morning hours are poorly simulated using YSU scheme25

and MRF scheme, while the ozone simulation by ETA scheme (control run) during this
period is better (Fig. 5a). The MRF scheme has the highest peak [O3] while the ETA
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scheme has the lowest peak [O3]. The ensemble spread of simulated surface [O3]
averaged over the RAMA sites also varies with different PBL schemes. The ensemble
spread of peak time [O3] with the YSU scheme is slightly smaller than that with MRF
scheme but larger than that with ETA scheme. The ensemble mean between different
PBL schemes shows a difference of 2–5 ppb during peak time, which is clearly less5

than those from initial condition uncertainties. The time evolution of PBL height, wind
speed, and surface temperature using other two PBL schemes is shown in Fig. 12. It
can be seen that the MRF scheme has larger spreads of the PBL height, wind speed,
and surface temperature (Fig. 12b, d, and f) than the YSU scheme, which causes cor-
respondingly a larger spread of ozone simulations (Fig. 11b) in the afternoon.10

6 The ensemble simulations on other episodes

In order to explore the impacts of meteorological uncertainties on O3 predictability un-
der different meteorological conditions, we have further conducted ensemble forecasts
on 9, 15, and 29 March that represent three other typical ozone pollution episodes
(“O3-North”, “O3-South” and “Convection-North”) in Mexico City basin (de Foy et al.,15

2008), using both meteorological and photochemical models.
Figure 13 shows the time evolution of simulated surface [O3] averaged over the

RAMA sites versus the observations on these three days. The time evolution of en-
semble mean basically agrees well with the observations. The ensemble mean is
mostly better than the reference deterministic forecast (such as 9 and 29 March), but20

the ensemble spread varies in different episodes. The maximum ensemble spreads
during the peak ozone hours on 9, 15, and 29 March are 8 ppb, 5 ppb, and 7 ppb, re-
spectively, slightly smaller than that of 3 March, but still significant in comparison with
the ensemble mean.

The ozone predictability for different episodes seems different, e.g., 15 March has25

the smallest spread during the peak ozone period. As mentioned in Sect. 3, 15 March
is an “O3-SOUTH” day, which has weak synoptic forcing and a much clearer signature
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of terrain-induced flow (such as gap flow). The initial perturbations adopted in our en-
semble system mostly focus on the large scale, which did not reflect the small scale
initial error very well. The ensemble mean [O3] is almost the same as the reference de-
terministic forecast during the peak ozone period. The discrepancy between ensemble
mean and the observations on this day is also larger than the other 3 days.5

While the ensemble mean can provide better magnitude of simulated [O3], the timing
of the peak ozone is only slightly improved on these days. The possible reason could
be the model error or emission uncertainties as described in the previous section since
meteorological initial condition uncertainty is only one of several known sources of
significant photochemical model errors (Hanna et al., 2001).10

7 Conclusions

We have investigated the ozone predictability due to meteorological uncertainties in the
meteorological simulation by conducting meteorological and photochemical ensemble
simulations in Mexico City basin on four selected days. We focus on the uncertainties
in the meteorological simulations caused by initial condition error and PBL schemes.15

The initial ensemble is generated with the WRF-3DVAR. The error statistics are defined
by the domain-specific climatological background error covariance, which are derived
from one-month simulations in the same domain using NMC method. The four days
selected (3, 9, 15, and 29 March 2006) represent four different meteorological episodes
in Mexico City basin. We choose 3 March 2006 as a control run to analyze the results.20

Over the 24-h simulation, the ensemble means compare fairly well with the observa-
tions, including the maximum [O3], the buildup of [O3] in the early afternoon, and the
transport of the plume. However, there are still discrepancies between the ensemble
mean and the observations, which can be explained by the systematic errors in initial
condition and uncertainties in both meteorological and photochemical models, as well25

as uncertainties in the emission inventory. Horizontal resolution used in the current
study may also be a limiting factor for investigating the basin scale phenomenon. We
plan to focus on these problems in our future work.
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The increasing uncertainties in meteorological fields during the peak ozone pe-
riod contribute to the unpredictablity in ozone simulations. However, the relation-
ship between the uncertainties in meteorological fields and ozone prediction are flow-
dependent and also complicated. Basically, the impact of wind speed and PBL height
on [O3] are more straightforward, such as through horizontal and vertical transport5

of pollutants, while the impact of temperature and water vapor are generally indirect.
These factors combine to affect the ozone distributions.

The uncertainties in the ozone prediction, especially during the peak ozone period,
in Mexico City basin due to meteorological factors are mainly from initial condition
uncertainties. The magnitude of the ensemble spread also varies with different PBL10

schemes, which affect the PBL height, wind, and temperature; these in turn affect the
O3 simulations. The differences in ozone simulations using different PBL schemes
mainly occur during nighttime and early morning hours and peak ozone hours. In
addition, the ensemble spread of surface ozone varies with different meteorological
episodes and is significant compared with the ensemble mean.15

However, even with ample observations, analysis inaccuracies are also inevitable.
Therefore, a single-minded pursuit of improved initial conditions is not advisable; in-
stead, ensemble simulations should be used to span the range of possible outcomes
consistent with the meteorological conditions on a given day. An ensemble forecasting
system, incorporating as many sources of error (such as uncertainties in initial con-20

ditions and models) as possible, can provide guidance on both the most likely ozone
evolution and also the range of possibilities.
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Janjić, Z. I.: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP
Meso Model. NCEP Office Note, 437, 61 pp., 2002.

Jauregui, E.: Heat island development in Mexico City, Atmos. Environ., 31, 3821–3831, 1997.
Jazcilevich, A. D., Garcia, A. R., and Ruiz-Suarez, L. G.: A study of air flow patterns affecting

pollutant concentrations in the Central Region of Mexico, Atmos. Environ., 37, 183–193,20

2003.
Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale models: The Kain–

Fritsch scheme. The representation of cumulus convection in numerical models, Meteor.
Mon., 46, 165–170, 1993.

Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability, Cambridge Univ. Press,25

New York, 341 pp., 2003.
Lei, W., de Foy, B., Zavala, M., Volkamer, R., and Molina, L. T.: Characterizing ozone production

in the Mexico City Metropolitan Area: a case study using a chemical transport model, Atmos.
Chem. Phys., 7, 1347–1366, 2007, http://www.atmos-chem-phys.net/7/1347/2007/.

Lei, W., Zavala, M., de Foy, B., Volkamer, R., and Molina, L. T.: Characterizing ozone production30

and response under different meteorological conditions in Mexico City, Atmos. Chem. Phys.,
8, 7571–7581, 2008, http://www.atmos-chem-phys.net/8/7571/2008/.

3247

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/3229/2010/acpd-10-3229-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/3229/2010/acpd-10-3229-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys.net/7/1347/2007/
http://www.atmos-chem-phys.net/8/7571/2008/


ACPD
10, 3229–3263, 2010

Ozone
predictabilities due to

meteorological
uncertainties

N. Bei et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Leith, C. E. and Kraichnan, R. H.: Predictability of turbulent flows, J. Atmos. Sci., 29, 1041–
1058, 1972.

Leith, C. E.: Theoretical skill of Monte Carlo forecasts, Mon. Weather Rev., 102, 409–418,
1974.

Lorenz, E. N.: The predictability of a flow which possesses many scales of motion, Tellus, 21,5

289–307, 1969.
Mallet, V. and Sportisse, B.: Uncertainty in a chemistry-transport model due to physical pa-

rameterizations and numerical approximations: an ensemble approach applied to ozone
modeling, J. Geophys. Res., 111, D01302, doi:10.1029/2005JD006149, 2006.

Mao, Q., Gautney, L. L., Cook, T. M., Jacobs, M. E., Smith, S. N., and Kelsoe, J. J.: Numerical10

experiments on MM5-CMAQ sensitivity to various PBL schemes, Atmos. Environ., 40, 3092–
3110, 2006.

McKeen, S. A., Wilczak, J., Grell, G., et al.: Assessment of an ensemble of seven real-time
ozone forecast over eastern North America during the summer of 2004, J. Geophys. Res.,
110, D21307, doi:10.1029/2005JD005858, 2005.15

Meng, Z. and Zhang, F.: Tests of an ensemble Kalman filter for mesoscale and regional-scale
data assimilation. Part III: Comparison with 3DVAR in a real-data case study, Mon. Weather
Rev., 136, 522–540, 2008.

Molina, L. T. and Molina, M. J. (Eds.): Air Quality in the Mexico Megacity: An Integrated As-
sessment, Kluwer Academic Publishers, 137–212, 2002.20

Molina, L. T., Kolb, C. E., de Foy, B., Lamb, B. K., Brune, W. H., Jimenez, J. L., Ramos-
Villegas, R., Sarmiento, J., Paramo-Figueroa, V. H., Cardenas, B., Gutierrez-Avedoy, V., and
Molina, M. J.: Air quality in North America’s most populous city – overview of the MCMA-
2003 campaign, Atmos. Chem. Phys., 7, 2447–2473, 2007,
http://www.atmos-chem-phys.net/7/2447/2007/.25

Molina, L. T., Madronich, S., Gaffney, J. S., and Singh, H. B.: Overview of MILAGRO/INTEX-
B campaign, in IGACtivities Newsletter of the International Global Atmospheric Chemistry
Project, 38, 2–15 April 2008.

Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T.: The new ECMWF ensemble prediction
system: Methodology and validation, Q. J. Roy. Meteor. Soc., 122, 73–119, 1996.30

Mullen, S. L. and Buizza, R., The impact of horizontal resolution and ensemble size on prob-
abilistic forecasts of precipitation by the ECMWF Ensemble Prediction System, Weather
Forecast., 17, 173–191, 2002.

3248

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/3229/2010/acpd-10-3229-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/3229/2010/acpd-10-3229-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys.net/7/2447/2007/


ACPD
10, 3229–3263, 2010

Ozone
predictabilities due to

meteorological
uncertainties

N. Bei et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Nielsen-Gammon, J. W., McNider, R. T., Angevine, W. M., White, A. B., and Knupp, K.:
Mesoscale model performance with assimilation of wind profiler data: Sensitivity to
assimilation parameters and network configuration, J. Geophys. Res., 112, D09119,
doi:10.1029/2006JD007633, 2007.

Noh, Y., Cheon, W.-G., Hong, S.-Y., and Raasch, S.: Improvement of the K-profile model for the5

planetary boundary layer based on large eddy simulation data, Bound.-Lay. Meteorol., 107,
401–427, 2003.

Pagowski, M., Grell, G. A., Mckeen, S. A., et al.: A simple method to improve ensemble-based
ozone forecasts, Geophys. Res. Lett., 32, L07814, doi:10.1029/2004GL022305, 2005.

Parrish, D. F. and Derber, J. C.: The National Meteorological Center’s spectral statistical-10

interpolation analysis system, Mon. Weather Rev., 120, 1747–1763, 1992.
Pielke, R. A. and Uliasz, M.: Use of meteorological models as input to regional and mesoscale

air quality models – limitations and strengths, Atmos. Environ., 32, 1455–1466, 1998.
Skamarock, W. C.: Evaluating Mesoscale NWP models using kinetic energy spectra, Mon.

Weather Rev., 132, 3019–3032, 2004.15

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Pow-
ers, J. G.: A description of the advanced research WRF version 2, NCAR Technical Note,
NCAR/TN-468+STR, 8 pp., 2005.

Seaman, N. L.: Meteorological modeling for air-quality assessments, Atmos. Environ., 34,
2231–2259, 2000.20

Secretaria del Medio Ambiente del Distrito Federal (SMA-DF): Inventario de Emisiones 2006
de la Zona Metropolitana del Valle de México, México, 2008.
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Figure 1. (a) WRF domains (black, blue, red box) and (b) CAMx domain (green box in 
Fig. 1a, Square signs are RAMA stations for ozone measurements). Inner box indicates 
the domain shown in Figure 6. Contours in both panels represent terrain height. 
 
 

Fig. 1. (a) WRF domains (black, blue, red box) and (b) CAMx domain (green box in a, square
signs are RAMA stations for ozone measurements). Inner box indicates the domain shown in
Figs. 6 and 8. Contours in both panels represent terrain height.
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Figure 2. Vertical distribution of the initial ensemble spread for horizontal winds (u: 
blue, v: red, m/s), temperature (T, K), pressure (p, hPa), and water vapor mixing ratio (q, 
kg/kg) over domain 1. 
 

a) b)

d) c)

Fig. 2. Vertical distribution of the initial ensemble spread for (a) horizontal winds (u, v , m/s),
(b) temperature (T , K), (c) pressure (p, hPa), and (d) water vapor mixing ratio (q, g/kg) over
domain 1.
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(a) Mar. 03                            (b) Mar. 09 

 
(c)  Mar. 15                         (d) Mar. 29 

 
Figure 3. The 700 hPa geopotential heights and winds at 12:00 CDT from GFS 
reanalysis data for (a) Mar. 03, (b) Mar. 09, (c) Mar. 15, and (d) Mar. 29, 2006. Red 
box indicates domain3 used in WRF. Green box indicates the CAMx domain. 
 

Fig. 3. The 700 hPa geopotential heights and winds at 12:00 CDT from GFS reanalysis data
for (a) 3 March, (b) 9 March, (c) 15 March, and (d) 29 March 2006. Red box indicates domain3
used in WRF. Green box indicates the CAMx domain.
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(a) Mar. 03                        (b) Mar. 09 

 
(c)  Mar. 15                       (d) Mar. 29 

 
Figure 4. As in Fig. 3, but for surface pressure and winds. 
 
 
 

Fig. 4. As in Fig. 3, but for surface pressure and winds.
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(a)                                 (b) 

   
(c)                               (d) 

   
(e)                              (f) 

 
Figure 5. Time evolution of the surface [O3] (ppb) from each ensemble member (thin 
green lines), ensemble mean (bold black line) and reference deterministic forecast (bold 
orange line) of the CTRL ensemble simulation (Mar. 03, 2006) and observations (red 
dots) for (a) values averaged over the RAMA sites and (b) the 5 selected stations (TLA, 
XAL, MER, PED, and CES, shown in Fig. 1b). The error bars denotes the ensemble 
spread. Bold green lines indicate two extreme cases (low ozone case: EN-11 and high 
ozone case: EN-14). 
 
 

Fig. 5. Time evolution of the surface [O3] (ppb) from each ensemble member (thin green lines)
in (a), ensemble mean (bold black line) and reference deterministic forecast (bold orange line)
of the CTRL ensemble simulation (3 March 2006) and observations (red dots) for (a) values
averaged over the RAMA sites and (b) the 5 selected stations (TLA, XAL, MER, PED, and
CES, shown in Fig. 1b). The error bars denotes the ensemble spread. Bold green lines in (a)
indicate two extreme cases (low ozone case: EN-11 and high ozone case: EN-14).
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Figure 6. Ensemble mean (color) of the surface [O3] (ppb) distributions along with 
the ensemble mean winds valid at 00:00 CDT, 06:00 CDT, 12:00 CDT, 15:00 CDT, 
18:00 CDT, and 21:00 CDT of the CNTL ensemble simulations (Mar. 03, 2006). 
The colored squares denote the ozone measurements from the RAMA sites. Inner 
domain is the same as Figure 7. 
 

Fig. 6. Ensemble mean (color) of the surface [O3] (ppb) distributions along with the ensemble
mean winds valid at 00:00 CDT, 06:00 CDT, 12:00 CDT, 15:00 CDT, 18:00 CDT, and 21:00 CDT
of the CNTL ensemble simulations (3 March 2006). The colored squares denote the ozone
measurements from the RAMA sites.Inner box denotes the domain used for Fig. 7.
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Figure 7. Ensemble mean (black arrows) of the surface winds along with the 
measurements (red arrows) at the RAMA sites around the Mexico City basin for 
13:00 CDT, 14:00 CDT, and 15:00 CDT on Mar. 03, 2006. 
 
 

Fig. 7. Ensemble mean (black arrows) of the surface winds along with the measurements (red
arrows) around the Mexico City basin for 13:00 CDT, 14:00 CDT, and 15:00 CDT on 3 March
2006.
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Figure 8. Surface [O3] (ppb) of two ensemble members (EN-11 and EN-14, bold green 
lines shown in Fig. 5a) along with surface wind vectors valid at 12:00 CDT, 15:00 CDT, 
and 18:00 CDT on Mar. 03, 2006. Cross line is the position of the cross-section shown 
in Figure 9. 
 
 

Fig. 8. Surface [O3] (ppb) of two ensemble members (EN-11 and EN-14 shown in Fig. 5a)
along with surface wind vectors valid at 12:00 CDT, 15:00 CDT, and 18:00 CDT on 3 March
2006. Cross line is the position of the cross-section shown in Fig. 9.
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Figure 9. Cross-section of [O3] (ppb, shading), wind vectors, potential temperature (K, 
contours), and PBL height (km, bold dash line) of two ensemble members (EN-11 and 
EN-14) valid at 12:00 CDT, 15:00 CDT, and 18:00 CDT on Mar. 03, 2006 along the 
cross line denoted in Fig. 8. 
 

Fig. 9. Cross-section of [O3] (ppb, shading), wind vectors, potential temperature (K, contours),
and PBL height (km, bold dash line) of two ensemble members (EN-11 and EN-14) valid at
12:00 CDT, 15:00 CDT, and 18:00 CDT on 3 March 2006 along the cross line denoted in Fig. 8.
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Figure 10. Time evolution of the PBL height (km, top panel), wind speed (m/s, 
middle panel), and surface temperature (oC, bottom panel) from each ensemble 
member (thin green lines) and ensemble mean (bold black line) of the CTRL 
ensemble simulation (Mar. 03, 2006), two thin orange lines indicate two extreme 
members (EN-11 and EN-14). 
 

Fig. 10. Time evolution of the PBL height (km, top panel), wind speed (m/s, middle panel),
and surface temperature (◦C, bottom panel) from each ensemble member (thin green lines) and
ensemble mean (bold black line) of the CTRL ensemble simulation (3 March 2006), two thin
orange lines indicate two extreme members (EN-11 and EN-14).

3260

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/3229/2010/acpd-10-3229-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/3229/2010/acpd-10-3229-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 3229–3263, 2010

Ozone
predictabilities due to

meteorological
uncertainties

N. Bei et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

 
  (a) 

 
  (b) 

Figure 11. Time evolution of the surface [O3] (ppb) from each ensemble member (thin 
green lines), ensemble mean (bold black line) and reference deterministic forecast (bold 
orange line) of Mar. 03, 2006 with other two PBL schemes and observations (red dots) 
averaged over the RAMA sites. The error bars denote the ensemble spread. 
 
 

Fig. 11. Time evolution of the surface [O3] (ppb) from each ensemble member (thin green
lines), ensemble mean (bold black line) and reference deterministic forecast (bold orange line)
of 3 March 2006 with other (a) PBL2: YSU scheme, (b) PBL3: MRF scheme, and observations
(red dots) averaged over the RAMA sites. The error bars denotes the ensemble spread.
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(a) YSU                          (b) MRF 

    
(c) YSU                        (d) MRF 

    
(e) YSU                       (f) MRF 

 
Figure 12. Time evolution of the PBL height, wind speed, and surface temperature 
from each ensemble member (thin green lines) and ensemble mean (bold black line) 
of Mar. 03, 2006 with other two PBL schemes (YSU scheme and MRF scheme). 
 
 
 

Fig. 12. Time evolution of the PBL height, wind speed, and surface temperature from each
ensemble member (thin green lines) and ensemble mean (bold black line) of 3 March 2006
with YSU scheme (a, c, e) and MRF scheme (b, d, f).
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Figure 13. As in Figure 11 but for Mar. 09, Mar. 15, and Mar. 29, 2006. 
 
 
 

 1 

Fig. 13. As in Fig. 11 but for 9 March, 15 March, and 29 March 2006.
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