The Chemical Mechanism of MECCA1

Rolf Sander & Astrid Kerkweg

sander@mpch-mainz.mpg.de, akerkweg@mpch-mainz.mpg.de

Air Chemistry Department, Max-Planck Institute of Chemistry, PO Box 3060, 55020 Mainz, Germany

(mechanism generated on October 1, 2008)

#	labels	reaction	rate coefficient	reference
G1000	StTrG	$O_2 + O(^1D) \rightarrow O(^3P) + O_2$	3.2E-11*EXP(70./temp)	Sander et al. (2003)
G1001	StTrG	$O_2 + O(^3P) \rightarrow O_3$	6.E-34*((temp/300.)**(-2.4))*cair	Sander et al. (2003)
G1002	StG	$O_3 + O(^1D) \rightarrow 2 O_2$	1.2E-10	Sander et al. $(2003)^*$
G1003	StG	$O_3 + O(^{3}P) \rightarrow 2 O_2$	8.E-12*EXP(-2060./temp)	Sander et al. (2003)
G2100	StTrG	$H + O_2 \rightarrow HO_2$	k_3rd(temp,cair,5.7E-32,1.6,7.5E-11,0.,	Sander et al. (2003)
			0.6)	
G2101	StG	$\rm H + O_3 \rightarrow OH$	1.4E-10*EXP(-470./temp)	Sander et al. (2003)
G2102	StG	$H_2 + O(^1D) \rightarrow H + OH$	1.1E-10	Sander et al. (2003)
G2103	StG	$OH + O(^{3}P) \rightarrow H$	2.2E-11*EXP(120./temp)	Sander et al. (2003)
G2104	StTrG	$OH + O_3 \rightarrow HO_2$	1.7E-12*EXP(-940./temp)	Sander et al. (2003)
G2105	StTrG	$OH + H_2 \rightarrow H_2O + H$	5.5E-12*EXP(-2000./temp)	Sander et al. (2003)
G2106	StG	$\mathrm{HO}_2 + \mathrm{O}(^{3}\mathrm{P}) \to \mathrm{OH}$	3.E-11*EXP(200./temp)	Sander et al. (2003)
G2107	StTrG	$\mathrm{HO}_2 + \mathrm{O}_3 \to \mathrm{OH}$	1.E-14*EXP(-490./temp)	Sander et al. (2003)
G2108a	StG	$\mathrm{HO}_2 + \mathrm{H} \rightarrow 2 \mathrm{OH}$	0.69*8.1E-11	Sander et al. $(2003)^*$
G2108b	StG	$\mathrm{HO}_2 + \mathrm{H} \to \mathrm{H}_2$	0.29*8.1E-11	Sander et al. $(2003)^*$
G2108c	StG	$\mathrm{HO}_2 + \mathrm{H} \rightarrow \mathrm{O}(^{3}\mathrm{P}) + \mathrm{H}_2\mathrm{O}$	0.02*8.1E-11	Sander et al. $(2003)^*$
G2109	StTrG	$\rm HO_2 + OH \rightarrow H_2O$	4.8E-11*EXP(250./temp)	Sander et al. (2003)
G2110	StTrG	$\mathrm{HO}_2 + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2$	k_H02_H02	Christensen et al. (2002) ,
				Kircher and Sander $(1984)^*$
G2111	StTrG	$H_2O + O(^1D) \rightarrow 2 OH$	2.2E-10	Sander et al. (2003)
G2112	StTrG	$\rm H_2O_2 + OH \rightarrow \rm H_2O + \rm HO_2$	2.9E-12*EXP(-160./temp)	Sander et al. (2003)
G3100	StGN	$N + O_2 \rightarrow NO + O(^{3}P)$	1.5E-11*EXP(-3600./temp)	Sander et al. (2003)
G3101	StTrG	$N_2 + O(^1D) \rightarrow O(^3P) + N_2$	1.8E-11*EXP(110./temp)	Sander et al. (2003)
G3102a	StGN	$N_2O + O(^1D) \rightarrow 2 NO$	6.7E-11	Sander et al. (2003)
G3102b	StGN	$\mathrm{N_2O}+\mathrm{O}(^1\mathrm{D})\rightarrow\mathrm{N_2}+\mathrm{O_2}$	4.9E-11	Sander et al. (2003)

Table 1: Gas phase reactions

#	labels	reaction	rate coefficient	reference
G3103	StTrGN	$\rm NO + O_3 \rightarrow NO_2 + O_2$	3.E-12*EXP(-1500./temp)	Sander et al. (2003)
G3104	StGN	$NO + N \rightarrow O(^{3}P) + N_{2}$	2.1E-11*EXP(100./temp)	Sander et al. (2003)
G3105	StGN	$NO_2 + O(^{3}P) \rightarrow NO + O_2$	5.6E-12*EXP(180./temp)	Sander et al. (2003)
G3106	StTrGN	$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2E-13*EXP(-2450./temp)	Sander et al. (2003)
G3107	StGN	$NO_2 + N \rightarrow N_2O + O(^3P)$	5.8E-12*EXP(220./temp)	Sander et al. (2003)
G3108	StTrGN	$NO_3 + NO \rightarrow 2 NO_2$	1.5E-11*EXP(170./temp)	Sander et al. (2003)
G3109	StTrGN	$NO_3 + NO_2 \rightarrow N_2O_5$	k_N03_N02	Sander et al. $(2003)^*$
G3110	StTrGN	$N_2O_5 \rightarrow NO_2 + NO_3$	k_NO3_NO2/(3.E-27*EXP(10990./temp))	Sander et al. $(2003)^*$
G3200	TrG	$\rm NO + OH \rightarrow HONO$	k_3rd(temp,cair,7.E-31,2.6,3.6E-11,0.1,	Sander et al. (2003)
			0.6)	
G3201	StTrGN	$\rm NO + HO_2 \rightarrow NO_2 + OH$	3.5E-12*EXP(250./temp)	Sander et al. (2003)
G3202	StTrGN	$NO_2 + OH \rightarrow HNO_3$	k_3rd(temp,cair,2.E-30,3.,2.5E-11,0.,	Sander et al. (2003)
			0.6)	
G3203	StTrGN	$NO_2 + HO_2 \rightarrow HNO_4$	k_N02_H02	Sander et al. (2003)
G3204	TrGN	$NO_3 + HO_2 \rightarrow NO_2 + OH + O_2$	3.5E-12	Sander et al. (2003)
G3205	TrG	$HONO + OH \rightarrow NO_2 + H_2O$	1.8E-11*EXP(-390./temp)	Sander et al. (2003)
G3206	StTrGN	$HNO_3 + OH \rightarrow H_2O + NO_3$	k_HNO3_OH	Sander et al. $(2003)^*$
G3207	StTrGN	$HNO_4 \rightarrow NO_2 + HO_2$	k_N02_H02/(2.1E-27*EXP(10900./temp))	Sander et al. $(2003)^*$
G3208	StTrGN	$HNO_4 + OH \rightarrow NO_2 + H_2O$	1.3E-12*EXP(380./temp)	Sander et al. (2003)
G4100	StG	$CH_4 + O(^{1}D) \rightarrow .75 CH_3O_2 + .75 OH + .25 HCHO + .4$	1.5E-10	Sander et al. (2003)
		$H + .05 H_2$		
G4101	StTrG	$CH_4 + OH \rightarrow CH_3O_2 + H_2O$	1.85E-20*EXP(2.82*log(temp)-987./temp)	Atkinson $(2003)^*$
G4102	TrG	$CH_3OH + OH \rightarrow HCHO + HO_2$	7.3E-12*EXP(-620./temp)	Sander et al. (2003)
G4103a	StTrG	$CH_3O_2 + HO_2 \rightarrow CH_3OOH$	4.1E-13*EXP(750./temp)/(1.+1./	Sander et al. $(2003)^*$
			497.7*EXP(1160./temp))	
G4103b	StTrG	$\rm CH_3O_2 + \rm HO_2 \rightarrow \rm HCHO + \rm H_2O + \rm O_2$	4.1E-13*EXP(750./temp)/(1.+	Sander et al. $(2003)^*$
			497.7*EXP(-1160./temp))	
G4104	StTrGN	$CH_3O_2 + NO \rightarrow HCHO + NO_2 + HO_2$	2.8E-12*EXP(300./temp)	Sander et al. (2003)
G4105	TrGN	$CH_3O_2 + NO_3 \rightarrow HCHO + HO_2 + NO_2$	1.3E-12	Atkinson et al. (1999)
G4106a	StTrG	$CH_3O_2 + CH_3O_2 \rightarrow 2 HCHO + 2 HO_2$	9.5E-14*EXP(390./temp)/(1.+1./	Sander et al. (2003)
			26.2*EXP(1130./temp))	
G4106b	StTrG	$CH_3O_2 + CH_3O_2 \rightarrow HCHO + CH_3OH$	9.5E-14*EXP(390./temp)/(1.+	Sander et al. (2003)
			26.2*EXP(-1130./temp))	
G4107	StTrG	$\mathrm{CH_3OOH} + \mathrm{OH} \rightarrow .7\ \mathrm{CH_3O_2} + .3\ \mathrm{HCHO} + .3\ \mathrm{OH} + \mathrm{H_2O}$	k_CH300H_OH	Sander et al. $(2003)^*$
G4108	StTrG	$HCHO + OH \rightarrow CO + H_2O + HO_2$	9.52E-18*EXP(2.03*log(temp)+636./temp)	Sivakumaran et al. (2003)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4109	TrGN	$\text{HCHO} + \text{NO}_3 \rightarrow \text{HNO}_3 + \text{CO} + \text{HO}_2$	3.4E-13*EXP(-1900./temp)	Sander et al. $(2003)^*$
G4110	StTrG	$\rm CO + OH \rightarrow H + CO_2$	1.57E-13 + cair*3.54E-33	McCabe et al. (2001)
G4111	TrG	$\rm HCOOH + OH \rightarrow HO_2$	4.E-13	Sander et al. (2003)
G4200	TrGC	$C_2H_6 + OH \rightarrow C_2H_5O_2 + H_2O$	1.49E-17*temp*temp*EXP(-499./temp)	Atkinson (2003)
G4203	TrGC	$C_2H_5O_2 + HO_2 \rightarrow C_2H_5OOH$	7.5E-13*EXP(700./temp)	Sander et al. (2003)
G4204	TrGNC	$C_2H_5O_2 + NO \rightarrow CH_3CHO + HO_2 + NO_2$	2.6E-12*EXP(365./temp)	Sander et al. (2003)
G4205	TrGNC	$\mathrm{C_2H_5O_2} + \mathrm{NO_3} \rightarrow \mathrm{CH_3CHO} + \mathrm{HO_2} + \mathrm{NO_2}$	2.3E-12	Atkinson et al. (1999)
G4206	TrGC	$C_2H_5O_2$ + CH_3O_2 → .75 HCHO + HO_2 + .75 CH ₃ CHO + .25 CH ₃ OH	1.6E-13*EXP(195./temp)	see note
G4207	TrGC	$C_2H_5OOH + OH \rightarrow .3 C_2H_5O_2 + .7 CH_3CHO + .7 OH$	k_CH3OOH_OH	see note
G4208	TrGC	$CH_3CHO + OH \rightarrow CH_3C(O)OO + H_2O$	5.6E-12*EXP(270./temp)	Sander et al. (2003)
G4209	TrGNC	$CH_3CHO + NO_3 \rightarrow CH_3C(O)OO + HNO_3$	1.4E-12*EXP(-1900./temp)	Sander et al. (2003)
G4210	TrGC	$CH_3COOH + OH \rightarrow CH_3O_2$	4.E-13*EXP(200./temp)	Sander et al. (2003)
G4211a	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3C(O)OOH$	4.3E-13*EXP(1040./temp)/(1.+1./	Tyndall et al. (2001)
			37.*EXP(660./temp))	
G4211b	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3COOH + O_3$	4.3E-13*EXP(1040./temp)/(1.+	Tyndall et al. (2001)
			37.*EXP(-660./temp))	
G4212	TrGNC	$CH_3C(O)OO + NO \rightarrow CH_3O_2 + NO_2$	8.1E-12*EXP(270./temp)	Tyndall et al. (2001)
G4213	TrGNC	$CH_3C(O)OO + NO_2 \rightarrow PAN$	k_PA_NO2	Tyndall et al. (2001)
G4214	TrGNC	$CH_3C(O)OO + NO_3 \rightarrow CH_3O_2 + NO_2$	4.E-12	Canosa-Mas et al. (1996)
G4215a	TrGC	$CH_3C(O)OO + CH_3O_2 \rightarrow HCHO + HO_2 + CH_3O_2 + CO_2$	0.9*2.E-12*EXP(500./temp)	Sander et al. (2003)
G4215b	TrGC	$CH_3C(O)OO + CH_3O_2 \rightarrow CH_3COOH + HCHO + CO_2$	0.1*2.E-12*EXP(500./temp)	Sander et al. (2003)
G4216	TrGC	$CH_3C(O)OO + C_2H_5O_2 \rightarrow .82 CH_3O_2 + CH_3CHO + .82$	4.9E-12*EXP(211./temp)	Atkinson et al. (1999), Kirchner
		$HO_2 + .18 CH_3 COOH$		and Stockwell $(1996)^*$
G4217	TrGC	$CH_3C(O)OO + CH_3C(O)OO \rightarrow 2 CH_3O_2 + 2 CO_2 + O_2$	2.5E-12*EXP(500./temp)	Tyndall et al. (2001)
G4218	TrGC	$CH_3C(O)OOH + OH \rightarrow CH_3C(O)OO$	k_CH3OOH_OH	see note
G4220	TrGNC	$PAN + OH \rightarrow HCHO + NO_2$	2.E-14	see note
G4221	TrGNC	$PAN \rightarrow CH_3C(O)OO + NO_2$	k_PAN_M	Sander et al. $(2003)^*$
G4301a	TrGC	$C_3H_6 + O_3 \rightarrow .57 \text{ HCHO} + .47 \text{ CH}_3\text{CHO} + .33 \text{ OH} + .26$	6.5E-15*EXP(-1900./temp)	Sander et al. $(2003)^*$
		$HO_2 + .07 CH_3O_2 + .06 C_2H_5O_2 + .23 CH_3C(O)OO +$		
		$.06 \text{ CH}_4 + .31 \text{ CO} + .22 \text{ HCOOH} + .03 \text{ CH}_3 \text{OH}$		
G4302a	TrGC	$C_3H_6 + OH \rightarrow .98 CH_3CHO + .98 HCHO$	k_3rd(temp,cair,8.E-27,3.5,3.E-11,0.,	Atkinson et al. (1999)
			0.5)	
G4311	TrGC	$\rm CH_3COCH_3 + OH \rightarrow \rm CH_3COCH_2O_2 + H_2O$	1.33E-13+3.82E-11*EXP(-2000./temp)	Sander et al. (2003)
G4312a	TrGC	$CH_3COCH_2O_2 + HO_2 \rightarrow CH_3C(O)OO$	8.6E-13*EXP(700./temp)	Tyndall et al. (2001)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4313	TrGNC	$CH_3COCH_2O_2 + NO \rightarrow NO_2 + CH_3C(O)OO + HCHO$	2.9E-12*EXP(300./temp)	Sander et al. (2003)
G4314a	TrGC	$CH_3COCH_2O_2 + CH_3O_2 \rightarrow .5 CH_3OH + CH_3C(O)OO +$	7.5E-13*EXP(500./temp)	Tyndall et al. (2001)
		$.8 \text{ HCHO} + .3 \text{ HO}_2$		
G4400a	TrGC	$C_4H_{10} + OH \rightarrow 0.8 CH_3C(O)OO + .85 CH_3CHO + .1$	1.81E-17*temp*temp*EXP(114./temp)	Atkinson (2003)
		НСНО		
G6100	StTrGCl	$Cl + O_3 \rightarrow ClO$	2.3E-11*EXP(-200./temp)	Sander et al. (2003)
G6101	StGCl	$ClO + O(^{3}P) \rightarrow Cl$	3.E-11*EXP(70./temp)	Sander et al. (2003)
G6102	StTrGCl	$ClO + ClO \rightarrow Cl_2O_2$	k_C10_C10	Atkinson et al. (2005)
G6103	StTrGCl	$Cl_2O_2 \rightarrow ClO + ClO$	k_Cl0_Cl0/(1.27E-27*EXP(8744./temp))	Sander et al. $(2003)^*$
G6200	StGCl	$Cl + H_2 \rightarrow HCl + H$	3.7E-11*EXP(-2300./temp)	Sander et al. (2003)
G6201a	StGCl	$Cl + HO_2 \rightarrow HCl$	1.8E-11*EXP(170./temp)	Sander et al. (2003)
G6201b	StGCl	$Cl + HO_2 \rightarrow ClO + OH$	4.1E-11*EXP(-450./temp)	Sander et al. (2003)
G6202	StTrGCl	$Cl + H_2O_2 \rightarrow HCl + HO_2$	1.1E-11*EXP(-980./temp)	Sander et al. (2003)
G6203a	StGCl	$ClO + OH \rightarrow Cl + HO_2$	7.4E-12*EXP(270./temp)	Sander et al. (2003)
G6203b	StGCl	$ClO + OH \rightarrow HCl$	6.E-13*EXP(230./temp)	Sander et al. (2003)
G6204	StTrGCl	$ClO + HO_2 \rightarrow HOCl$	2.7E-12*EXP(220./temp)	Sander et al. (2003)
G6205	StTrGCl	$\rm HCl + OH \rightarrow Cl + H_2O$	2.6E-12*EXP(-350./temp)	Sander et al. (2003)
G6206	StGCl	$\rm HOCl+OH \rightarrow ClO + H_2O$	3.E-12*EXP(-500./temp)	Sander et al. (2003)
G6300	StTrGNCl	$ClO + NO \rightarrow NO_2 + Cl$	6.4E-12*EXP(290./temp)	Sander et al. (2003)
G6301	StTrGNCl	$ClO + NO_2 \rightarrow ClNO_3$	k_3rd(temp,cair,1.8E-31,3.4,1.5E-11,	Sander et al. (2003)
			1.9,0.6)	
G6303	StGNCl	$\text{ClNO}_3 + \text{O}(^3\text{P}) \rightarrow \text{ClO} + \text{NO}_3$	2.9E-12*EXP(-800./temp)	Sander et al. (2003)
G6304	StTrGNCl	$\text{ClNO}_3 + \text{Cl} \rightarrow \text{Cl}_2 + \text{NO}_3$	6.5E-12*EXP(135./temp)	Sander et al. (2003)
G6400	StTrGCl	$Cl + CH_4 \rightarrow HCl + CH_3O_2$	9.6E-12*EXP(-1360./temp)	Sander et al. (2003)
G6401	StTrGCl	$Cl + HCHO \rightarrow HCl + CO + HO_2$	8.1E-11*EXP(-30./temp)	Sander et al. (2003)
G6402	StTrGCl	$Cl + CH_3OOH \rightarrow CH_3O_2 + HCl$	5.7E-11	Sander et al. (2003)
G6403	StTrGCl	$ClO + CH_3O_2 \rightarrow HO_2 + Cl + HCHO$	3.3E-12*EXP(-115./temp)	Sander et al. (2003)
G6404	StGCl	$CCl_4 + O(^1D) \rightarrow ClO + 3 Cl$	3.3E-10	Sander et al. (2003)
G6405	StGCl	$CH_3Cl + O(^1D) \rightarrow OH + Cl$	1.65E-10	Sander et al. $(2003)^*$
G6406	StGCl	$CH_3Cl + OH \rightarrow H_2O + Cl$	2.4E-12*EXP(-1250./temp)	Sander et al. (2003)
G6407	StGCCl	$CH_3CCl_3 + O(^1D) \rightarrow OH + 3 Cl$	3.E-10	Sander et al. $(2003)^*$
G6408	StTrGCCl	$CH_3CCl_3 + OH \rightarrow H_2O + 3 Cl$	1.6E-12*EXP(-1520./temp)	Sander et al. (2003)
G6500	StGFCl	$CF_2Cl_2 + O(^1D) \rightarrow ClO + Cl$	1.4E-10	Sander et al. (2003)
G6501	StGFCl	$CFCl_3 + O(^1D) \rightarrow ClO + 2 Cl$	2.3E-10	Sander et al. (2003)
G7100	StTrGBr	$Br + O_3 \rightarrow BrO$	1.7E-11*EXP(-800./temp)	Sander et al. (2003)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G7101	StGBr	$BrO + O(^{3}P) \rightarrow Br + O_{2}$	1.9E-11*EXP(230./temp)	Sander et al. (2003)
G7200	StTrGBr	$Br + HO_2 \rightarrow HBr$	1.5E-11*EXP(-600./temp)	Sander et al. (2003)
G7201	StTrGBr	$BrO + HO_2 \rightarrow HOBr$	3.4E-12*EXP(540./temp)	Sander et al. (2003)
G7202	StTrGBr	$HBr + OH \rightarrow Br + H_2O$	1.1E-11	Sander et al. (2003)
G7203	StGBr	$HOBr + O(^{3}P) \rightarrow OH + BrO$	1.2E-10*EXP(-430./temp)	Sander et al. (2003)
G7301	StTrGNBr	$BrO + NO \rightarrow Br + NO_2$	8.8E-12*EXP(260./temp)	Sander et al. (2003)
G7302	StTrGNBr	$BrO + NO_2 \rightarrow BrNO_3$	k_Br0_N02	Sander et al. $(2003)^*$
G7400	StTrGBr	$Br + HCHO \rightarrow HBr + CO + HO_2$	1.7E-11*EXP(-800./temp)	Sander et al. (2003)
G7403	StTrGBr	$CH_3Br + OH \rightarrow H_2O + Br$	2.35E-12*EXP(-1300./temp)	Sander et al. (2003)
G7603a	StTrGClBr	$BrO + ClO \rightarrow Br + OClO$	9.5E-13*EXP(550./temp)	Sander et al. (2003)
G7603b	StTrGClBr	$BrO + ClO \rightarrow Br + Cl$	2.3E-12*EXP(260./temp)	Sander et al. (2003)
G7603c	StTrGClBr	$BrO + ClO \rightarrow BrCl$	4.1E-13*EXP(290./temp)	Sander et al. (2003)
G9200	TrStGS	$SO_2 + OH \rightarrow H_2SO_4 + HO_2$	k_3rd(temp,cair,3.E-31,3.3,1.5E-12,0.,	Sander et al. (2003)
			0.6)	
G9400a	TrGS	$DMS + OH \rightarrow CH_3SO_2 + HCHO$	1.13E-11*EXP(-253./temp)	Atkinson et al. $(2003)^*$
G9400b	TrGS	$DMS + OH \rightarrow DMSO + HO_2$	k_DMS_OH	Atkinson et al. $(2003)^*$
G9401	TrGNS	$DMS + NO_3 \rightarrow CH_3SO_2 + HNO_3 + HCHO$	1.9E-13*EXP(520./temp)	Atkinson et al. (2003)
G9402	TrGS	$DMSO + OH \rightarrow .6 SO_2 + HCHO + .6 CH_3O_2 + .4 HO_2$	1.E-10	Hynes and Wine (1996)
		$+ .4 \text{ CH}_3 \text{SO}_3 \text{H}$		
G9403	TrGS	$\rm CH_3SO_2 \rightarrow SO_2 + CH_3O_2$	1.9E13*EXP(-8661./temp)	Barone et al. (1995)
G9404	TrGS	$CH_3SO_2 + O_3 \rightarrow CH_3SO_3$	3.E-13	Barone et al. (1995)
G9405	TrGS	$\rm CH_3SO_3 + HO_2 \rightarrow CH_3SO_3H$	5.E-11	Barone et al. (1995)

Table 1: Gas phase reactions (... continued)

*Notes:

Rate coefficients for three-body reactions are defined via the function $k_3rd(T, M, k_0^{300}, n, k_{inf}^{300}, m, f_c)$. In the code, the temperature T is called **temp** and the concentration of "air molecules" M is called **cair**. Using the auxiliary variables $k_0(T)$, $k_{inf}(T)$, and k_{ratio} , k_3rd is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n$$
 (1

(2)

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 {\rm K}}{T}\right)$$

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)}$$
(3)
$$k_3 \text{rd} = \frac{k_0(T)M}{1+k_{\text{ratio}}} \times f_c^{\left(\frac{1}{1+(\log_{10}(k_{\text{ratio}}))^2}\right)}$$
(4)

A similar function, called k_3rd_iupac here, is used by Atkinson et al. (2005) for three-body reactions. It has the same function parameters as k_3rd and it is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300\mathrm{K}}{T}\right)^n$$

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300\rm K}{T}\right)^m \tag{6}$$

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{7}$$

$$N = 0.75 - 1.27 \times \log_{10}(f_{\rm c}) \tag{8}$$

k_3rd_iupac =
$$\frac{k_0(T)M}{1+k_{\text{ratio}}} \times f_c^{\left(\frac{1+(\log_{10}(k_{\text{ratio}})/N)^2}{1+k_{\text{ratio}}}\right)}(9)$$

(1.E-14*EXP(-490./ temp)) * C(KPP OH) + H2O) / (3.2E-11*EXP(70./temp)*C(KPP_ 02) + 1.8E-11*EXP(110./temp)*C(KPP_N2) + H2O))

G2108: branching ratio from Hack et al., see note B5 of Sander et al. (2003)

G2110: The rate coefficient is: k H02 H02 =(1.5E-12*EXP(19./temp)+1.7E-33*EXP(1000./temp) *cair)* (1.+1.4E-21*EXP(2200./temp)*C(KPP_ H20)). The value for the first (pressure-independent) part is from Christensen et al. (2002), the water term from Kircher and Sander (1984)

G3109: The rate coefficient is: $k_NO3_NO2 = k_$ 3rd(temp,cair,2.E-30,4.4,1.4E-12,0.7,0.6).

G3110: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G3203: The rate coefficient is: $k_NO2_HO2 = k_$ 3rd(temp,cair,1.8E-31,3.2,4.7E-12,1.4,0.6).

G3206: The rate coefficient is: k_HNO3_ 2.4E-14 * EXP(460./temp) + 1./ (1./ OH =(6.5E-34 * EXP(1335./temp)*cair) + 1./ (2.7E-17 * EXP(2199./temp)))

G3207: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4103: product distribution is from Elrod et al. (2001)

G4107: The rate coefficient is: $k_CH300H_OH =$ 3.8E-12*EXP(200./temp)

G4109: same temperature dependence assumed as for 2.7E-12*EXP(360./temp) CH₃CHO+NO₃

G4201: product distribution is from von Kuhlmann 9.46E-14*EXP(431./temp). The product distribution (2001) (see also Neeb et al. (1998))

G4206: Rate coefficient calculated by von Kuhlmann G4307: same value as for G4107: CH₃OOH+OH as-(pers. comm. 2004) using self reactions of CH_3OO

and C_2H_5OO from Sander et al. (2003) and geomettemp)) * C(KPP_HO2) + J_O1D * 2.2E-10 * C(KPP_ ric mean as suggested by Madronich and Calvert (1990) and Kirchner and Stockwell (1996). The product distri-2.2E-10*66KPP pranching = 0.5/0.25/0.25) is calculated by von Kuhlmann (pers. comm. 2004) based on Villenave and Lesclaux (1996) and Tyndall et al. (2001).

> G4207: same value as for G4107: CH₃OOH+OH assumed

> G4213: The rate coefficient is: $k_PA_NO2 = k_$ 3rd(temp,cair,8.5E-29,6.5,1.1E-11,1.,0.6).

> G4216: 1.0E-11 from Atkinson et al. (1999), temperature dependence from Kirchner and Stockwell (1996)

> G4218: same value as for G4107: CH₃OOH+OH assumed

> G4219: according to Pöschl et al. (2000), the same value as for CH₃CHO+OH can be assumed

> G4220: 50% of the upper limit given by Sander et al. (2003), as suggested by von Kuhlmann (2001)

> G4221: The rate coefficient is: $k_PAN_M = k_PA_NO2/$ 9.E-29*EXP(-14000./temp), i.e. the rate coefficient is defined as backward reaction divided by equilibrium constant.

> G4301: product distribution is for terminal olefin carbons from Zaveri and Peters (1999)

G4304: The rate coefficient is: $k_Pr02_H02 =$ 1.9E-13*EXP(1300./temp). Value for generic RO₂ + HO_2 reaction from Atkinson (1997) is used.

G4305: The rate coefficient is: k PrO2 NO =

G4306: The rate coefficient is: $k_Pr02_CH302 =$ is from von Kuhlmann (2001).

sumed

G4309: products are from von Kuhlmann (2001)

G4315: same value as for G4107: CH₃OOH+OH assumed

G4319: same value as for PAN assumed

G4401: same value as for propyl group assumed (k_ Pr02_CH302)

G4402: same value as for propyl group assumed (k_ Pr02_H02)

G4403: same value as for propyl group assumed (k_ Pr02_N0)

G4404: same value as for G4107: CH₃OOH+OH assumed

G4409: The factor 0.25 was recommended by Uli Poeschl (pers. comm. 2004).

G4414: same value as for propyl group assumed (k_ Pr02_H02)

G4415: same value as for propyl group assumed (k_ Pr02_N0)

G4416: same value as for G4107: CH₃OOH+OH assumed

G4417: value for $C_4H_9ONO_2$ used here

G4503: same temperature dependence assumed as for other $RO_2 + HO_2$ reactions

G4504: Yield of 12 % RONO₂ assumed as suggested in Table 2 of Sprengnether et al. (2002).

G6102: The rate coefficient is: $k_Cl0_Cl0 = k_3rd_$ iupac(temp, cair, 2.E-32, 4., 1.E-11, 0., 0.45).

G6103: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G6204: At low temperatures, there may be a minor reaction channel leading to O_3 +HCl. See Finkbeiner et al. (1995) for details. It is neglected here.

G6405: average of reactions with CH₃Br and CH₃F (B. Steil, pers. comm., see also note A15 in Sander et al. (2003)).

G6407: extrapolated from reactions with CH_3CF_3 . CH_3CClF_2 , and CH_3CCl_2F (B. Steil, pers. comm., see also note A15 in Sander et al. (2003)).

G7302: The rate coefficient is: $k_Br0_N02 = k_$ 3rd(temp,cair,5.2E-31,3.2,6.9E-12,2.9,0.6).

G7303: The rate coefficient is defined as backward reaction (Sander et al., 2003) divided by equilibrium constant (Orlando and Tyndall, 1996).

G8101: This value was assumed by Jimenez et al. (2003).

G8102: The product as well as the reaction were assumed by von Glasow et al. (2002). An alternative pathway is the formation of new particles. This reaction needs to be updated when laboratory measurements become available.

G8103: product distribution is from Bloss et al. (2001) G8203: assumed (J. Crowley, pers. comm. 2004)

G8300: The rate coefficient is: $k_I NO2 = k_3 rd(temp, to Yin et al. (1990)$ is: cair, 3.E-31, 1., 6.6E-11, 0., 0.6).

G8304: J. Moldanova and J. Plane, pers. comm.

G8305: The rate coefficient is defined as backward reaction (Sander et al., 2003) divided by equilibrium constant (van den Bergh and Troe, 1976).

G8306: Note that in an earlier study by Jenkin et al. (1985), a value of 5E-3 s^{-1} was assumed.

G8600: Turnipseed et al. (1997) found a branching ratio of 14% for the sum of channels which do not produce I atoms. We assume that OIO and Cl are produced in this case.

G8701: Gilles et al. (1997) found an upper limit of 35%for I atom production. We assume 35% I and 65% OIO as products. See also Rowley et al. (2001) for info about products.

G9400a: Abstraction path. The assumed reaction sequence (omitting H_2O and O_2 as products) according

 $DMS + OH \rightarrow CH_3SCH_2$ $CH_3SCH_2 + O_2 \rightarrow CH_3SCH_2OO$ $CH_3SCH_2OO + NO \rightarrow CH_3SCH_2O + NO_2$ $CH_3SCH_2O \rightarrow CH_3S + HCHO$ $CH_3S + O_3 \rightarrow CH_3SO$ $CH_3SO + O_3 \rightarrow CH_3SO_2$ $DMS + OH + NO + 2O_3 \rightarrow CH_3SO_2 + HCHO + NO_2$

Neglecting the effect on O_3 and NO_x , the remaining reaction is:

 $DMS + OH + O_3 \rightarrow CH_3SO_2 + HCHO$

G9400b: Addition path. The rate coefficient is: k_DMS_ $OH = 1.0E - 39 * EXP(5820./temp) * C(KPP_02)/$ (1.+5.0E-30*EXP(6280./temp)*C(KPP_02)).

Table 2: Photolysis reactions

#	labels	reaction	rate coefficient	reference
J1000	StTrGJ	$O_2 + h\nu \to O(^3P) + O(^3P)$	JX(ip_02)	see note
J1001a	StTrGJ	$O_3 + h\nu \rightarrow O(^1D)$	JX(ip_01D)	see note
J1001b	StTrGJ	$O_3 + h\nu \rightarrow O(^3P)$	JX(ip_O3P)	see note
J2100	StGJ	$H_2O + h\nu \rightarrow H + OH$	JX(ip_H2O)	see note
J2101	StTrGJ	$H_2O_2 + h\nu \rightarrow 2 \text{ OH}$	JX(ip_H2O2)	see note
J3100	StGNJ	$N_2O + h\nu \rightarrow O(^1D)$	JX(ip_N2O)	see note
J3101	StTrGNJ	$NO_2 + h\nu \rightarrow NO + O(^3P)$	JX(ip_NO2)	see note
J3102	StGNJ	$\rm NO + h\nu \rightarrow N + O(^{3}P)$	JX(ip_NO)	see note
J3103a	StTrGNJ	$NO_3 + h\nu \rightarrow NO_2 + O(^3P)$	JX(ip_NO2O)	see note
J3103b	StTrGNJ	$NO_3 + h\nu \rightarrow NO$	JX(ip_NOO2)	see note
J3104a	StTrGNJ	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$	JX(ip_N2O5)	see note
J3104b	StGNJ	$N_2O_5 + h\nu \rightarrow NO + O(^3P) + NO_3$	JX(ip_NO3NOO)	see note
J3200	TrGJ	$HONO + h\nu \rightarrow NO + OH$	JX(ip_HONO)	see note
J3201	StTrGNJ	$HNO_3 + h\nu \rightarrow NO_2 + OH$	JX(ip_HNO3)	see note
J3202	StTrGNJ	$HNO_4 + h\nu \rightarrow .667 \text{ NO}_2 + .667 \text{ HO}_2 + .333 \text{ NO}_3 + .333 \text{ OH}$	JX(ip_HNO4)	see note
J4100	StTrGJ	$CH_3OOH + h\nu \rightarrow HCHO + OH + HO_2$	JX(ip_CH3OOH)	see note
J4101a	StTrGJ	$\rm HCHO + h\nu \rightarrow H_2 + CO$	JX(ip_COH2)	see note
J4101b	StTrGJ	$\rm HCHO + h\nu \rightarrow \rm H + \rm CO + \rm HO_2$	JX(ip_CHOH)	see note
J4102	StGJ	$\rm CO_2 + h\nu \rightarrow \rm CO + O(^3P)$	JX(ip_CO2)	see note
J4103	StGJ	$CH_4 + h\nu \rightarrow CO + 0.31 H + 0.69 H_2 + 1.155 H_2O$	JX(ip_CH4)	see note
J4200	TrGCJ	$C_2H_5OOH + h\nu \rightarrow CH_3CHO + HO_2 + OH$	JX(ip_CH3OOH)	see note
J4201	TrGCJ	$CH_3CHO + h\nu \rightarrow CH_3O_2 + HO_2 + CO$	JX(ip_CH3CH0)	see note
J4202	TrGCJ	$CH_3C(O)OOH + h\nu \rightarrow CH_3O_2 + OH$	JX(ip_PAA)	see note
J4204	TrGNCJ	$PAN + h\nu \rightarrow CH_3C(O)OO + NO_2$	JX(ip_PAN)	see note
J4301	TrGCJ	$CH_3COCH_3 + h\nu \rightarrow CH_3C(O)OO + CH_3O_2$	JX(ip_CH3COCH3)	see note
J6000	StTrGClJ	$Cl_2 + h\nu \rightarrow Cl + Cl$	JX(ip_Cl2)	see note
J6100	StTrGClJ	$Cl_2O_2 + h\nu \rightarrow 2 Cl$	1.4*JX(ip_Cl202)	see note
J6101	StTrGClJ	$OClO + h\nu \rightarrow ClO + O(^{3}P)$	JX(ip_OClO)	see note
J6200	StGClJ	$\mathrm{HCl} + \mathrm{h}\nu \to \mathrm{Cl} + \mathrm{H}$	JX(ip_HCl)	see note
J6201	StTrGClJ	$HOCl + h\nu \rightarrow OH + Cl$	JX(ip_HOC1)	see note
J6301a	StTrGNClJ	$\text{ClNO}_3 + h\nu \rightarrow \text{Cl} + \text{NO}_3$	JX(ip_ClNO3)	see note
m J6301b	StTrGNClJ	$\text{ClNO}_3 + h\nu \rightarrow \text{ClO} + \text{NO}_2$	JX(ip_ClONO2)	see note
J6400	StGClJ	$CH_3Cl + h\nu \rightarrow Cl + CH_3O_2$	JX(ip_CH3Cl)	see note
J6401	StGClJ	$\mathrm{CCl}_4 + \mathrm{h}\nu \to 4 \mathrm{Cl}$	JX(ip_CCl4)	see note

Table 2:	Photolysis	reactions (continued))
	•/		· · · · · · · · · · · · · · · · · · ·		

#	labels	reaction	rate coefficient	reference
J6402	StGCClJ	$CH_3CCl_3 + h\nu \rightarrow 3 Cl$	JX(ip_CH3CC13)	see note
J6500	StGFClJ	$CFCl_3 + h\nu \rightarrow 3 Cl$	JX(ip_CFCl3)	see note
J6501	StGFClJ	$CF_2Cl_2 + h\nu \rightarrow 2 Cl$	JX(ip_CF2C12)	see note
J7200	StTrGBrJ	$HOBr + h\nu \rightarrow Br + OH$	JX(ip_HOBr)	see note
J7301	StTrGNBrJ	$BrNO_3 + h\nu \rightarrow Br + NO_3$	JX(ip_BrNO3)	see note
J7400	StGBrJ	$CH_3Br + h\nu \rightarrow Br + CH_3O_2$	JX(ip_CH3Br)	see note
J7500	StGFBrJ	$CF_3Br + h\nu \rightarrow Br$	JX(ip_CF3Br)	see note
J7600	StTrGClBrJ	$BrCl + h\nu \rightarrow Br + Cl$	JX(ip_BrCl)	see note
J7601	StGFClBrJ	$CF_2ClBr + h\nu \rightarrow Br + Cl$	JX(ip_CF2ClBr)	see note
J9002	StGSJ	$SF_6 + h\nu \rightarrow products$	JX(ip_SF6)	see note

*Notes: J-values are calculated with an external module and then supplied to the MECCA1 chemistry

J6100: Stimpfle et al. (2004) claim that the combination of absorption cross sections from Burkholder et al. (1990) and the Cl_2O_2 formation rate coefficient by Sander et al. (2003) can approximately reproduce the observed Cl_2O_2/ClO ratios and ozone depletion. They give an almost zenith-angle independent ratio of 1.4 for Burkholder et al. (1990) to Sander et al. (2003) J-values. The IUPAC recommendation for the Cl_2O_2 formation rate is about 5 to 15 % less than the value by Sander et al. (2003) but more than 20 % larger than the value by Sander et al. (2000). The J-values by Burkholder et al. (1990) are within the uncertainty range of the IUPAC recommendation.

Table 3: Heterogeneous reactions

# labels reaction	rate coefficient	reference
*Notes: The forward (k_exf) and backward (k_exb) rate coefficients are calculated in the file	$k_{\rm mt} =$ mass transfer coefficient lwc = liquid water content of aerosol mode H3201, H6300, H6301, H6302, H7300, H7301, H7302,	H6301, H6302, H7601: The total uptake is determined by $k_{\rm mt}$ (ClNO ₃). The relative rates are assumed to be the same as for N ₂ O ₅ (H3201, H6300, H7300).
messy_meccal_aero.190 using the accommoda- tion coefficients in subroutine meccal_aero_alpha and Henry's law constants in subroutine meccal_aero_henry.	H7601, H7602: For uptake of $X = N_2O_5$, ClNO ₃ , BrNO ₃) and subsequent reaction with H ₂ O, Cl ⁻ , and Br ⁻ , we define $k_{\text{exf}}(X) = k_{\text{mt}}(X) \times lwc/([H_2O] + 5.0E2[Cl-] + 3.0E5[Br-]).$	H7301, H7302, H7602: The total uptake is determined by $k_{\rm mt}({\rm BrNO}_3)$. The relative rates are assumed to be the same as for N ₂ O ₅ (H3201, H6300, H7300).

Table 4: PSC reactions

#	labels	reaction	rate coefficient	reference
PSC200	StPscN	$N_2O_5 + H_2O \rightarrow HNO_3 + HNO_3$	khet_N205_H20	see note
PSC410	StPscCl	$HOCl + HCl \rightarrow Cl_2 + H_2O$	khet_HOC1_HC1	see note
PSC420	StPscNCl	$\text{ClNO}_3 + \text{HCl} \rightarrow \text{Cl}_2 + \text{HNO}_3$	khet_C1NO3_HC1	see note
PSC421	StPscNCl	$ClNO_3 + H_2O \rightarrow HOCl + HNO_3$	khet_C1NO3_H2O	see note
PSC520	StPscNBr	$BrNO_3 + H_2O \rightarrow HOBr + HNO_3$	khet_BrN03_H20	see note
PSC541	StPscNClBr	$BrNO_3 + HCl \rightarrow BrCl + HNO_3$	khet_BrNO3_HCl	see note
PSC543	StPscClBr	$\rm HOBr + \rm HCl \rightarrow BrCl + \rm H_2O$	khet_HOBr_HCl	see note

*Notes: PSC reaction rates are calculated with an external module and then supplied to the MECCA1 chemistry (see http://www.messy-interface.org for details)

Table 5: Acid-base and other eqilibria

	# labels reaction	$K_0[M^{m-n}]$	$-\Delta H/R[K]$	reference	
--	-------------------	----------------	------------------	-----------	--

*Notes:

EQ82 and EQ83: Thermodynamic calculations on the IBr/ICl equilibrium according to the data tables from Wagman et al. (1982):

$$K = \frac{[\text{IBr}] \times [\text{Cl}^-]}{[\text{ICl}] \times [\text{Br}^-]} = \exp\left(\frac{-\Delta G}{RT}\right) = \exp\left(\frac{14368}{8.314 \times 298}\right) = 330$$

This means we have equal amounts of IBr and ICl when the $\rm [Cl^-]/[Br^-]$ ratio equals 330.

Table 6: Aqueous phase reactions

	# labels reaction	$k_0 \left[M^{1-n} s^{-1} \right]$	$-E_a/R[K]$	reference	
--	-------------------	-------------------------------------	-------------	-----------	--

A6102: Jacobi (1996) found an upper limit of 6E9 and cite an upper limit from another study of 2E9. Here, we set the rate coefficient to 1E9.A6301: There is also an earlier study by Exner et al. (1992) which found a smaller rate coefficient but did not consider the back reaction.	A9106: see also: (Huie and Neta, 1987; Warneck, 1991). If this reaction produces a lot of SO_4^- , it will have an effect. However, we currently assume only the stable $S_2O_8^{2-}$ as product. Since $S_2O_8^{2-}$ is not treated explicitly in the mechanism, we use SO_4^{2-} as a proxy. Note that this destroys the mass consistency for sulfur species.	A9208: D. Sedlak, pers. comm. (1993) A9105: The rate coefficient for the sum of the paths (leading to either HSO_5^- or SO_4^{2-}) is from Huie and Neta (1987), the ratio 0.28/0.72 is from Deister and Warneck (1990). A9605: assumed to be the same as for SO_3^{2-} + HOCl.
A7400: assumed to be the same as for $Br_2^- + H_2O_2$.	A9205: D. Sedlak, pers. comm. (1993)	A9705: assumed to be the same as for SO_3^{2-} + HOBr.

References

- Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data, 26, 215–290, 1997.
- Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233-2307, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version August 1999. http://www.iupac-kinetic.ch.cam.ac.uk/, 1999.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Part 1 - gas phase reactions of O_x , HO_x , NO_x and SO_x species, Atmos. Chem. Phys. Discuss., 3, 6179-6699, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, Jr., R. F., Hvnes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M. J., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version March 2005, http://www.iupac-kinetic.ch.cam.ac.uk/, 2005.
- Barone, S. B., Turnipseed, A. A., and Ravishankara, A. R.: Role of adducts in the atmospheric oxidation of dimethyl sulfide, Faraday Discuss., 100, 39-54, 1995.
- Bloss, W. J., Rowley, D. M., Cox, R. A., and Jones, R. L.: Kinetics and products of the IO self-reaction. J. Phys. Chem. A, 105, 7840-7854, 2001.

- Burkholder, J. B., Orlando, J. J., and Howard, C. J.: Huie, R. E. and Neta, P.: Rate constants for some ox-Ultraviolet absorption cross sections of Cl₂O₂ between 210 and 410 nm, J. Phys. Chem., 94, 687–695, 1990.
- Canosa-Mas, C. E., King, M. D., Lopez, R., Percival, C. J., Wayne, R. P., Shallcross, D. E., Pyle, J. A., and Daele. V.: Is the reaction between $CH_3(O)O_2$ and NO_3 important in the night-time troposphere?. J. Chem. Soc. Faradav Trans., 92, 2211–2222, 1996.
- Christensen, L. E., Okumura, M., Sander, S. P., Salawitch, R. J., Toon, G. C., Sen, B., Blavier, J.-F., and Jucks, K. W.: Kinetics of $HO_2 + HO_2 \rightarrow H_2O_2 +$ O_2 : Implications for stratospheric H_2O_2 , Geophys. Res. Lett., 29, doi:10.1029/2001GL014525, 2002.
- Deister, U. and Warneck, P.: Photooxidation of SO_2^{2-} in aqueous solution, J. Phys. Chem., 94, 2191–2198, 1990.
- Elrod, M. J., Ranschaert, D. L., and Schneider, N. J.: Direct kinetics study of the temperature dependence of the CH_2O branching channel for the CH_3O_2 + HO₂ reaction, Int. J. Chem. Kinetics, 33, 363–376, 2001.
- Exner, M., Herrmann, H., and Zellner, R.: Laser-based studies of reactions of the nitrate radical in aqueous solution, Ber. Bunsenges. Phys. Chem., 96, 470-477, 1992.
- Finkbeiner, M., Crowley, J. N., Horie, O., Müller, R., Moortgat, G. K., and Crutzen, P. J.: Reaction between HO₂ and ClO: Product formation between 210 and 300 K, J. Phys. Chem., 99, 16264-16275, 1995.
- Gilles, M. K., Turnipseed, A. A., Burkholder, J. B., Ravishankara, A. R., and Solomon, S.: Kinetics of the IO radical. 2. Reaction of IO with BrO, J. Phys. Chem. A, 101, 5526–5534, 1997.

- idations of S(IV) by radicals in aqueous solutions. Atmos. Environ., 21, 1743–1747, 1987.
- Hynes, A. J. and Wine, P. H.: The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH + DMSO reaction, J. Atmos. Chem., 24, 23–37, 1996.
- Jacobi, H.-W.: Kinetische Untersuchungen und Modellrechnungen zur troposphärischen Chemie von Radikalanionen und Ozon in wäßriger Phase. Ph.D. thesis. Universität GH Essen. FRG, 1996.
- Jenkin, M. E., Cox, R. A., and Candeland, D. E.: Photochemical aspects of tropospheric iodine behaviour. J. Atmos. Chem., 2, 359-375, 1985.
- Jimenez, J. L., Bahreini, R., Cocker III, D. R., Zhuang, H., Varutbangkul, V., Flagan, R. C., Seinfeld, J. H., O'Dowd, C. D., and Hoffmann, T.: New particle formation from photooxidation of diiodomethane (CH_2I_2), J. Geophys. Res., 108D, doi: 10.1029/2002JD002452, 2003.
- Kircher, C. C. and Sander, S. P.: Kinetics and mechanism of HO₂ and DO₂ disproportionations, J. Phys. Chem., 88, 2082–2091, 1984.
- Kirchner, F. and Stockwell, W. R.: Effect of peroxy radical reactions on the predicted concentrations of ozone, nitrogenous compounds, and radicals, J. Geophys. Res., 101D, 21007-21022, 1996.
- Madronich, S. and Calvert, J. G.: Permutation reactions of organic peroxy radicals in the troposphere. J. Geophys. Res., 95D, 5697–5715, 1990.
- McCabe, D. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Kinetics of the reaction OH + COunder atmospheric conditions, Geophys. Res. Lett., 28, 3135-3138, 2001.

- Neeb, P., Horie, O., and Moortgat, G. K.: The etheneozone reaction in the gas phase, J. Phys. Chem. A, 102, 6778–6785, 1998.
- Orlando, J. J. and Tyndall, G. S.: Rate coefficients for the thermal decomposition of BrONO₂ and the heat of formation of BrONO₂, J. Phys. Chem., 100, 19398–19405, 1996.
- Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P. J.: Development and intercomparison of condensed isoprene oxidation mechanisms for global atmospheric modeling, J. Atmos. Chem., 37, 29–52, 2000.
- Rowley, D. M., Bloss, W. J., Cox, R. A., and Jones, R. L.: Kinetics and products of the IO + BrO reaction, J. Phys. Chem. A, 105, 7855–7864, 2001.
- Sander, S. P., Friedl, R. R., DeMore, W. B., Golden, D. M., Kurylo, M. J., Hampson, R. F., Huie, R. E., Moortgat, G. K., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data for use in stratospheric modeling. Supplement to evaluation 12: Update of key reactions. Evaluation number 13, JPL Publication 00-3, Jet Propulsion Laboratory, Pasadena, CA, http: //jpldataeval.jpl.nasa.gov/, 2000.
- Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L., and Ravishankara, A. R.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Stud-

- ies, Evaluation Number 14, JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 2003.
- Sivakumaran, V., Hölscher, D., Dillon, T. J., and Crowley, J. N.: Reaction between OH and HCHO: temperature dependent rate coefficients (202-399 K) and product pathways (298 K), Phys. Chem. Chem. Phys., 5, 4821–4827, 2003.
- Sprengnether, M., Demerjian, K. L., Donahue, N. M., and Anderson, J. G.: Product analysis of the OH oxidation of isoprene and 1,3-butadiene in the presence of NO, J. Geophys. Res., 107D, doi:10.1029/ 2001JD000716, 2002.
- Stimpfle, R. M., Wilmouth, D. M., Salawitch, R. J., and Anderson, J. G.: First measurements of ClOOCl in the stratosphere: The coupling of ClOOCl and ClO in the Arctic polar vortex, J. Geophys. Res., 109, doi: 10.1029/2003JD003811, 2004.
- Turnipseed, A. A., Gilles, M. K., Burkholder, J. B., and Ravishankara, A. R.: Kinetics of the IO radical. 1. Reaction of IO with ClO, J. Phys. Chem. A, 101, 5517–5525, 1997.
- Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J.: The atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106D, 12157–12182, 2001.
- van den Bergh, H. and Troe, J.: Kinetic and thermodynamic properties of INO and INO₂ intermediate complexes in iodine recombination, J. Chem. Phys., 64, 736–742, 1976.

- Villenave, E. and Lesclaux, R.: Kinetics of the cross reactions of CH₃O₂ and C₂H₅O₂ radicals with selected peroxy radicals, J. Phys. Chem., 100, 14372–14382, 1996.
- von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modeling halogen chemistry in the marine boundary layer. 1. Cloud-free MBL, J. Geophys. Res., 107D, 4341, doi:10.1029/2001JD000942, 2002.
- von Kuhlmann, R.: Tropospheric photochemistry of ozone, its precursors and the hydroxyl radical: A 3Dmodeling study considering non-methane hydrocarbons, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001.
- Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L.: The NBS tables of chemical thermodynamic properties; Selected values for inorganic and C₁ and C₂ organic substances in SI units, J. Phys. Chem. Ref. Data, 11, suppl. 2, 1982.
- Warneck, P.: Chemical reactions in clouds, Fresenius J. Anal. Chem., 340, 585–590, 1991.
- Yin, F., Grosjean, D., and Seinfeld, J. H.: Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development, J. Atmos. Chem., 11, 309– 364, 1990.
- Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale applications, J. Geophys. Res., 104D, 30387–30415, 1999.