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Abstract

Hourly total gaseous mercury (TGM) concentrations at three monitoring sites (recep-
tors) in Ontario were predicted for four selected periods at different seasons in 2002
using the Stochastic Time-Inverted Lagrangian Transport (STILT) model, which trans-
ports Lagrangian air parcels backward in time from the receptors to provide linkages5

to the source region in the upwind area. The STILT model was modified to deal with
Hg deposition and high stack Hg emissions. The model-predicted Hg concentrations
were compared with observations at three monitoring sites. Estimates of transport er-
rors (uncertainties in simulated concentrations due to errors in wind fields) are also
provided that suggest such errors can reach approximately 10% of simulated concen-10

trations. Results from a CMAQ chemical transport model (CTM) simulation in which
the same emission and meteorology inputs were used are also reported. The compar-
isons show that STILT-predicted Hg concentrations usually agree better with observa-
tions than CMAQ except for a subset of cases that are subject to biases in the coarsely
resolved boundary conditions. STILT captures high frequency concentration variations15

better than the Eulerian CTM, due to its ability to account for near-field influences that
are not resolved by typical grid sizes in Eulerian CTMs. Thus it is particularly valuable
for the interpretation of plumes (short-term concentration variations) that require com-
plex sub-grid treatments in Eulerian models. We report quantitative assessments of
the relative importance of different upstream sources for the selected episodes, based20

on emission fluxes and STILT footprints. The STILT simulations indicate that natural
sources (which include re-emission from historical anthropogenic activities) contribute
much more than current-day anthropogenic emissions to the Hg concentrations ob-
served at the three sites.
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1 Introduction

Mercury was one of the first priority PBT (Persistent, Bio-accumulative and Toxic) pol-
lutants identified by the US EPA, due to its significant health influences, especially
damage to the nervous and reproductive systems. Human activities, such as mining
and burning of fossil fuels, are important sources of atmospheric mercury, but there5

are also many “natural” sources, including soil, minerals and water. (Here, “natural”
sources include mercury that is released into the soil from primary mineral sources
and re-emission of mercury which was deposited from historical anthropogenic activi-
ties.)

In the atmosphere, mercury can exist in three major chemical forms: elemental mer-10

cury (Hg0), particulate mercury and “reactive” mercury (Hg++, also referred to as Reac-
tive Gaseous Mercury, or RGM). Because of its high vapour pressure and low reactivity.
Hg0 can be transported through the atmosphere over very long distances before being
returned to the surface by wet and dry deposition. Deposition from the atmosphere is
the primary source of mercury contamination to most threatened aquatic ecosystems15

(Bullock, 2000).
Measurements of atmospheric mercury levels are important for monitoring health ef-

fects, but measurements alone are insufficient for a complete understanding of mercury
sources, sinks and transport. To assess which source regions and types are respon-
sible for observed mercury pollution, it is necessary to use numerical models (Cheng20

and Schroeder, 2000; Cohen et al., 2004; Lim et al., 2001; Lynam and Keeler, 2006).
In this context, STILT, a receptor-oriented model, has proven to be especially useful for
identifying transport pathways and estimating surface emission fluxes. STILT has been
used to study terrestrial carbon fluxes at the regional scale using observations of CO2
and CO over North America (Gerbig et al., 2003) and to estimate fluxes of halocarbons25

using gridded CO emissions and measured CO/halocarbon emission ratios (Hurst et
al., 2006). STILT has also been used to study transport in deep convective clouds
(Xueref et al., 2004).
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STILT simulates the transport of particles (representing air parcels of equal mass)
with both deterministic and stochastic velocities, enabling a more detailed and accurate
representation of air parcel trajectories, particularly in the lower atmosphere where tur-
bulence is strong and where the traditional approach of simulating atmospheric trans-
port with single mean-wind trajectories can be subject to large errors. The particles5

simulated by STILT comprise the observation’s transport history, providing invaluable
information for the interpretation of atmospheric observations. Since the particles are
not tied to grids they can also resolve sub-grid scale influences, which are particularly
important in cases where strong and variable sources/sinks are found in the near-field
of a measurement site.10

The objective of this study is to present a new method which can be used to simulate
Hg concentrations at the location of a monitoring site and assess quantitatively its up-
stream source influences. For this purpose, we adapted STILT to simulate hourly total
gaseous mercury (TGM) concentrations at three monitoring sites in Ontario, Canada.
The simulated concentrations were evaluated with the measurements and also com-15

pared with the concentrations previously simulated by the Eulerian CTM CMAQ (Gbor
et al., 2007). The differences in simulation ability between the two models, which were
driven with the same meteorological fields and emission grids, were also investigated.

2 Method

2.1 Total Gaseous Mercury Measurements20

Total Gaseous Mercury (TGM) is mainly composed of elemental mercury vapour with a
minor fraction of RGM. TGM concentrations have been monitored continuously at the
sites of the Canadian Atmospheric Mercury Measurement Network (CAMNet) since
1994, using the Tekran Model 2537A Ambient Mercury Vapour Analyser, which has
a monitoring error of less than 2% (Poissant, 2000). Hourly TGM measurements are25

available from the Canadian National Atmospheric Chemistry (NAtChem) database
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(Environment Canada, 2002). We used these TGM measurements for the year 2002
at three monitoring sites in Ontario: Point Petre, Egbert and Burnt Island. Results
from a previous CMAQ modeling study (Gbor et al., 2007) were also included as a
comparison to the STILT results. The locations of the three sites are shown in Fig. 1.
Burnt Island (45.8083◦ N, 82.95◦ W) is classified as a “rural-remote” site, while Point5

Petre (43.8428◦ N, 77.154◦ W) and Egbert (44.2317◦ N, 79.783◦ W) are designated as
“rural-affected” (Kellerhals et al., 2003). They are all situated between a large area of
very low Hg emissions to the north and a region to the south having high Hg emis-
sions stemming from high population densities and industrial activity. Hence episodic
plumes of elevated Hg concentrations contrasted with low background concentrations10

are expected at these sites.

2.2 CMAQ model and simulation

A brief summary of the previous CMAQ model study (Gbor et al., 2007) will be provided
here for reference. The model was based on CMAQ V4.3 (Bullock and Brehme, 2002),
which was modified by including the dry deposition of Hg0 and RGM (Gbor et al., 2006)15

and adding a model that calculates natural mercury emissions from soil, water and
vegetation canopies. The simulation was conducted for the year 2002. The domain
was the same as that used here. It covers most of North America using 132×90
grid cells with a horizontal spacing of 36 km and 15 vertical layers. Meteorology was
provided by version 3.6 of the PSU/NCAR MM5 model with the PX land surface model20

(LSM) and indirect soil nudging (Xiu and Pleim, 2001).
Inventories of anthropogenic criteria pollutants (O3, NO2, particulate matter (PM),

SO2, CO and Pb) for the United States were obtained from the 1999 National Emis-
sions Inventory (NEI) version 3 IDA Files (US EPA, 2004a). The 1995 inventory of an-
thropogenic criteria pollutants for Canada was obtained from the Ontario Ministry of the25

Environment (OMOE) (A. Chtcherbakov, personal communication, 2003). Emissions of
criteria pollutants from biogenic sources were processed using the BEIS3 program of
the Sparse Matrix Operator Kernel Emission (SMOKE) modeling system with a gridded
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land use file for North America obtained from the OMOE (A. Chtcherbakov, personal
communication, 2004). Anthropogenic Hg emission data for the US and Canada were
obtained from the US EPA (2004b).

The natural mercury emissions were calculated using the emission model of Gbor
et al. (2004, 2006) and merged with the anthropogenic mercury and criteria emis-5

sions using SMOKE. Mercury boundary conditions were taken from the global mercury
simulation of Seigneur et al. (2004), which included both natural and anthropogenic
Hg emissions. The CMAQ model used these gridded emissions from SMOKE with
the photolysis rate and initial and boundary conditions to simulate the atmospheric Hg
concentrations on an hourly basis. For the purpose of comparison with measured TGM10

concentrations, modeled Hg0 and RGM concentrations were summed and converted
from ppmv to ng/m3 using the temperature and pressure for each grid cell.

2.3 STILT model and simulation

2.3.1 STILT model

The STILT model is built on source code from the Hybrid Single Particle Lagrangian15

Integrated Trajectory (HYSPLIT) model system (Draxler and Hess, 1998; Lin et al.,
2003). In order to satisfy the well-mixed criterion in the strongly inhomogeneous envi-
ronment of the PBL where the simple drift correction does not work (Lin et al., 2003;
Thomson et al., 1997), the STILT model employed a reflection/transmission scheme for
Gaussian turbulence instead. The parameterization for the PBL height was a modified20

Richardson number method that generalizes to unstable, neutral, and stable conditions
(Lin et al., 2003; Vogelezang and Holtslag, 1996). The model simulates the transport
of air parcels using ensembles of fictitious particles advected with mean wind veloc-
ities as well as stochastic velocities parameterized to capture the effects of turbulent
transport. Further details of the STILT model can be found in Lin et al. (2003).25

STILT is a receptor-oriented transport model that simulates tracer concentrations at
a receptor and identifies upstream source regions based on a “footprint” concept. A
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footprint, f (
⇀
xr , tr |xi , yj , tm), in units of ppm/(µmole/m2/s), represents the sensitivity of

the mixing ratio C(
⇀
xr ,tr ) at receptor location

⇀
xr at time tr to the surface flux F (xi ,yj ,tm)

from location xi , yj at time tm. Thus it is a simulation of the mixing ratio at the receptor
from a source of unit strength in each grid cell of the domain. The footprint is derived
from the local density of particles by counting the number of particles (out of a total5

number Ntot) in surface-influenced boxes and determining the amount of time ∆tp,i ,j,k
each particle p spends in each surface volume element (i ,j,k) during each time step.
The mathematical definition of a footprint (Lin et al., 2003) is given by.

f (
⇀
xr ,tr |xi ,yj ,tm)=

mair

hρ̄(xi ,yj ,tm)
1

Ntot

Ntot∑
p=1

∆tp,i ,j,k (1)

where mair is the molar mass of air. h is the height below which turbulent mixing is10

strong enough to mix the surface flux thoroughly, and ρ̄(xi ,yj ,tm) is the average air
density below h. Information about a footprint comes from computing the transport of
an ensemble of particles backward in time using winds and turbulence statistics from
meteorological fields.

The footprints can be integrated for different time periods and different areas de-15

pending on specific applications. The footprints can also be multiplied by surface fluxes
to yield simulated concentrations. Through footprint elements f (

⇀
xr ,tr |xi ,yj ,tm), STILT

links the surface fluxes F (xi ,yj ,tm) to concentration changes ∆Cm,i,j (
⇀
xr ,tr ) at a recep-

tor with the following equation (Lin et al., 2003):

∆Cm,i,j (
⇀
xr ,tr )= f (

⇀
xr ,tr |xi ,yj ,tm)F (xi ,yj ,tm) (2)20

STILT calculates hourly concentrations by averaging the concentrations of all particles
arriving at a receptor after a specific period. The relative importance of influences from
pollution sources can be revealed by mapping footprints onto the emission inventory.
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2.3.2 Treatment of Hg deposition

STILT was originally developed for atmospheric transport simulations of an inert tracer.
Unlike inert tracers, Hg can be deposited to the surface, so we added a module in
STILT to account for the effect of deposition on the Hg concentrations. For this pur-
pose, the changes in atmospheric Hg concentration due to dry and wet depositions are5

expressed in terms of time constants:

dC
dt

=−(βdry+βwet)C (3)

where C is the atmospheric concentration, t is time and βdry and βwet are time con-
stants for dry and wet deposition respectively.

The time constant for dry deposition can be expressed as:10

βdry =
Vdry

Zs
(4)

where Vdry (cm/s) is dry deposition velocity. Dry deposition velocities of Hg0 and RGM
were explicitly calculated by the Meteorology-Chemistry Interface Processor (MCIP) in
the CMAQ simulation, and directly specified in the input. Zs (m) is the depth of the
pollutant layer. Since dry deposition is only computed when the particle is within the15

surface layer (approximately 75 m), Zs defaults to the depth of the surface layer. The
wet deposition of gases depends upon their solubility. For non-reactive gases it is a
function of the Henry’s Law constant. The gaseous wet deposition velocity can be
defined as (Draxler and Hess, 1997):

Vwet =HRTP (5)20

where R is the universal gas constant (0.082 atm/M/K) and T and P are, respec-
tively, air temperature and precipitation rate in the grid box containing the particle.
We used the Henry’s Law constants 1.11×10−1 M/atm for Hg0 (Sanemasa, 1975) and
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1.4×106 M/atm for RGM (Lindqvist and Rodhe, 1985). Gaseous wet removal only oc-
curs for the fraction of the pollutant below the cloud top. The gaseous wet removal time
constant is given by:

βwet =
FtVwet

Zp
(6)

where Zp is the depth of the meteorological layer in which the particle is found. Ft is the5

fraction of the layer that is below the cloud top; it is explicitly determined by the MCIP
in the CMAQ simulation.

2.3.3 Treatment of high stack Hg emissions

The concentration change ∆Cm,i,j (
⇀
xr ,tr ) of a tracer in the air parcel due to a surface

emission F (xi ,yj ,tm) (µmole/m2/s) is incremented whenever a parcel dips below a spe-10

cific height h which is determined in STILT as a fraction of the planetary boundary layer
height. STILT assumes that below the height h, surface flux is mixed thoroughly during
one model time step and calculates the change in tracer concentration by vertically
diluting the surface flux over h using a combination of Eqs. (1) and (2)

∆Cm,i,j (
⇀
xr ,tr )= F (xi ,yj ,tm) mair

hρ̄(xi ,yj ,tm)
1

Ntot

Ntot∑
p=1

∆tp,i ,j,k

= F (xi ,yj ,tm)f (
⇀
xr ,tr |xi ,yj ,tm)

(7)15

where F (xi ,yj ,tm)mair/(hρ̄(xi ,yj ,tm)) represents the dilution of the surface flux.
This formulation does not apply for emission sources above the PBL. The Hg emis-

sions from elevated sources were processed by SMOKE, which calculates the plume
rise (Briggs, 1971, 1972) and thus provides the vertical distribution of the Hg ele-
vated point-source emissions. In this process, we assume that the Hg emissions are20

mixed thoroughly in each grid cell during one model time step and estimate the dilution
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D(xi ,yj ,zk ,tm) in each grid cell (i ,j,k) that is higher than the height h, using its flux
F (xi ,yj ,zk ,tm):

D(xi ,yj ,zk ,tm)=
F (xi ,yj ,zk ,tm)mair

ρ̄(xi ,yj ,zk ,tm)L for z >h (8)

where ρ and L, the air density and the height of the grid box respectively, are obtained
from the meteorological input data. Thus a concentration change ∆Cm,i,j,k(

⇀
xr ,tr ) of a5

tracer at a receptor due to emissions above the PBL is given by:

∆Cm,i,j,k(
⇀
xr ,tr )=

D(xi ,yj ,zk ,tm)
Ntot

Ntot∑
p=1

∆tp,i ,j,k

= F (xi ,yj ,zk ,tm) mair
ρ̄(xi ,yj ,zk ,tm)L

1
Ntot

Ntot∑
p=1

∆tp,i ,j,k
(9)

2.3.4 Estimating the effect of transport errors

Errors in atmospheric transport lead to errors in simulated tracer concentrations. To in-
vestigate this in the present context, we employed an error analysis method reported by10

Lin and Gerbig (2005) and Gerbig et al. (2008) to determine uncertainties in modeled
TGM concentrations caused by transport errors. According to this method, a transport
error is introduced by incorporating wind field uncertainties ε into stochastic motions
of air parcels. The uncertainties in winds are then propagated through stochastic mo-
tions of the air parcels in STILT. Transport error δε(C) in the modeled concentrations,15

C, can then be obtained simply from the square root of the difference between the vari-
ance of C in simulations with and without adding ε. The statistics of uncertainties ε in
wind fields are determined by direct comparison of the Eta Data Assimilation System
(EDAS) winds to radiosonde observations. These statistics include standard deviation
in horizontal wind errors σx; their correlation time scales (lt) and length scales in the20

horizontal (lx) and vertical (lz); the standard deviations in their mixed layer height errors
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(σzi ); their correlation time scales (zit ) and horizontal length scales (zix ). The details of
the method used to determine these statistics can be found in Lin and Gerbig (2005).
We adopted the same values for the aforementioned error statistics as in Lin and Ger-
big (2005) and Gerbig et al. (2008) in this paper, with the simplifying assumption that
MM5 and EDAS meteorological fields yield, on average, similar errors as a first attempt5

to simulate the effect of transport error on the TGM concentrations.

2.3.5 STILT simulation

We used STILT to simulate the transport and deposition of Hg observed at the three
monitoring sites for four periods (in UTC) during 2002: winter (18–27 February), spring
(26 May–4 June), summer (20–29 July) and autumn (13–22 November). These simu-10

lation periods were chosen for seasonal coverage and because they contain episodes
during which the Hg fluctuations were not simulated accurately by the original CMAQ
Eulerian calculations. In the STILT simulations, ensembles of 3000 air parcels (here-
after called particles) were released from the three locations every hour. The choice
of 3000 particles will be explained in Sect. 3.1. These particles were run backward in15

time for a period of 6 days, which usually allowed them to reach lateral boundaries of
the simulation domain (Fig. 1) – far from sources near the receptors – where they are
assigned background concentrations from the global mercury simulation of Seigneur et
al. (2004). For the small subset of particles that did not reach the lateral boundary, we
assigned Hg background concentrations at locations determined by extrapolating a line20

connecting the receptor to the particles. STILT was driven by the same hourly MCIP
output generated for the CMAQ modeling, after conversion from netCDF into NOAA
ARL format to meet the STILT input format requirements. Dry deposition velocities for
Hg0 and RGM generated by the CMAQ modeling were also used.

To investigate the contributions from different sources, the STILT model was also run25

for each simulation period and receptor for three different scenarios as follows:
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1. Background only: all Hg emissions were set to zero. Only Hg background con-
centrations were included.

2. Natural only: Hg background concentrations and anthropogenic emissions were
set to zero. Only natural Hg emissions were included.

3. Anthropogenic only: Hg background concentrations and natural emissions were5

set to zero. Only anthropogenic emissions were included.

3 Results

3.1 Sensitivity to particle number

Due to the stochastic nature of STILT particle trajectories, the accuracy of the STILT
simulation depends on the number of particles used. Theoretically, if an infinite num-10

ber of particles were used, STILT would represent completely the ensemble properties
of the transport to a given measurement location, assuming perfect parameterizations
and input meteorology. A limited particle number leads to incomplete sampling of sur-
face emissions and the magnitude of this sampling error varies with particle number.
To quantify this error, we examined the standard deviation (i.e. sampling error) as a15

function of particle number for the simulated TGM concentrations at Egbert during the
period from 20 to 29 July. The following particle numbers were examined: 50, 100,
200, 300, 500, 700, 1000, 2000, 3000, 4000 and 5000. The result (shown in Fig. 2)
confirms that the error due to the stochastic nature of the model decreases with the
number of particles used. The error varies most significantly for particle numbers less20

than about 1000, beyond which increases in particle numbers have only small effects
on the sampling error. Since the model run time is proportional to the number of par-
ticles, we chose 3000 particles for the present simulations, which yielded a sampling
error less than 6%.
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3.2 Modeled and observed concentrations

The observed and modeled hourly Hg concentrations at all three sites are shown in
Fig. 3 (winter and spring) and Fig. 4 (summer and autumn). Inspection of Figs. 3 and
4 shows that while STILT and CMAQ often showed correspondence to one another,
CMAQ frequently lacked the elevated values and higher variability found in the mea-5

surements, which are better represented by STILT.
In order to quantify the models’ abilities to capture concentration changes at different

scales of variability, spectral densities of the Hg concentrations simulated by the two
models were calculated using a Fourier transform method (Venables and Ripley, 2002).
In Fig. 5, these are compared with observations between 13–22 November. The gen-10

eral characteristics for other periods are very similar to Fig. 5. Both STILT and CMAQ
captured the low frequency variations, but there is a significant difference for the high
frequencies (sub-daily variations), where STILT is much closer to the observations.
This shows that STILT has better skill than CMAQ in reproducing short term variations,
such as occur in plumes. This simply reflects the fact that an Eulerian model such15

as CMAQ calculates one spatially-averaged value in each grid volume, thus smooth-
ing out sub-grid scale processes and leading to the exclusion of near-field or sub-grid
influences in the simulations. STILT models the near-field processes that influence
tracer concentrations at high spatiotemporal resolution by simulating turbulence and
capturing sub-grid scale transport (Lin et al., 2003). This is important because mea-20

surements are almost always made at a point rather than averaged over a grid cell, so
near-field or sub-grid scale influences on the concentration at the measurement point
(e.g., near-by sources/sinks) can cause significant deviations between the simulations
and the observed values (Gerbig et al., 2003).

In order to evaluate the predictions of TGM concentrations quantitatively from both25

modeling systems, three traditional statistical measures recommended by the US EPA
(Doll, 1991) have been used: the mean normalized bias error (MNBE); mean normal-
ized gross error (MNGE) and unpaired peak accuracy (UPA). These are defined in
Table 1 and their calculated values for the present simulations are shown in Table 2.
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The simulation errors (MNGE and MNBE) from both modeling systems are smaller
than 20%. CMAQ under-predicted the peak values of TGM plumes (indicated by a
large negative value of UPA) in spring and summer periods, while STILT captured these
plumes (UPA closer to 0), demonstrating the better performance of STILT for a period
when local emissions (especially natural sources) are strong. There is no significant5

difference in simulation results between the two models for winter and autumn periods.
Performance of both models was especially poor at Point Petre, particularly in spring.

Throughout all 4 periods, however, STILT showed larger errors at Point Petre in UPA,
MNGE, and MNBE, although it mostly captured the timing and magnitude of the en-
hancements and the associated higher variability (Fig. 5). We speculate that the main10

source of error at Point Petre is the overestimation of Hg background concentrations, as
reflected by the predominantly positive MNBE. Similarly, an underestimation of back-
ground concentrations may explain the underestimated concentrations at Burnt Island
in the autumn period. Inaccuracies in local background concentrations are probably
due to the coarse resolution (10◦ ×8◦) of the global mercury simulation by Seigneur et15

al. (2004).
The transport errors in STILT-modeled TGM concentrations are presented as error

bars in Figs. 3 and 4. We are not aware of any currently available method to quantify
transport errors in CMAQ. The relative importance of transport errors as a percentage
of the modeled concentrations for all simulation episodes are listed in Table 2. These20

results show a clear seasonal variation: small in the winter and autumn episodes and
approximately 3 times larger in spring and summer episodes. Larger transport errors
are expected for spring and summer, when stronger natural sources (Sect. 3.3) lead
to more pronounced emission gradients that are improperly sampled by erroneous
wind vectors (Lin and Gerbig, 2005). Comparing the transport errors to MNGE and25

MNBE, we can see that transport errors account for large portions of the discrepancies
between the STILT simulations and the observed values.
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3.3 Source contributions to the selected episodes

Figures 3 and 4 also show the contributions from natural (teal dashed curves) and
anthropogenic (brown dashed curves) mercury sources to each site and period. The
natural contributions are significant in spring and summer, with an average 0.18 ng/m3

and small in winter and autumn, with an average 0.04 ng/m3. This reflects the strong5

seasonal variation of the natural emissions, which are dominated by vegetation and wa-
ter sources. Natural emissions in winter and autumn are much lower due to smaller leaf
area, lower temperature, weaker solar radiation and larger percentage of snow cover.
For all simulation periods, the average observed Hg concentration is 1.71 ng/m3 and
the STILT-simulated Hg concentration is 1.78 ng/m3. The average contribution from10

natural sources is 0.14 ng/m3, almost twice as large as the anthropogenic sources.
Roughly speaking, about 8% of the Hg comes from natural sources and 4% from an-
thropogenic sources. The contributions from natural sources are approximately equiv-
alent to the anthropogenic emissions in winter and autumn.

Some episodic high Hg concentrations (plumes) at the three study sites were not15

captured well by the CMAQ simulation. To explore the possible causes for the failure
of the Eulerian description in these cases, we carried out STILT simulations of the Hg
plumes and also of temporally proximal periods in which the Hg concentration is low
for each site and season. The time periods are designated in Figs. 3 and 4 by black
dashed lines for the Hg plumes and black solid lines for the low episodes. STILT was20

used to calculate the footprints and identify the source regions for these episodes.
The footprints for the episodes observed at Burnt Island in February are displayed

as an example in Fig. 6. In this and later Figures, significant Hg point sources
(≥0.04 tonnes/year) are designated by circles. Their emission strengths are indicated
by the greyscale shading of the circles. The major sources identified for the three mea-25

surements sites are all located in the region shown in Fig. 6, so we will discuss the
results for this region in detail. Footprints, which are deduced solely from air parcel
trajectories, are indicated by the colour contours and the scale at the bottom. These
show the sources of the air parcels detected during the low and high episodes.
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Footprints alone are insufficient to assess upstream source contributions at a re-
ceptor; the corresponding source fluxes are required as well. Figures 7–10 show the
source contribution maps (derived by multiplying the footprint by the emissions) for all
three sites as calculated by STILT for all episodes. These show that in most cases,
the low concentration episodes occurred when the transport was from regions of low5

population density and where there are few anthropogenic mercury sources. The con-
tributions from both anthropogenic and natural sources are negligible, with an average
around 0.005 ng/m3 in winter and autumn episodes. The background is the most im-
portant contributor at these times. In spring and summer, even for periods of low con-
centration, natural sources must be taken into account due to their large contributions,10

which average 0.13 ng/m3 (maximum 0.2 ng/m3).
Figures 7–10 show that episodes of high Hg concentration coincided with the ar-

rival of air parcels from regions of higher population density in southern Ontario and
north eastern United States, where there are many more sources of anthropogenic
mercury. For the episodes of high concentrations, natural sources contribute much15

more than anthropogenic sources even for cases where there are many large anthro-
pogenic sources upwind. This is illustrated by the dashed curves in the lower panels
of Figs. 3 and 4. Natural and anthropogenic sources together contribute on average
about 0.47 ng/m3 to the Hg plumes, accounting for about 25% of the average observed
Hg.20

4 Summary and conclusions

Hg concentrations at three monitoring sites were simulated using the STILT Lagrangian
particle transport model, which was modified for this study to deal with Hg deposition
and high stack Hg emissions. The modeled Hg concentrations were compared with
the observations, as well as with previously modeled results using the US EPA CMAQ25

model. STILT-modeled air concentrations of Hg generally agreed well with observa-
tions and, on average, exhibited better performance than the Eulerian CTM CMAQ. In
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particular, STILT reproduced the high frequency variability present in the data, which
was not present in the CMAQ results (Fig. 5). Since the same meteorological fields
and Hg emission inventory data were used as inputs for STILT and CMAQ, the better
performance of STILT can be ascribed to its ability to capture near-field influences.

A unique strength of STILT is its ability to estimate quantitatively and account for5

“transport errors” – i.e., the impact of uncertainties in the driving wind fields on simu-
lated tracer concentrations. To our knowledge, such a capability is missing from CMAQ,
as well as other Lagrangian models. The transport errors estimated in this study can
reach approximately 10% of the simulated value (Table 2) and account for large frac-
tions of the total errors. These results underscore the importance of taking transport10

errors into consideration in simulation studies. Future studies will improve the trans-
port error estimates by carrying out an independent estimate of transport errors that
will compare simulated wind fields against radiosonde observations rather than adopt-
ing error statistics based on previous comparisons, which was a simplification adopted
for the purposes of the current work.15

Upwind contributions to Hg concentrations at the three sites were also simulated us-
ing STILT for several selected episodes. Simulation results show that the major contri-
butions to observed low Hg concentrations at the three sites were from some sparsely
populated regions toward the north of the three sites and that the major sources of
observed high concentrations were generally from more heavily populated areas with20

large point emission sources. Natural mercury sources contribute more than anthro-
pogenic sources to the observed concentrations.

Finally, we note that a unified framework that combines a Lagrangian model (STILT)
with an Eulerian model (CMAQ) is a particularly powerful approach for this kind of
simulation. While this paper has mostly focussed on contrasting the two approaches,25

their strengths are actually complementary. The Eulerian approach yields a full three-
dimensional picture of pollutant concentrations, including chemical transformations,
over the entire model domain and simulates baseline conditions well, but misses much
of the short-term variation. The Lagrangian approach (currently with no chemistry)
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identifies the more localized source regions of the designated receptors, which en-
ables the researcher to “zoom into” specific measured pollution events to identify their
origins.

Acknowledgements. We are grateful for financial support from Ontario Power Generation and
the Natural Sciences and Engineering Research Council of Canada.5
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Table 1. Definition of US EPA recommended statistic parameters: UPA, MNGE and MNBE.

Parameter Definition

Unpaired Peak Accuracy (UPA) UPA=
P u

peak−Opeak

Opeak

Mean Normalized Gross Error (MNGE) MNGE= ( 1
N

N∑
i=1

∣∣∣ Pi−Oi
Oi

∣∣∣) ·100%

Mean Normalized Bias Error (MNBE) MNBE= ( 1
N

N∑
i=1

(
Pi−Oi
Oi

)
) ·100%

Pi : prediction at time i . Oi : observation at time i . N: total number of observations. P u
peak: maximum predicted

concentration. Opeak: maximum observed concentration.
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Table 2. Statistics for predicted TGM concentrations using CMAQ and STILT.

Period Site UPA MNGE (%) MNBE (%) ei
/
pi (%)

STILT CMAQ STILT CMAQ STILT CMAQ STILT

18–27 Feb Burnt Island −0.19 −0.17 6.32 7.33 −4.87 −6.26 1.79
Egbert −0.28 −0.30 8.40 10.02 −8.20 −10.02 2.60
Point Petre 0.09 0.02 7.94 5.31 7.06 4.48 2.96

26 May–4 Jun Burnt Island −0.10 −0.29 8.59 12.29 −5.77 −10.31 5.86
Egbert −0.09 −0.29 9.28 12.31 −4.68 −11.17 6.28
Point Petre 0.20 −0.03 19.77 11.09 19.27 9.56 10.59

20–29 Jul Burnt Island −0.35 −0.47 12.63 15.50 6.61 −2.26 8.34
Egbert −0.13 −0.31 7.72 13.71 1.36 −7.84 7.79
Point Petre −0.04 −0.21 12.28 12.36 12.22 0.49 10.48

13–22 Nov Burnt Island −0.15 −0.18 13.43 13.59 −13.39 −13.54 2.53
Egbert −0.10 −0.12 5.85 4.15 1.53 −0.38 3.40
Point Petre 0.09 0.02 8.43 6.67 7.29 5.89 2.60

ei : transport error in prediction at time i . Pi : prediction at time i .
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Fig. 1. Simulation domain and the locations of the three monitoring sites: Burnt Island (B),
Egbert (E) and Point Petre (P). Annual average Hg emission rate including anthropogenic and
natural Hg for 2002.
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Fig. 2. Dependence of STILT simulation on the number of particles.
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Fig. 3. Total gaseous mercury (TGM) concentration comparisons among observed (red), STILT
modeled (blue), and CMAQ modeled (green) for two simulation periods: 18–27 February (left)
and 26 May–4 June (right), 2002 for Burnt Island (top), Egbert (middle) and Point Petre (bot-
tom). Background concentrations derived from the lateral boundary condition is in violet. The
anthropogenic (brown) and natural (teal) contributions to the simulated concentration are shown
as dashed curves in the lower panels. Black dashed lines in the vertical designate a selected
high Hg episode; black solid lines designate a selected low Hg episode.
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Fig. 4. Total gaseous mercury (TGM) concentration comparisons among observed (red), STILT
modeled (blue), and CMAQ modeled (green) for two simulation periods: 20–29 July (left) and
13–22 November (right), 2002 for Burnt Island (top), Egbert (middle) and Point Petre (bottom).
Background concentrations derived from the lateral boundary condition is in violet. The anthro-
pogenic (brown) and natural (teal) contributions to the simulated concentration are shown as
dashed curves in the lower panels. Black dashed lines in the vertical designate a selected high
Hg episode; black solid lines designate a selected low Hg episode.
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Fig. 5. Spectral densities of observed and simulated TGM concentrations for the simulation
period of 13–22 November 2002.
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Fig. 6. Modeled footprints [log10(ppm/(µmole/m2/s))] for the selected Hg plume (right) and low
episode (left) in 18–27 February for Burnt Island site (green diamond). Important Hg point
sources are designated with circles and the greyscale shadings of the circles represent their
emission strengths.
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Fig. 7. Source contributions [log10(ppm)] derived by multiplying the footprint with gridded emis-
sions for the selected Hg plumes (right) and low episodes (left) in 18–27 February for Burnt
Island (top), Egbert (middle) and Point Petre (bottom). Important Hg point sources are desig-
nated with circles and the greyscale shadings of the circles represent their emission strengths.
Note the different scales between the plumes (right) and low (left) episodes.
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Fig. 8. Similar to Fig. 7: source contributions [log10(ppm)] for the selected Hg plumes (right)
and low episodes (left) in 26 May–4 June for Burnt Island (top), Egbert (middle) and Point Petre
(bottom).
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Fig. 9. Similar to Fig. 7: source contributions [log10(ppm)] for the selected Hg plumes (right)
and low episodes (left) in 20–29 July for Burnt Island (top), Egbert (middle) and Point Petre
(bottom).
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Fig. 10. Similar to Fig. 7: source contributions [log10(ppm)] for the selected Hg plumes (right)
and low episodes (left) in 13–22 November for Burnt Island (top), Egbert (middle) and Point
Petre (bottom).
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