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Abstract

A Bayesian inversion approach was used to retrieve temporally and spatially resolved
N2O fluxes for western and central Europe using in-situ atmospheric observations from
the tall tower site at Ochsenkopf, Germany (50◦01′ N, 11◦48′ E). For atmospheric trans-
port, the STILT (Stochastic Time-Inverted Lagrangian Transport) model was employed,5

which was driven with ECMWF analysis and short term forecast fields. The influence
of temporal aggregation error, as well as the choice of spatial and temporal correlation
scale length, on the retrieval was investigated using a synthetic dataset consisting of
mixing ratios generated for the Ochsenkopf site. We found that if the aggregation error
is ignored, then a significant bias error in the retrieved fluxes ensues. However, by es-10

timating this error and projecting it into the observation space, it was possible to avoid
bias errors in the retrieved fluxes. Using the real observations from the Ochsenkopf
site, N2O fluxes were retrieved every 7 days for 2007 at 2 by 2 degrees spatial reso-
lution. Emissions of N2O were strongest during the summer and autumn months, with
peak emissions in August and September, while the regions of Benelux and northern15

United Kingdom had the strongest annual mean emissions.

1 Introduction

The nitrous oxide (N2O) mixing ratio has been increasing in the atmosphere since the
industrial revolution, from 270 ppb in 1750 (Ramaswamy, 2001) to 319 ppb in 2005
(Forster et al., 2007) with a steady growth rate of around 0.26% since the early 1980’s.20

The increase in N2O is worrisome for two main reasons. First, it is a greenhouse gas;
this means that its atmospheric increase translates to an enhancement in radiative
forcing of 0.16±0.02 Wm−2 (Ramaswamy, 2001) making it currently the fourth most
important long-lived greenhouse gas and is predicted to soon overtake CFC’s to be-
come the third most important (Forster et al., 2007). Second, it plays an important role25

in stratospheric ozone destruction (Crutzen, 1974; Nevison and Holland, 1997) and in
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the 21st century is the main ozone-depleting substance and is slowing the recovery of
the ozone hole (Ravishankara et al., 2009).

Human activities are the primary cause of the atmospheric N2O increase. The
largest anthropogenic source of N2O is from the use of N-fertilizers in agriculture
(Olivier et al., 1998), which greatly enhances soil N2O emissions via microbial nitrifica-5

tion and denitrification pathways (e.g. Bremner, 1997). Other important anthropogenic
sources of N2O are fossil fuel combustion and industrial processes, such as adipic and
nitric acid production (Olivier et al., 1998). There are also important natural sources of
N2O, the largest of which is from soils under natural vegetation, but the open ocean,
coastal upwelling regions, continental shelves, and estuaries are significant sources10

too (Kroeze et al., 2005; Nevison et al., 2004). Moreover, it is important to note, that as
anthropogenic N permeates the nitrogen cycle, the natural emissions of N2O are also
being perturbed (Galloway et al., 2008; Gruber and Galloway, 2008).

There have been few previous top-down estimates of N2O fluxes using atmospheric
observations. On a regional scale, there have been a small number of N2O emission15

estimates based on concurrent measurements of N2O and Radon, where Radon is
used to determine the dilution of N2O emissions in the atmosphere, such as Messager
et al. (2008), Biraud et al. (2002) and Schmidt et al. (2001), and one estimate based
on an inversion of atmospheric N2O observations (Manning et al., 2003). Another
modelling study by Kort et al. (2008) evaluated emission inventories by comparison of20

simulated tracer distributions using an atmospheric transport model with aircraft based
measurements of N2O in North America and inferred a scaling of fluxes that was not
spatially or temporally resolved. On the global scale, the only inversion estimates are
those of Huang et al. (2008), Hirsch et al. (2006) and Prinn et al. (1990) and these
have been at low resolution. The shortage of top-down estimates is partly due to25

the relative scarcity of data but also to problems in the calibration scales used for
N2O measurements by different laboratories, which has made comparisons between
stations difficult.
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There have been several recent initiatives that will improve the availability of data
as well as make measurements between stations more comparable. In Europe, for
example, the establishment of a new network of tall towers under the framework of the
CHIOTTO project (Continuous HIgh-precisiOn Tall Tower Observations of greenhouse
gases) provides in-situ measurements of N2O from 7 stations across Europe. Fur-5

thermore, these stations participate in regular inter-comparisons, ensuring a uniform
scale. These in-situ measurements provide N2O observations at approximately hourly
frequencies making it possible to resolve short-term variability in the atmosphere. The
question, however, is how to best incorporate high-resolution measurements into an
inversion scheme.10

In an ideal inversion, there would be multiple observations of each state variable, in
our case the fluxes, at each resolved time-step. In reality, though, a significant portion
of the state variables may be undetected by the observations, owing to the fact that
there can only ever be a discrete number of measurement sites and the signal ob-
served at these is dependent on the atmospheric circulation. Furthermore, one must15

make assumptions about the variability of the true fluxes on time-scales shorter than
that of the resolved fluxes. To minimise the interval over which these assumptions are
made, one can define a higher temporal resolution for the fluxes but there is a trade-off
between increasing the temporal resolution and the number of observations available
to constrain the fluxes at each time-step. A similar problem occurs when defining the20

spatial resolution as one assumes that the fluxes within the resolved area are not sig-
nificantly different from the mean of the area. Errors resulting when such assumptions
are invalid are defined as aggregation errors (Kaminski et al., 2001; Peylin et al., 1999).

In some cases the temporal variability of fluxes over certain time intervals can be
described and used in the inversion. For example, for CO2 fluxes, the behaviour on25

diurnal time-scales can be described and thus the variability on time intervals of less
than 1 day do not need to be explicitly solved in the inversion as long as it taken into
account (Peylin et al., 2005). However, in the case of N2O there is no regular pattern
to the short-term flux variability, hence the approach used to account for short-term
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variability in CO2 fluxes is not applicable. Thus the problem remains; on one hand, if
high temporal resolution is used, then there are fewer observations available to con-
strain the fluxes and there are computational limits on how much the resolution may be
increased. On the other hand, if lower temporal resolution is used, and if the real short-
term variability of the fluxes and their influence on the observations is not accounted5

for, then a significant risk of temporal aggregation error ensues.
In this paper, we first investigate how high-frequency observations may best be uti-

lized for retrieving N2O fluxes and how sensitive the inversion is to temporal aggre-
gation errors. This is investigated using synthetic fluxes and mixing ratios but with
atmospheric transport determined from meteorological reanalysis data. Secondly,10

we investigate the potential to use in-situ measurements from the observation site,
Ochsenkopf in Germany (50.03◦ N, 11.81◦ E), to constrain N2O emissions and present
new estimates. The tall tower observatory is located on the summit of the mountain,
Ochsenkopf, in the Fichtelgebirge range, at an elevation of 1022 m. The Fichtelge-
birge region is extensively forested and has a low population density (for further details15

about the site refer to Thompson et al., 2009). It has been shown that air sampled
from the highest level on the tower (163 magl), represents the well mixed boundary
layer and has a footprint extending over a large part of western and central Europe
(Thompson et al., 2009).

The paper is structured as follows. In Sect. 2, we describe the measurements, the20

atmospheric transport model, STILT, used to describe the relationship between the
observations and the fluxes, and provide details on the Bayesian inversion scheme
used. The synthetic data, which are used to test the temporal aggregation error, are
also described in this section. Section 3.1 covers the results of various tests for the
influence of temporal resolution, observational data frequency, and the impact that25

changes to the prior flux error covariance matrix have on the retrieved fluxes. Finally,
in Sect. 3.2, the results of the inversion using the real Ochsenkopf observations are
presented and discussed.
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2 Methodology

2.1 Measurements

Ochsenkopf has a continuous record of N2O since mid-2006. N2O is measured using
a Gas Chromatograph (GC), Agilent 6890, equipped with an electron capture detector.
The method was largely developed by Worthy et al. (2003) with further improvements5

by Popa (2008) (details specific to the Ochsenkopf GC set-up can be found in Thomp-
son et al., 2009). Air measurements are made every 16 min and are interspersed with
reference measurements. The long-term precision is 0.18 ppb (this is the mean over
2.5 years of the standard deviation of 3 consecutive measurements of a gas standard
that is measured daily) and the accuracy is 0.5 ppb. Air is sampled from 3 heights on10

the tall tower, 23, 90 and 163 m, which are measured on a 3-hourly cycle (note that for
the inversion in this paper, we use only the data from the 163 m level).

2.2 Atmospheric transport model

The STILT (Stochastic Time-Inverted Lagrangian Transport) model is used to simulate
the transport of air parcels backwards in time from a receptor point, in this case the15

tall tower, Ochsenkopf (50◦01′ N, 11◦48′ E). STILT calculates back trajectories from the
receptor using wind fields while releasing ensembles of particles, which represent the
air parcel. Analysed wind fields are interpolated to the location of each particle and the
particles themselves are subject to stochastic perturbations that are parameterised to
represent the effects of turbulent transport. The density of particles is used to calculate20

the surface influence and the footprint (Lin et al., 2003, 2004). This means that in
the backward-time run, emissions upstream of the receptor with more particles have a
greater contribution to changes in the mixing ratio at the receptor. STILT has already
been implemented in a number of regional-scale trace gas experiments (Gerbig et
al., 2003a, b; Lin et al., 2004, 2007; Macatangay et al., 2008; Matross et al., 2006;25

Miller et al., 2008).
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STILT was driven with meteorological data from ECMWF (00:00 and 12:00 analysis
fields combined with short-term forecast fields), which have a temporal resolution of
3-hours and a spatial resolution of 1/4 by 1/4 degrees. The STILT model itself has
a dynamic resolution, with the finest grid being 1/12 degrees latitude by 1/8 degrees
longitude, that increases with the size of the footprint area to reduce computational5

time as well as preventing under sampling of surface fluxes at times when particles are
distributed over large areas (Gerbig et al., 2003a). The model domain was chosen for
Europe, extending from 35◦ N to 62◦ N and 168◦ W to 35◦ E with the Ochsenkopf site
approximately in the centre.

2.3 Simulation of N2O10

STILT can be used to advect a tracer to simulate its mixing ratio at a receptor point. The
mixing ratio at the receptor located at xr,yr, zr at time tr is dependent on the footprint,
calculated by STILT, and the spatial and temporal distribution of the tracer emissions.
The footprint F links the surface emissions to concentration changes at the receptor
and is determined by the total time the particle ensemble spends in a column of air15

with height h at (xi , yj , tm), normalized by the total number of particles, and has the

dimension of concentration divided by flux (i.e. ppb/µmol m−2 s−1) (Lin et al., 2003).
The column height h represents the height up to which surface fluxes are mixed at
each time-step of the STILT model and is chosen as one half of the mixing height,
which is calculated using the modified Richardson number method. The mixing ratio at20

the receptor C(xr, yr,zr,tr) is the product of the footprint and the tracer flux at each time
step, summed up over the course of the back-trajectory. This is shown in the equation
from Gerbig et al. (2006):

c(xr,yr,zr,tr)=
∑
i ,j,m

F (xr,yr,zr,tr|xi ,yj ,tm) · f (xi ,yj ,tm)+
∑
i ,j,k

c(xi ,yj ,zk ,t0) (1)
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where F (xr, yr, zr, tr | xi , yj , tm) is the footprint and relates the flux, f (xi , yi , tm)
to the mixing ratio, c(xr, yr, zr, tr). The last term on the right hand side represents
the influence from the mixing ratio at the boundary, c(xi , yj , zk , t0), that is, when and
where the trajectory leaves the model domain. The mixing ratios outside the domain
are equal to the background amount in the atmosphere, which is assumed not to be5

directly affected by local and regional sources.
The back-trajectories were calculated for 10 days going backwards in time. However,

only the influence from particles that remained inside the domain was used and for
trajectories that left the domain and re-entered it again, only the influence from particles
before they left the domain in the first instance was used.10

The contribution to the mixing ratios from the lateral boundary can be estimated by
coupling the regional model to a global one, or alternatively, by filtering the observations
themselves so that what is left are only the instances when they are largely represen-
tative of the free-troposphere or ‘background’ mixing ratio (Wang and Barrett, 2003).
For N2O, however, the global models are either too coarse and/or too uncertain to be15

used for this purpose and from the observed time-series at Ochsenkopf it is difficult
to distinguish periods when the mixing ratio represents the “background”, as there is
variability occurring on both short and long timescales.

We have, therefore, chosen to use a mixing ratio field derived from the interpolation
of the NOAA/ESRL flask data (E. Dlugokencky, personal communication, 2008). For20

this field, we have only used stations at coastal or high mountain locations to avoid
including mixing ratios that have a very strong influence from the near-field. In total,
23 stations from the Northern Hemisphere and tropics were used (see Table 1). Be-
cause of missing data and sometimes irregular sampling, all the available data within
a 2-week period were averaged for each site. In some cases, only 1 data point was25

available over the 2-week period and in some instances no data were available. To
overcome the problem of missing data, we used a Singular Systems Analysis (SSA)
method for gap-filling (Mahecha et al., 2007). In SSA, the frequency components (also
known as principle components) of a time-series can be found for datasets that contain
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gaps (Ghil et al., 2001). A new time-series, without gaps, can be reconstructed from
these principle components. To generate the “gap-filled” time-series, we fill the missing
values in the original time-series with the estimates of these values from the recon-
structed time-series. This process can be run iteratively, that is, the principle compo-
nents of the ‘filled’ time-series are found and the points in the time-series that were5

missing in the original data are again filled with the new estimates. The “gap-filled”
time-series’ at each station were then interpolated over latitude with a resolution of
5 degrees. This interpolated dataset has no longitudinal variation but is an observation
based “background” mixing ratio at 2-weekly resolution.

2.4 Bayesian inversion set-up10

The N2O mixing ratio at Ochsenkopf tall tower can be expressed simply in terms of the
forward function of the state variables, that is, the atmospheric transport and mixing of
the emissions. This function is provided by the surface influence term, F (xr, yr, zr, tr |
xi , yj , tm) from STILT. Thus the forward model can be expressed in matrix form as:

c=F · f+cbnd+ε (2)15

where c is the measurement vector containing m observations at the receptor point
and F is a matrix (m×n) in which each row is a vector containing the surface influence
for each point xk (where k =1, . . . , n) over the time covered by the back-trajectory cor-
responding to the measurement with the same row index. In other words, each row of
F relates the emissions, f , to the mixing ratio in the corresponding row of the measure-20

ment vector, c. The second term on the right-hand-side, cbnd, is a vector containing
mixing ratios at the lateral boundary corresponding to the time of each observation and
ε is a vector containing the model-measurement mismatch. By rearrangement, Eq. 2
can be rewritten as:

y =F · f+ε (3)25
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where y is a vector with each element being the difference between the observed
and the boundary mixing ratio, that is y = c(xr)–cbnd and F · f is the forward model. The
matrix F is defined according to the resolution of the retrieved fluxes, so that the impact
of the flux in each pixel at each resolved time-step is related to the observation via each
row of F. The assumption is then made that the true fluxes, on which the observations5

depend, do not change significantly in each pixel during the resolved time interval.
This assumption leads to possible temporal aggregation errors, as the correction to
the temporal variation in the emissions is aggregated into one emission field for each
time-step and thus errors may result in their assignment (Law et al., 2004).

To test the impact of this assumption, we vary the temporal resolution for which10

the fluxes are retrieved. This corresponds to increasing the number of state variables
in f by 1/l , where l is the temporal resolution of the resolved fluxes as a fraction of
one year, and modifying F respectively so that it has the new dimensions of m×p
(where p=n/l ). However, there is a trade-off between spatial and temporal resolution;
increasing the temporal resolution without decreasing the spatial resolution means an15

overall increase in the number of state variables, and hence a decrease in the possible
constraint on each variable. Therefore, we chose to use a spatial resolution of 2×2
degrees, giving n=299 for our domain.

Depending on the resolution, there may be more state variables than there are ob-
servations, that is, p >m, and the problem is under-determined. It is also the case20

that in some time-steps a number of state variables (fluxes) will not have contributed
at all to the mixing ratio at Ochsenkopf as a result of the atmospheric transport. In the
Bayesian approach, an under-determined problem is still solvable because of the use of
an a priori estimate, which is updated by the information contained in the observations
(Enting, 2002; Rodgers, 2000; Tarantola, 2005). Obviously, where no information on a25

particular state variable is available, no constraint on the a priori estimate is possible.
The uncertainty in the a priori estimate, however, must be quantified; this is achieved
by a probability density function over the state space. In this study, we assume that it
is Gaussian. Similarly, the uncertainty in the observations, that is, the measurement
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error can be quantified as a probability density function over the measurement space.
The best estimate of the state vector can then be found from the Bayesian expression:

f = fprior+Sprior ·FT(F ·Sprior ·FT+Sε)−1 · (y−F · fprior) (4)

where Sε is the error covariance matrix of the measurements and Sprior is the error
covariance matrix of the a priori estimate. This formulation of the inversion problem5

does not require finding the inverse of Sε and Sprior, thus making it numerically more
efficient (the derivation and full description of Eq. 4 is provided by Tarantola et al.,
2005). The pseudo-inverse of the matrix ( F ·Sprior ·F

T + Sε)−1 was found using Singular
Value Decomposition (SVD) (Press et al., 1992).

An accurate representation of the uncertainty in the a priori emissions is important10

as erroneous estimates, which have too narrow uncertainty bounds, can lead to esti-
mated emissions that are inconsistent with the atmospheric observations and/or do not
correspond to the true emissions patterns (Gerbig et al., 2006; Michalak et al., 2004).
The uncertainty in the a priori emission estimates is represented in Sprior, which has
dimensions p×p. The diagonal elements of Sprior are the squared errors for each of15

the p state variables and the off-diagonal elements are the correlated errors between
them. For the p state variables, we used different errors for the variables corresponding
to land and sea fluxes (see Table 2). The correlation was described by an exponen-
tial, exp(–∆d /D–∆t/T ) where ∆d is the distance between state variables and ∆t is the
time interval between variables representing fluxes at the same location but at different20

points in time. The denominator D is the spatial correlation scale length, and T is the
temporal correlation scale length. The choice of D influences how strongly the different
state variables are correlated to one another in space. For instance, a long correlation
length, D of the order of the domain dimensions, would mean a very strong correlation
between state variables and would entail a strong dependence of the inversion on the25

spatial structure of the a priori emission estimate. On the other hand, a short D of the
order of one grid-cell’s dimension would mean that the state variables are independent
from one another, making the inversion less sensitive to the a priori spatial structure
(Kaminski et al., 2001). The drawback of this, however, is that the error reduction on
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each state variable will be small and in the case where the observational constraint is
weak there may be errors in the retrieval. The influence of the choice of spatial correla-
tion scale length has been previously investigated with regards to CO2 (e.g. Gerbig et
al., 2006). However, because the pattern of N2O fluxes do not follow those of CO2, we
performed an analogous test to that of Gerbig et al. (2006) for N2O and, additionally,5

tested the sensitivity of the inversion scheme to the choice of temporal correlation scale
length (see Sect. 3.1.2).

The uncertainty in the observations is expressed in the measurement error covari-
ance matrix, Sε, which is a square matrix of dimensions m×m with diagonal elements
representing the error in each observation and off-diagonal elements representing the10

correlated errors between observations. The observations used in the inversion, y, are
the differences between the observed mixing ratios and the contribution from advection
of the lateral boundary mixing ratios. For this reason, the error in each observation,
yi , has contributions from the measurement, σmeas, the estimate of the mixing ratio at
the boundary, σbnd, and the transport model, σ trans. The last error component, σ trans, is15

included to account for imperfections in the transport; this is because the actual mixing
ratios may never be exactly determined even if the true emissions field is known. The
total error is thus:

σ2
ε =σ2

meas+σ2
trans+σ2

bnd (5)

and σ2
ε is the value of the diagonal elements of Sε. The measurement, transport20

and boundary errors are assumed to be correlated over time. The transport error
depends significantly on the accuracy of the Planetary Boundary Layer (PBL) height
estimate, which varies throughout the day. The degree of correlation between transport
errors is represented by an exponential function, exp(−∆t/A) where ∆t is the difference
in time between measurements and A is the temporal correlation scale length. We25

assumed that A has a value of 0.5 day based on the temporal development of the
PBL. The correlation of the boundary errors was treated in the same way using a
temporal correlation scale length, B of 30 days, which is approximately two times the
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temporal resolution of the boundary mixing ratio field. The temporal correlation of the
measurement errors was treated likewise, using a correlation scale length of 0.5 day.
Note that for the inversion tests, the value of each of the error components was the
same as that assigned to the synthetic data (see Sect. 2.5)

2.5 Synthetic data generation5

To test the inversion scheme, we generated a synthetic flux dataset of daily varying
fluxes with a temporal correlation scale length of 30 days and a spatial correlation
scale length of 300 km (see Fig. 1a and b). The synthetic fluxes were generated by
adding a spatially and temporally varying offset to each grid-cell of a prior atemporal
flux field (we used the GEIA N2O flux estimates Olivier et al., 1998). The offsets were10

calculated as the product of the square root of the error covariance matrix, S1/2
prior (with

365×n rows and columns) and a random number vector, r (of length 365×n, with a
zero mean and a SD of (1) after the method of Chevallier et al. (2007):

fsyn = fprior+S1/2
prior ·r (6)

Because Sprior is too big to be stored at this temporal resolution, we avoided forming it15

directly and instead substituted S1/2
prior in Eq. 6 using the following relationship:

S1/2
prior =S1/2

t ⊗ (S1/2
s · (σ1/2(σ1/2)T)) (7)

S1/2
prior can be calculated as the Kronecker product (represented by ⊗) of S1/2

t and

S1/2
s ·(σ1/2(σ1/2)T), where St is the temporal correlation pattern and has dimensions

365×365 and Ss is the spatial correlation pattern and has dimensions n×n (both cor-20

relations patterns are described by an exponential decay function, see Sect. 2.3), and
σ is a vector containing the variances of the fluxes.

We advected the synthetic fluxes with STILT to simulate atmospheric mixing ratios
for the Ochsenkopf tall tower, which were used as the observations in the inversion
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tests. In tests B, C and D, we tested the influence that noise and data gaps in the
observations has by adding Gaussian distributed noise of 0.1 ppb for each of the mea-
surement, transport and boundary errors (total=0.3 ppb) with a temporal correlation
scale length of 0.5 days for the measurement and transport errors, and 30 days for
the boundary errors. Data gaps were introduced following the pattern of gaps in the5

real observations from the Ochsenkopf tall tower in which about 25% of the data are
missing. Figure 2 shows the different time-series’ where the “true” mixing ratios (black
line) are those generated from the synthetic fluxes (described above). The red line
represents the mixing ratios that result from averaging the synthetic fluxes over 7-days,
thus the difference between the black and red lines is due to the influence of temporal10

aggregation in the fluxes, and the blue line shows the influence of adding Gaussian
noise to the “true” mixing ratios. In all the inversion tests, we used the GEIA N2O flux
estimates (Olivier et al., 1998) as the a priori fluxes.

3 Results and discussion

3.1 Synthetic data tests15

3.1.1 Reference inversion

The validity of the inversion scheme was tested using the synthetic dataset described
in Sect. 2.5. For this test, a temporal resolution of 7 days was used in the state space.
The daily varying synthetic fluxes were averaged to this temporal resolution, to avoid
aggregation errors, and mixing ratios were generated from the averaged fluxes using20

the STILT model. Since the same prior was used in the inversion, as was used to create
the synthetic fluxes, the only source of error is the difference between the synthetic and
the prior fluxes, which is known and is described by the prior error covariance matrix,
Sprior. This test was used as a check for internal consistency and as a reference for
following tests.25
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The performance of this inversion test, and all following tests, were assessed on the
basis of the following criteria: (1) the Root Mean Square Error (RMSE) of the retrieved
and the synthetic (true) fluxes normalized by the RMSE of the prior and the true fluxes,
(2) the reduced chi-squared value, which is equal to two times the cost-function at
its minimum divided by the number of observations, and (3) the error reduction over5

the domain, calculated as (1–σpost/σprior) where σpost/σprior are the posterior/prior flux
uncertainties taken as the square-root of the sum of covariances in the posterior/prior
error covariance matrices according to Eq. 8, in which case σi j is an element of Spost:

σ2
post =

N∑
i=1,j=1

σ2
i j (8)

The posterior error covariance matrix, Spost was calculated according to Eq. 9 (Taran-10

tola, 2005):

Spost =Sprior−Sprior ·FT · (F ·Sprior ·FT+Sε)−1 ·F ·Sprior (9)

In this reference test (A in Table 2), the RMSE of the fluxes was reduced by 48% and the
reduced chi-square had a value of 0.81. The reduced chi-square can be thought of as
the ratio of the actual error to the estimated error, therefore, when all errors are correctly15

accounted for in the inversion, it has an expected value of 1. In this reference test, the
chi-square value is satisfactorily close to 1; this result, and the observed reduction in
the RMSE of the fluxes, gives us confidence in the validity of the inversion scheme.

3.1.2 Sensitivity to temporal and spatial error correlations

All following tests in Sect. 3.1 were made using a similar set-up as was used for the20

reference test but with a few important differences. The synthetic mixing ratios were
generated by coupling STILT to the daily varying synthetic fluxes, while in the inversion
the flux retrieval is at a temporal resolution of 7 days (unless otherwise stated), there-
fore they contain a component of temporal aggregation error. Furthermore, the mixing
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ratios were perturbed with Gaussian distributed noise (as described in Sect. 2.5) and
data gaps were introduced at the same frequency as in the real observations. Details
of each of the parameters used are given in Table 2.

The temporal and spatial correlation scale lengths used in the definition of the prior
flux error covariance matrix has important implications for the retrieval (see Sect. 2.5).5

We tested the influence of changing the temporal correlation of errors in the state space
by varying the correlation scale length, T , from 7 to 100 days (B in Table 2). The true
value of T , which was used in the generation of the synthetic fluxes, is 30 days, there-
fore, for any given grid cell, the fluxes in consecutive time-steps will be correlated by
exp(−7/30)=0.79. The minimum in the RMSE of the posterior and true fluxes was10

found for correlation lengths close to the true value of T (see Fig. 3a). Increasing the
correlation length, to example 100 days, means that fluxes in consecutive time-steps
would be correlated by 0.93, which is a significant over-estimate of the actual correla-
tion, and hence there is reduction in the freedom to correct the prior temporal variability
towards that of the true temporal variability. On the other hand, if the correlation length15

is under-estimated, then there is too little constraint on the fluxes in different time-steps.
Similarly, the error reduction increases with increasing T , since the information used to
constrain one time-step has an influence on other time-steps over longer intervals. This
means that in the case where T is over-estimated, there is also a corresponding under-
estimation of the posteriori error and hence an over-estimation of the error reduction.20

The reduced chi-square value also increases with increasing correlation length, since
the actual error (that is between the observed and modeled mixing ratios and between
the prior and posteriori fluxes) increases relative to the prescribed error in the inversion
set-up.

In an analogous test, the influence of changing the spatial correlation length, D, from25

50 to 2000 km was examined (see Fig. 3b). Again, the RMSE is at a minimum for
values of D close to the true value (300 km). The reduced chi-square increases for
spatial correlation lengths longer than the true length, similar to the result for the test
on temporal correlation, as the error between the observed and modeled mixing ratios
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increases. However, using correlation lengths shorter than the true value of D also
leads to an increase in the reduced chi-square, as this results in a smaller prior error
(in Sprior) and thus a larger ratio of the actual to prescribed errors.

Noteworthy, is the value of the reduced chi-square for the case when T =30 days
and and D=300 km, which has increased from 0.81 in the reference inversion case5

(Sect. 3.1.1) to 1.56, even though the Gaussian errors in the mixing ratios have been
accounted for. This increase is due to the component of temporal aggregation error that
arises from inverting mixing ratios, which contain a signal from the daily flux variations,
at a 7-day temporal resolution.

3.1.3 Temporal resolution of the resolved fluxes and aggregation errors10

The impact of temporal aggregation error was tested by performing inversions with
varying flux resolution (C in Table 2). Temporal aggregation errors are incurred when
the fluxes are changing significantly from the mean flux over the resolved time interval.
Since the observations used in our inversion tests were generated from daily varying
fluxes, whereas the retrieved fluxes were resolved only at 7-day and longer intervals,15

there is a component of aggregation error in all these inversions. The influence of
the aggregation error can be seen in the normalized RMSE and reduced chi-square
value, which increase with the length of the resolved time interval (see Fig. 4a). This
behaviour is similar to that for changing the temporal correlation scale length; one as-
sumes that the fluxes within the resolved time interval have a correlation of 1, compared20

with the true correlation e.g. at 30 days which is 0.37. However, the correlation between
the time intervals decays according to the prescribed function, in our case: exp(–∆t/T ).
The aggregation error can be projected into the observation space, where it can be
thought of as the difference between the true mixing ratios, which would be obtained
from the daily varying fluxes, and the mixing ratios that can be obtained from the lower25

resolution fluxes (e.g. see Fig. 2). Moreover, since increasing the averaging interval
results in an additional error, which is not accounted in the observation error covari-
ance matrix, there is an under-estimation of the prior error and thus a corresponding
increase in the reduced chi-square value.
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Kaminski et al. (2001) address the problem of spatial aggregation error and proposed
an algorithm (based on that of Trampert et Snieder, 1996) for estimating this error
based on propagating the information lost by reducing the spatial resolution of the
retrieved fluxes (that is with respect to that of the transport model used in the inversion)
and projecting this into the measurement space. Although Kaminski et al. (2001) do5

not discuss temporal aggregation errors, their algorithm can also be applied in the
same way to propagate the error induced by reducing the temporal resolution of the
inversion. The algorithm involves two steps: (1) calculation of the prior flux uncertainty
that is not resolved in the lower resolution model and (2) projection of this uncertainty
into the observation space (see the appendix for a detailed description).10

We calculated the additional error in the observation space incurred by reducing the
temporal resolution of the resolved fluxes from 1 day, coinciding with the variability in
the true fluxes, to that used in the inversion. Inversions were performed using the same
range of temporal resolutions as in the above test (see Fig. 4b). In contrast to the test
that did not account for the aggregation error, the normalized RMSE only increased by15

approximately 0.1 over the range of temporal resolutions. Furthermore, the reduced
chi-square value remained nearly constant over the whole range of resolutions, with
all values between 1.08 and 1.10, reflecting the fact that the estimated errors, which
included the aggregation error, were close to the actual errors. The magnitude of the
aggregation error calculated for the observation space (mean over all observations)20

was 0.05 ppb and 0.24 ppb for resolutions of 7 and 30 days, respectively, compared
with a total observational error (i.e. excluding the aggregation error) of 0.3 ppb, and
thus represents a significant contribution to the overall observational error.

3.1.4 Averaging interval of the observations

Another proposed method for dealing with temporal aggregation error, is to average the25

observations over the same time interval as the retrieved fluxes, and thereby smooth
out signals which cannot be represented at the temporal resolution of the model and
thus reduce the bias errors (Peylin, 2002). We tested the influence of increasing the
averaging interval of the observations up to 240 h (D in Table 2).
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From Fig. 5 it can be seen that averaging in the observation space has a rather
complex affect on the retrieval. The best performing inversion, in terms of the RMSE,
is that which uses the highest resolution observations. However, there is also a small
secondary RMSE minimum at 168 h, which coincides with the averaging interval of the
fluxes (7 days). What can be said from this, is that although there is a reduction in5

the aggregation error when the observations are averaged to remove the short-term
variations that cannot be resolved at the temporal resolution of the fluxes, there is an
additional error that ensues. This error occurs because the averaged observations are
less sensitive to the spatial distribution of the fluxes. However, the reduced chi-square
value in this case, is close to 1 for an averaging interval of 168 h. This is because at10

the longer averaging intervals (>100 h), the RMSE of the prior and retrieved fluxes is
at a minimum while there is no change in prior flux error estimate. This shows that
the chi-square, although a useful parameter for assessing the inversion, is alone not
always a sufficient one. The error reduction also decreases with increasing averaging
interval as there are fewer independent observations in the inversion to constrain the15

fluxes.

3.2 Real observation inversion

3.2.1 N2O flux estimates

N2O fluxes were retrieved for 2007 using the atmospheric mixing ratios observed at
the Ochsenkopf tall tower. The inversion set-up was the same as that used in the20

reference inversion with synthetic data with a few exceptions. For the a priori fluxes
we used the IER dataset (http://carboeurope.ier.uni-stuttgart.de) for the anthropogenic
fluxes and GEIA for fluxes from the ocean and from soils under natural vegetation,
the combination of which we believe is a closer estimate to the true fluxes. However,
we kept the same temporal and spatial correlation scale lengths, that is, 30 days and25

300 km, respectively, as were used in the reference inversion case. The mixing ratios at
the boundaries were taken from the fields of interpolated NOAA flask data as described
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in Sect. 2.3. In the observation space, we used measurements at 3-hourly intervals,
each with an uncertainty of 0.5 ppb, which is the quadratic sum of squares of our best
estimates of the measurement (0.3 ppb), transport (0.3 ppb), boundary (0.25 ppb), and
aggregation errors (0.1 ppb). Using this set-up, we achieved a posterior reduced chi-
square value of 1.28, which to some degree indicates an appropriate choice of a priori5

and measurement uncertainties and covariances.
To verify the posterior fluxes, we compared the mixing ratios generated by coupling

the fluxes to the STILT model with the observations at Ochsenkopf, as well as at an
independent flask sampling site in the MPI-BGC network, Bialystok (53◦13′ N, 23◦1′ E)
(see Fig. 6). A significant reduction in the RMSE of the posterior and observed mixing10

ratios was seen at Ochsenkopf, as well as improvements in the correlation coefficient,
normalized standard deviation and regression coefficient (see Table 3). Similarly, at
Bialystok, a small improvement in the fit to observations was seen using the posterior
fluxes, although there was still an under-estimate of the observed mixing ratios in Au-
gust and September, owing to the weaker constraint on fluxes in the vicinity of Bialystok15

from the Ochsenkopf site. In Fig. 6 the contribution to N2O variability from transport
at the domain boundaries is also shown (green line). At each of these sites, the con-
tribution from the boundary defines the trend and seasonal cycle of N2O, whereas the
synoptic variability is predominantly due to effects inside in the domain. Since the
boundary mixing ratios are based on observations, errors in boundary mixing ratios20

are mostly due to transport errors in the STILT model and from the interpolation of the
sparse data.

3.2.2 Posterior error

Although only one in-situ measurement site was used in the inversion, substantial error
reductions were seen in western and central Europe, between 30 and 65%, with the25

highest reductions in Germany close to the Ochsenkopf site (see Fig. 7d). The pattern
of error reduction closely follows that of the annual mean surface influence function (or
footprint) as calculated for Ochsenkopf using STILT (footprint not shown). This result
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is as expected, since the regions that have the strongest influence on the observed
mixing ratios, owing to atmospheric transport, will be the best constrained in the inver-
sion, whereas regions that have only a weak influence on the observations are poorly
constrained. The spatial extent of the error reduction also depends strongly on the
spatial correlation length used in the inversion. We chose to use a correlation length5

of 300 km; although higher values would have resulted in a greater spread of error
reduction, an overestimate of this parameter could lead to wrong assumptions about
the correlation of flux errors, and thus, errors in the retrieval.

3.2.3 Temporal variability of fluxes

The observational constraint at Ochsenkopf resulted in a notable reduction in N2O10

fluxes, relative to the prior, in February and March for Germany and Poland, which for
Germany extended into April. In May, however, this trend reversed and there was a
significant increase in fluxes over most of Europe, which was sustained until October.
The increase was particularly large in August and September (see Fig. 8).

To better understand what was driving the change in N2O flux, we looked at the tem-15

poral variability of the mean fluxes over 6 regions in Europe (northern France, south-
ern France, northern Germany, southern Germany, United Kingdom, and Poland) and
compared these with regional meteorological parameters (see Fig. 8). We performed a
linear multiple analysis of variance of the posterior fluxes with the normalized anoma-
lies in temperature, soil moisture and rainfall, where these were calculated using the20

mean values for each region based on ECMWF analysis fields. Although this approach
looks at the integrated influence of these parameters over large regions, some signifi-
cant correlations were seen; the variance with temperature anomaly was significant for
all regions at the 95% confidence level, whereas rainfall was only significant for south-
ern Germany and northern France, and soil moisture was only found to be significant25

in the UK. We found a positive correlation with temperature anomaly at all sites vary-
ing between 0.4 and 0.8 (see Table 4). In southern Germany and northern France,
N2O fluxes were also positively correlated with rainfall. In the UK, N2O fluxes were
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negatively correlated with soil moisture, a result which can be understood when the
soil water filled pore space (WFPS) is considered. N2O fluxes have been shown to in-
crease with increasing soil moisture up to approximately 80% WFPS, however, above
this value N2O emissions decrease sharply, thus in already very moist soils, increasing
soil moisture leads to a decrease in N2O flux (Freibauer and Kaltschmitt, 2003).5

Obviously, human-activities also contribute significantly to variations in N2O flux. Al-
though it is outside the scope of this study to examine these, we recognise that activities
such as the application of N-fertilizer and soil tillage also have a significant impact on
N2O fluxes (Li et al., 1996). N-fertilized applications may contribute to the high emis-
sions seen between April and June, while tillage and harvest may contribute to the high10

emissions between August and September.

4 Summary and conclusions

In this study, we have firstly examined how high temporal resolution atmospheric mea-
surements of N2O may be best incorporated into an inversion scheme, while regarding
the potential errors that may arise, and secondly retrieved N2O emissions estimates15

for 2007 for central and western Europe. By using synthetic datasets with known er-
rors both in the observations and in the fluxes, we explored the influence of temporal
and spatial correlation length as well as the temporal resolution of the fluxes. From
these tests we find that temporal aggregation of the fluxes can lead to significant er-
rors in the retrieval, if not accounted for. We found for the pseudo-data case, where20

the true fluxes are varying daily (to which the observations are sensitive), using tem-
poral resolutions of 7-days and longer in the retrieval leads to significant aggregation
errors. These errors can be accounted for by increasing the observational error, so that
in addition to errors in the transport model, measurements and boundary conditions,
the errors resulting from the loss of information by going to a lower resolution model25

(the aggregation errors) are included. The algorithm of Kaminski et al. (2001) can be
used to estimate the aggregation error in the observation space and only requires an
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estimate on what timescale the true fluxes are varying. Moreover, the algorithm can
be employed to calculate aggregation errors at multiple observation sites, which in the
future will be used to better constrain N2O fluxes.

Using the observations from the tall tower site, Ochsenkopf (50◦01′ N, 11◦48′ E) we
retrieved N2O fluxes at a 7-day resolution for 2007. The posterior fluxes showed much5

greater temporal variability than the prior fluxes. Relative to the prior, notable reduc-
tions in N2O fluxes were seen in February and March for Germany and Poland, while
in May, a significant increase was seen over most of Europe, which was sustained until
October. In particular, large emissions were seen in August and September, which
may be due to human activities such as harvest and tillage at this time. Over the whole10

year and in all regions, we found N2O fluxes to be significantly correlated (at the 95%
confidence level) with temperature anomaly, while correlations with rainfall were only
significant for southern Germany and northern France, and correlations with soil mois-
ture were only significant for the UK. The observational constraint had the most impact
on the temporal variability of the fluxes, while the annual mean fluxes remained close to15

those of the prior (see Table 5). Moreover, the mean fluxes found for France, Germany,
the UK and Benelux, agreed very well with those found in the inversion of Manning
et al. (2003) while substantial increases relative to EDGAR-32FT2000 were seen for
France, the UK and Poland (see Table 5).

Appendix A20

Description of the algorithm for estimating aggregation errors

We present a description of the algorithm derived by Kaminski et al. (2001) and our
method for its calculation. The first step involves defining a projection operator, P+ that
operates in the space of the high-resolution model and projects only the components25

that are resolved by the low-resolution model:

P+ =Σ(pip
T
i ) (A1)
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where pi are vectors expressing the mapping of the high to the low resolution model
and have unit length and are orthogonal. The remaining unresolved components are
thus defined by:

P− = I−P+ (A2)

where I is the identity matrix. In the second step, the aggregation error covariance5

matrix, Sagg is calculated by projecting the error in the flux space into the observation
space:

Sagg =F ·P− ·Sprior ·PT
− ·FT (A3)

where the footprint, F and prior flux error covariance matrix, Sprior are defined for the
high resolution model. Since P− is too large to be calculated directly (in our case P−10

would be a 100 000×100 000 matrix) we calculate directly the product, F ·P−(which is
approximately 2500×100 000):

F ·P− =F−F ·Σ(pip
T
i ) (A4)

Here, our method departs from that of Kaminski et al. (2001); we calculate the product
F ·P− ·Sprior and thus avoid forming Sprior directly (using the same method described in15

Sect. 2.4):

F ·P− ·Sprior =F ·P− ·St⊗ (Ss · (σ (σ )T)) (A5)

and lastly Sagg is calculated according to Eq. A6, which is equivalent to A3:

Sagg =F ·P− ·Sprior · (F ·P−)T (A6)
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Table 1. Northern Hemisphere stations used in the interpolation for the background mixing
ratio.

Station Coordinates Station Coordinates

Alert, Canada, ALT 82.5◦ N, 62.5◦ W, 200 m Mace Head, Ireland, MHD 53.3◦ N, 9.9◦ W, 25 m
Ascension Isl., ASC 7.5◦ S, 14.4◦ W, 54 m Sand Isl., USA, MID 28.2◦ N, 177.4◦ W, 3.7 m
Terceira, Azores, AZR 38.8◦ N, 27.4◦ W, 40 m Mauna Loa, Hawaii, MLO 19.5◦ N, 155.6◦ W, 3397 m
Baltic Sea, Poland, BAL 55.4◦ N, 17.2◦ E, 3 m Niwot Ridge, USA, NWR 40.0◦ N, 105.6◦ W, 3050 m
Barrow, Alaska, BRW 71.3◦ N, 156.6◦ W, 11 m Pallas, Finland, PAL 68.0◦ N, 24.1◦ E, 560 m
Bermuda, BME 32.4◦ N, 64.4◦ W, 30 m Ragged Pt, Barbados, RPB 13.2◦ N, 59.4◦ W, 45 m
Cold Bay, Alaska, CBA 55.2◦ N, 162.7◦ W, 25 m Shemya Isl., Alaska, SHM 52.7◦ N, 174.1◦ E, 40 m
Christmas Isl., CHR 1.7◦ N, 157.2◦ W, 3 m Ocean Stn, Norway, STM 66.0◦ N, 2.0◦ E, 0 m
Mariana Isl., GMI 13.4◦ N, 144.8◦ E, 1 m Summit, Greenland, SUM 72.6◦, 38.5◦ W, 3238 m
Iceland, ICE 63.3◦ N, 20.3◦ W, 118 m Mt. Waliguan, China, WLG 36.3◦ N, 100.9◦ E, 3810 m
Tenerife, IZO 28.3◦ N, 16.5◦ W, 2360 m Ny-Alesund, Sweden, ZEP 78.9◦ N, 11.9◦ E, 475 m
Kumukahi, Hawaii, KUM 19.5◦ N, 154.8◦ W, 3 m
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Table 2. Summary of the inversion tests and the parameters used.

symbol unit A B C D

true flux temporal variability days 7 1 1 1
observation averaging interval hours 3 3 3 3–240
time-step length days 7 7 7–30 7
measurement error σmeas ppb 0.001 0.1 0.1 0.1
transport error σ tran ppb 0 0.1 0.1 0.1
boundary error σbnd ppb 0 0.1 0.1 0.1
measurement error scale length M days 0 0.5 0.5 0.5
transport error scale length A days 0 0.5 0.5 0.5
boundary error scale length B days 0 30 30 30
prior flux error for land fluxes σ land % 100 100 100 100
prior flux error for sea fluxes σsea µmolm2 s−1 1e-06 1e-06 1e-06 1e-06
prior flux spatial scale length D km 300 50–2000 300 300
prior flux temporal scale length T days 30 7–30 30 30
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Table 3. Comparison of prior and posterior mixing ratios at Ochsenkopf and Bialystok.

RMSE R2 normalized regression
(ppb) SD coefficient

Ochsenkopf
prior 0.526 0.444 0.827 0.754
posterior 0.268 0.866 0.896 0.866

Bialystok
prior 1.134 0.158 0.794 0.573
posterior 0.883 0.373 0.660 0.521
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Table 4. Analysis of variance of N2O fluxes with temperature, soil moisture and rainfall.

temperature soil moisture rainfall

southern France 0.54 N.S. N.S.
northern France 0.63 N.S. 0.42
United Kingdom 0.43 −0.51 N.S.
southern Germany 0.80 N.S. 0.70
northern Germany 0.57 N.S. N.S.
Poland 0.71 N.S. N.S.

N.S.=Not Significant (at the 95% confidence level).
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Table 5. Comparison of annual mean N2O emissions for five European countries in units of
Gg-N2O/y.

posterior1 prior2 EDGAR3 Manning et al.4

France 260±144 214 139 271, (252–287)
Germany 225±135 242 238 247, (220–274)
United Kingdom 150±87 111 79 121, (107–134)
Benelux 72±44 78 98 101, (81–146)
Poland 151±116 144 77 not given

1. The total uncertainties were calculated by integrating the posterior uncertainty in each grid-cell over the land surface
area (where the grid-cell uncertainty was calculated according to Eq. 8);
2. the prior used in this study included the anthropogenic emissions of IER (http://carboeurope.ier.uni-stuttgart.de) and
the natural soil and ocean emissions of GEIA (Olivier et al., 1998) with uncertainties of 100%;
3. EDGAR-32FT2000 (anthropogenic emissions only) with a nominal uncertainty of 100% (Olivier et al., 2005);
4. uncertainty range given inside parentheses (Manning et al., 2003).
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Fig. 1. The synthetic N2O flux dataset that is used to generate the pseudo-observations. The
synthetic fluxes contain spatially and temporally correlated errors according to the specifica-
tions of the prior error covariance matrix Sprior: (a) the annual mean flux and (b) the zonal mean

flux, both in units of µmol m−2 s−1.
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Fig. 2. Daily averaged mixing ratios generated using the forward STILT model coupled to the
following flux maps: GEIA (green), true with daily variation (black), true averaged over 7-days
(red), and true with added Gaussian distributed noise and data gaps (blue).
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Fig. 3. The influence of changing the correlation scale lengths, used in the definition of the
prior flux error covariance matrix, on the Root Mean Square Error (RMSE) of the posterior and
true fluxes (black), the error reduction (blue) and the reduced chi-square value (red), for (a)
changing the temporal correlation scale length and (b) changing the spatial correlation scale
length. All these figures show the results of inversions using synthetic mixing ratios with data
gaps and added Gaussian noise.
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Fig. 4. Analysis of the impact that temporal resolution in the state space has on the retrieval.
Shown is the influence on RMSE of the posterior and true fluxes (black), error reduction (blue)
and the reduced chi-square value (red) for two cases (a) using errors in the observation space
with contributions from only transport, measurement and boundary errors and (b) including in
addition the estimated aggregation error for each temporal resolution.
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Fig. 5. The influence that changing temporal resolution in the observation space has on the re-
trieval (using a fixed resolution in the state space of 7-days). Shown is the impact on the RMSE
of the posterior and true fluxes (black filled circles), error reduction (blue) and the reduced
chi-square value (red). (The lines are cubic-spline fits to the data).
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Fig. 6. Comparison of the observed (black), posterior (red), prior (blue) and boundary mixing
ratios (green). The boundary mixing ratio is the mixing ratio at the receptor that would be seen
in the absence of any fluxes inside the domain, in other words, it is the N2O that is transported
from the domain boundaries to the measurement site. Mixing ratios are shown for (a) the
Ochsenkopf tall tower, and (b) for the MPI flask site Bialystok (53◦13′ N, 23◦1′ E).
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Fig. 7. Inversion results using the observed N2O mixing ratio at Ochsenkopf: (a) annual mean
posterior N2O flux, (b) annual mean difference between the posterior and prior N2O flux, (c)
posterior error for the annual mean flux, and (d) error reduction calculated as 1–σpost/σprior. All

fluxes are in units of µmol m−2 s−1.
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Fig. 8. Temporal variability of the total posterior (black solid) and prior (black dashed) N2O flux
for 6 regions in Europe compared with the normalized anomalies in mean temperature (red),
soil moisture (blue) and rainfall (cyan) for each region in 2007.
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