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Abstract

Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE)
network are used to estimate organic mass to organic carbon (OM/OC) ratios across
the United States by extending previously published multiple regression techniques.
Our new methodology addresses common pitfalls of multiple regression including mea-5

surement uncertainty, colinearity of covariates, and dataset selection. As expected,
summertime OM/OC ratios are larger than wintertime values across the US with all
regional median OM/OC values tightly confined between 1.8 and 1.95. Further, we
find that OM/OC ratios during the winter are distinctly larger in the eastern US than in
the West (regional medians are 1.58, 1.64, and 1.85 in the great lakes, southeast, and10

northeast regions, versus 1.29 and 1.32 in the western and central states). We find
less spatial variability in long-term averaged OM/OC ratios across the US (90% of our
multiyear regressions predicted OM/OC ratios between 1.37 and 1.94) than previous
studies (90% of OM/OC estimates from a previous regression study fell between 1.30
and 2.10). We attribute this difference largely to the inclusion of EC as a covariate in15

previous regression studies. Due to the colinearity of EC and OC, we believe that up
to one-quarter of the OM/OC estimates in a previous study are biased low. In addition
to estimating OM/OC ratios, our technique reveals trends that may be contrasted with
conventional assumptions regarding nitrate, sulfate, and soil across the IMPROVE net-
work. For example, our regressions show pronounced seasonal and spatial variability20

in both nitrate volatilization and sulfate neutralization and hydration.

1 Introduction

Atmospheric measurements have shown that organic mass (OM) is a major compo-
nent of fine particulate matter (PM2.5), comprising over 50% of ambient PM2.5 in some
locations (Jimenez et al., 2009; Murphy et al., 2006; Zhang et al., 2007). OM can be25

divided broadly into two components: organic carbon (OC), and all other mass which
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we will hereafter refer to as non-carbon organic mass (NCOM). NCOM is the largest
component of ambient PM2.5 that is not routinely measured. To achieve mass closure
in source testing and ambient aerosol measurements, an OM/OC ratio (denoted as
k in some earlier literature) is often multiplied by measured OC to estimate total OM.
This ratio is primarily affected by the oxygen content in the organic aerosol (Pang et5

al., 2006), although hydrogen, nitrogen, and sulfur also make small contributions to the
NCOM.

The first estimate of OM/OC was made by White and Roberts (1977) who calculated
an average ratio of 1.4 for specific organic compounds measured in Los Angeles. This
value was used widely until Turpin and Lim (2001) analyzed a larger dataset to show10

that OM/OC is generally higher than 1.4. In recent years a range of techniques have
been applied to quantify OM/OC including gas chromatography/mass spectroscopy
(GC/MS) (Turpin and Lim, 2001; Yu et al., 2005), high resolution time of flight aerosol
mass spectrometry (HR-ToF-AMS) (Aiken et al., 2008; Chan et al., 2010; Sun et al.,
2009), Fourier Transform Infrared (FTIR) spectroscopy (Gilardoni et al., 2007; Kiss et15

al., 2002; Liu et al., 2009; Reff et al., 2007; Russell, 2003; Russell et al., 2009), se-
quential extraction followed by gravimetric weighing and thermal optical measurement
of carbon (El-Zanan et al., 2005, 2009), and coupled thermal gravimetric and chemical
analyses (Chen and Yu, 2007). Those studies have contributed substantially to our un-
derstanding of NCOM in many laboratory and field settings, but none of the techniques20

have been applied over a broad temporal and spatial range.
Two large US monitoring networks measure a range of PM2.5 constituents, includ-

ing OC but not OM. A technique for computing OM from these networks could yield
a comprehensive dataset of OM/OC ratios covering a large spatial and temporal ex-
tent. Frank (2006) developed the SANDWICH method to estimate OM from measure-25

ments across the urban-centric Chemical Speciation Network (CSN). He calculated
total OM as PM2.5 minus the sum of other components (sulfate, nitrate, ammonium,
water, crustal material, and elemental carbon – EC), while making adjustments for
particle-bound water (not measured directly) and nitrate volatilization. Unfortunately,
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the uncertainty in OC data collected at CSN sites prior to some major network changes
in 2008 is comparable to the uncertainty in OM/OC ratios (Watson et al., 2008). There-
fore, although the SANDWICH technique is useful for estimating total OM, CSN data
are not yet adequate for estimating OM/OC over large multiyear periods.

The Interagency Monitoring of Protected Visual Environments (IMPROVE) network5

tracks visibility degradation in national parks and wilderness areas via routine mea-
surements of PM2.5 mass and composition (Malm et al., 1994). The network be-
gan with 36 monitoring sites in 1988, and currently reports data from 178 remote
and 13 urban sites across the continental US, Hawaii, Alaska and the Virgin Islands
(http://vista.cira.colostate.edu/improve/Data/IMPROVE/AsciiData.aspx). PM2.5 is col-10

lected on filters for a 24-h period (midnight to midnight) every third day. The filters
are subjected to a gravimetric analysis that measures total mass and various chem-
ical analyses that measure bulk composition. In addition to these direct measure-
ments, the network reports a reconstructed fine mass (RCFM) concentration which is
a weighted sum of selected chemical constituents. RCFM was first calculated using15

Eqs. (1) and (2) (Malm et al., 1994).

RCFM = (NH4)2 SO4 + SOIL + EC + OM (1)

SOIL = 2.20 Al + 2.49 Si + 1.63 Ca + 2.42 Fe + 1.94 Ti (2)

Ammonium sulfate ((NH4)2SO4) was calculated as 4.125×S (sulfur was measured by
Particle Induced X-ray Emission – PIXE – until 2002), SOIL was calculated with Eq. (2)20

(assuming the soil in PM2.5 samples mimics the average composition of sedimentary
rock), and OM was calculated as 1.4×OC. Our notation differs slightly from the original
publication (Malm et al., 1994). Changes to the RCFM equation since 1994 include the
addition of more components (ammonium nitrate (NH4NO3), non-soil potassium, and
sea salt), modification of Eq. (2) to eliminate Al, and an increase of OM/OC from 1.425

to 1.8 (McDade, 2008).
Although a network-wide OM/OC ratio is commonly used to compute RCFM, a few

studies have estimated site-specific OM/OC ratios from IMPROVE data. El-Zanan et
24654
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al. (2005) describe a mass closure technique for calculating OM/OC,

OM
OC

=
PM2.5 −

(
(NH4)2 SO4 + NH4 NO3 + EC + SOIL + Other

)
OC

(3)

in which “Other” is the sum of sodium, chlorine, and trace elements measured by x-
ray fluorescence (XRF) that are not associated with soil (Lowenthal and Kumar, 2003).
Unfortunately, there are many uncertainties associated with a mass closure analysis5

of IMPROVE data. First, assumptions must be made about two unmeasured PM2.5
components: ammonium and particle-bound water. Since ammonium is not routinely
measured at IMPROVE sites, sulfate and nitrate are commonly assumed to be fully
neutralized by ammonium. Estimation of water mass is complicated by the fact that
filter samples are shipped at ambient conditions and weighed in a laboratory where10

relative humidity (RH) is not controlled. Second, nitrate measurements are made from
particles collected on nylon filters, to which nitrate adheres well, whereas PM2.5 weights
are determined from Teflon filters, from which nitrate is known to volatilize (Hering and
Cass, 1999). The amount of volatilization from the Teflon filter depends on which cation
the nitrate is bound to as well as the temperature and RH during sampling, shipping,15

and analysis. Third, the IMPROVE soil equation relies on assumptions about the abun-
dance and oxidation states of various trace elements. Since soil composition is spatially
heterogeneous, this equation may not accurately estimate the soil contribution in all re-
gions. Finally, OC measurement artifacts contribute additional uncertainty because OC
is measured from quartz filters while OM is derived from gravimetric measurements on20

Teflon filters. Differing tendencies among these two filter materials at retaining OM
and/or adsorbing semi-volatile organic gases may affect OM/OC estimates.

Malm and collaborators recently developed a multiple regression technique to esti-
mate OM/OC from 1988–2003 IMPROVE data (Hand and Malm, 2006; Malm et al.,
2005; Malm and Hand, 2007). They fit six coefficients in Eq. (4) using ordinary least25

squares (OLS) regression at each monitoring site. Some notation in Eq. (4) has been
changed from that of Malm and Hand (2007) for consistency with the present study.
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PM2.5,i = β0 + βOC OCi + βsulf (NH4)2 SO4,i + βnit NH4 NO3,i + βsoil SOILi (4)

+ βEC ECi + βseasalt × 1.8 Cl−i + εi

The subscript, i , represents a daily sample and β0 represents a site-specific intercept.
The remaining β coefficients represent ratios of the mass associated with a given PM2.5
component on the Teflon filter when it was weighed to the mass of that same compo-5

nent determined (or estimated) via chemical analysis of a (possibly) separate filter.
The residual error (εi ) denotes the difference between the measured PM2.5 mass and
the estimated mass (based on fitted coefficients and measured chemical components)
for a particular daily sample. The coefficient of most interest to us is βOC because it
represents OM/OC. This technique circumvents many of the assumptions needed for10

mass closure. For example, βOC is insensitive to the degree of sulfate neutralization
since the relative abundance of ammonium would mainly affect βsulf. However, OC
measurement artifacts can certainly introduce bias in βOC.

In this paper we develop a nationwide dataset of seasonally- and spatially-varying
OM/OC ratios across the IMPROVE network by extending the methodology of Malm15

and Hand (2007) while addressing some common pitfalls in multiple regression. We
discuss quantitative insights regarding the measurement artifacts associated with
PM2.5 components other than OC (i.e. nitrate volatilization and water associated with
particulate sulfate), which are ancillary benefits of our methodology. Finally, spatial and
temporal trends in OM/OC are reported and examined.20

2 Methodology

Figure 1 shows a schematic of our methodology, with complete details provided in this
section.
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2.1 General equation and dataset selection

We begin with three minor modifications to Eq. (4) from Malm and collaborators (Malm
and Hand, 2007; Hand and Malm, 2006; Malm et al., 2005). First, we eliminate the
intercept term (β0) and reduce the number of explanatory variables (i.e., covariates) to
four that constitute the majority of PM2.5 and have large uncertainty in their coefficient:5

OC, (NH4)2SO4, NH4NO3, and SOIL (Eq. 5).

PM2.5,i = βOC OCi + βsulf (NH4)2 SO4,i + βnit NH4 NO3,i + βsoil SOILi (5)

+ ECi + 1.8× Cl−i + 1.2 × KNONi + εi

KNON = K − 0.6 × Fe (6)

SOIL = 3.48 × Si + 1.63 × Ca + 2.42 × Fe + 1.94 × Ti (7)10

In contrast to Eq. (4), we assume that EC has no artifact and set its coefficient to 1 be-
cause treating EC as a separate explanatory variable can bias βOC (see Sect. 3.3 and
Supplement Sect. S3). Similar to Eq. (4), we estimate sea salt as 1.8×Cl− (Pitchford
et al., 2007; White, 2008) but do not treat it as an explanatory variable. Its coefficient
should not greatly affect the fit of the regression because it is a relatively minor compo-15

nent at most monitoring sites. Second, we add KNON to Eq. (5) for consistency with the
newest IMPROVE RCFM formula (McDade, 2008). KNON represents non-soil potas-
sium (e.g., from wood burning) and is calculated using Eq. (6). The KNON coefficient is
fixed at 1.2, the molar mass ratio of potassium oxide to potassium. Although KNON is
influenced by soil composition (i.e., soil K/Fe ratio may deviate from 0.6), it contributes20

a small enough mass to total PM2.5 that fixing its coefficient should not adversely affect
the regression as a whole. Third, we use an updated IMPROVE soil equation (compare
Eqs. 2 and 7) which eliminates aluminum from the calculation because Al is not reliably
measured by the IMPROVE XRF analysis (McDade, 2008).

We downloaded the IMPROVE data from http://views.cira.colostate.edu/web/25

DataWizard/ on 6 January 2010, and analyzed the measurements collected at 186 con-
tinental US sites between 1 January 2002 and 31 December 2008. All analysis was
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performed using the R statistical software package (R Development Core Team, 2010).
Like Malm and Hand (2007), we segregate the data by monitoring site. In addition, we
segregate data by season: quarter 1 (Jan, Feb, Mar), quarter 2 (Apr, May, Jun), quar-
ter 3 (Jul, Aug, Sep), and quarter 4 (Oct, Nov, Dec), because we expect the coefficients
(i.e., OM/OC and nitrate volatilization) to vary seasonally. However, we could not jus-5

tify the seasonal variability in soil coefficients estimated from our initial analyses. For
instance, the variability in βsoil was not correlated to Asian dust plumes or other sea-
sonally varying dust sources. We therefore hold the soil coefficient constant throughout
the year by first performing a multiyear regression at each site using all data from 2002–
2008 and then fixing βsoil in each quarter-specific regression to the βsoil value obtained10

from the multiyear regression at that given site.
Within site and quarter-specific datasets, the only data filter that we apply is com-

pleteness. If a major component in Eq. (5) (i.e., PM2.5, OC, S, NO−
3 , Si, Ca, Fe, Ti,

or EC) is missing from a single site and sample, we eliminate the whole date from
that site. Missing data values for Cl− and K are set to 0. All concentrations reported15

as negative values are left as is. Finally, sites that do not have an average of at least
15 days of complete data per quarter (i.e., 105 samples for each quarter over the 7 year
measurement period) for all four quarters are eliminated from the analysis. This crite-
rion eliminates thirty-three sites. As shown in Fig. 1, we perform one multiyear and
four quarter-specific regressions for each of the remaining 153 monitoring sites (i.e.,20

765 separate regressions).

2.2 Physical interpretation of coefficients

When interpreting the coefficients in Eq. (5), it is important to note that all results may
be affected by changes in measurement techniques and variability in the ambient con-
ditions. Therefore, readers are cautioned against over-interpreting results from a single25

regression and instead are encouraged to use these results to understand spatial and
temporal trends in the coefficients. For each PM2.5 component, the regression coef-
ficient represents the ratio of retained mass associated with that component on the
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Teflon filter (used for gravimetric PM2.5 analysis) to the mass of that component de-
rived from chemical analysis. Here we describe how values different than 1 may be
interpreted and set bounds on physically reasonable values for each coefficient.

The OC coefficient, βOC, should represent the OM/OC ratio. We set its lower bound
on this value to 1, representing pure graphitic carbon with no associated hydrogen,5

oxygen, or nitrogen mass. We set the upper bound to 5, which would occur for a car-
bonate ion (CO2−

3 ). It is possible to have a higher OM/OC for some organic sulfates, but
it is unlikely that these compounds would contribute enough mass to raise the overall
OM/OC above 5. Typical OM/OC ratios for primary organic emissions are around 1.25
in vehicle exhaust and 1.7 in wood smoke emissions (Reff et al., 2009). Measure-10

ments of OM/OC from laboratory-generated secondary organic aerosol (SOA) range
from 1.4–2.7 (Kleindienst et al., 2007). Although we interpret βOC as equivalent to
OM/OC, this coefficient may also be skewed by two types of OC measurement artifact:
negative artifacts occur when organic aerosol collected on the filter volatilizes before
chemical analysis and positive artifacts occur when organic vapors adsorb to the fil-15

ter surface (McDow and Huntzicker, 1990; Turpin et al., 1994). βOC will be influenced
further by differences in the sampling artifact on quartz filters (used to measure OC)
versus Teflon filters.

A soil coefficient not equal to 1 could represent soil compositions differing from the
average sediment used to develop Eqs. (2) and (7). βsoil represents the actual soil20

mass in the PM2.5 sample divided by the soil mass calculated from Eq. (7). Simon et
al. (2010) report that this ratio can range from 0.41 to 1.63 based on soil compositions
in the literature, so these bounds are applied to βsoil.

A sulfate coefficient below unity would indicate that the assumption of dry ammonium
sulfate over-estimates total sulfate mass. Incomplete neutralization could cause such25

an over-estimate. The molar mass of ammonium bisulfate (NH4HSO4) and sulfuric acid
(H2SO4) are 87% and 74% of the (NH4)2SO4 molar mass. Therefore, 0.74 would seem
like a reasonable lower bound for βsulf. However, the sulfate mass in our regression is
calculated from an XRF sulfur measurement which can detect organo-sulfur atoms. A
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conservative lower bound could be calculated assuming that all carbonaceous mass
associated with organic molecules would be included in the βOC. Surratt et al. (2008)
report that up to 20% of sulfur may be contained in these organic compounds, so we
set a lower bound for βsulf at 0.59 (0.74×0.8) to capture an admittedly extreme sce-
nario in which all inorganic sulfate is in the form of sulfuric acid and 20% of the total5

sulfur is contained in organic compounds. A sulfate coefficient above 1 would indicate
that there is extra mass associated with the particulate sulfate. This extra mass could
come from water if the aerosol remains hydrated during gravimetric analysis. During
the history of the IMPROVE network, RH in the gravimetric measurement laboratory
was only recorded intermittently. We obtained laboratory measurements of RH during10

the gravimetric analysis of filters collected from September 2003 to May 2005 and from
May to December of 2008 (C. McDade, personal communication, 2009). The max-
imum reasonable βsulf is estimated from the 99th percentile of those measurements
(i.e., 52% RH). At this humidity, the AIM model (Wexler and Clegg, 2002) (available
at http://www.aim.env.uea.ac.uk/aim/aim.php) computes hydrated (NH4)2SO4 to have15

53% more mass than dry (NH4)2SO4 and hydrated NH4HSO4 to have 32% more mass
than dry NH4HSO4. Therefore, 1.53 is a reasonable upper bound for βsulf.

Nitrate coefficients less than 1 likely represent volatilization of NH4NO3 from the
Teflon filter prior to gravimetric analysis. Because a value of 0 (complete nitrate
volatilization) would imply no relationship between nitrate mass and PM2.5 mass, a20

slightly negative βnit value caused by measurement error is just as likely as a slightly
positive βnit value. Consequently, for each regression performed, we set the lowest rea-
sonable value for βnit as 1.5 standard errors below 0 (calculation of standard errors is
described in the Supplement, Sect. S1). There are 93 site/quarter groupings exhibiting
negative βnit values within 1.5 standard errors of 0. To show that these negative val-25

ues really represent slight variations around 0, we repeated each of these regressions
without the nitrate term and found that βOC and βsulf coefficients changed by less than
3% on average (no βOC and six βsulf coefficients changed by more than 5%). A nitrate
coefficient greater than 1 indicates that the assumption of dry NH4NO3 underestimates
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nitrate mass on the Teflon filter. This would occur either if the cation had a larger molar
mass than ammonium (e.g. Na) or if there were water associated with the nitrate during
weighing. Again a maximum reasonable value for βnit was determined by computing
increases in water mass at 52% RH with the AIM model for both NH4NO3 and NaNO3.
This analysis shows that 35% extra mass can be added to the nitrate, so 1.35 is a5

reasonable upper bound for βnit.

2.3 Effects of measurement uncertainty

Despite the advantages of regression described in Sect. 1, several pitfalls can occur
with ordinary least squares (OLS) multiple regression analysis. One such pitfall is that
OLS regression assumes that explanatory variables are measured without error. This10

assumption conflicts with the reality of our application, in which there is measurement
uncertainty associated with all explanatory variables: OC, (NH4)2SO4, NH4NO3, and
SOIL. Measurement uncertainty in the explanatory variables can introduce bias in the
estimates of regression coefficients. For regressions with a single explanatory variable,
the coefficient is biased towards zero when the explanatory variable measurement is15

uncertain (Fuller, 1987; Saylor et al., 2006; White, 1998). With multiple explanatory
variables, bias in the various coefficients exhibits a more complex dependency on fac-
tors such as the relative uncertainties in various components, the correlation between
explanatory variables, and the correlation between measurement errors. White (1998)
examined this problem in a simplified case with two independent explanatory variables20

for which neither the measured values nor the measurement uncertainties were cor-
related. For that case, he showed that the coefficient for the explanatory variable with
lower uncertainty was artificially inflated while the one with higher uncertainty was di-
minished.

To evaluate this bias within the more complex conditions of the present study, we25

analyzed synthetic datasets that mimic our data. Assuming that the actual values for
each measurement were exactly equal to the reported value, we created 200 synthetic
datasets for each site- and quarter-specific dataset that represent “observed” data with
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error in the explanatory variables. Errors were added by perturbing the reported values
of OC, sulfate, nitrate, and PM2.5 using the reported uncertainty and assuming that “ob-
served” values would be normally distributed around the actual value. For each site-
and quarter-specific dataset, we then performed an OLS regression on the reported
dataset and the 200 synthetic datasets. The reported dataset is considered the “truth”5

in this exercise, so OLS regression yields “true” coefficients for comparison with the re-
sults from our synthetic datasets. Results from one such analysis for a regression with
typical OLS biases (Gila Wilderness in New Mexico during quarter 1) are shown in the
left half of each plot in Fig. 2. The dotted lines represent the “true” coefficients and the
box plot shows the distribution of values that would be obtained from the 200 synthetic10

datasets. Although the true value could be accurately estimated from some synthetic
datasets, βOC is typically under-estimated while βsulf and βnit are over-estimated in this
example.

To overcome the biases associated with the OLS assumption of error-free explana-
tory variables, a class of methods has been developed to explicitly account for the ex-15

istence of such errors; these are often collectively called measurement error models or
errors-in-variables (EiV) models. Such methods typically assume that for all observa-
tions of each covariate, the errors are independent, identically distributed and follow a
normal distribution with mean zero and a fixed (possibly unknown) standard deviation.
In the IMPROVE data, the standard deviation is not fixed because we have a different20

estimated error associated with each observation of a given covariate, which we take
as the standard deviation of the error distribution. To accommodate this added com-
plexity, we turn to an advanced measurement error model described by Fuller (1987)
(Sect. 3.1.2). The following discussion is based entirely on Fuller’s work, conforming to
his original notation as much as is feasible.25

To begin, we define Yt as the value of the response variable for observa-
tion t, such that t = 1, 2, . . . , n, with n representing the number of ob-
servations. For the multiyear regression, this response is given by PM2.5
– (1.2×KNON+1.8×Cl− +EC), and for the quarter-specific regression it is
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PM2.5 – (1.2×KNON+1.8×Cl− +EC+βsoil ×SOIL). The row vector Xt contains the
observed values of the explanatory variables associated with observation t. The first
element is the observed value of OC, the next element corresponds to (NH4)2SO4, the
third is that for NH4NO3, and the fourth is the observation for SOIL. (In the quarter-
specific regression case, the SOIL component is omitted.) Note that the order of these5

explanatory variables mimics the order they take in Eq. (5) and is preserved in the
various mathematical representations of their coefficients, errors, etc. which follow.

Additionally, we let
∑

uutt represent the covariance matrix associated with the covari-
ates for observation t. Since we are assuming that errors are independent of each
other, this is a diagonal matrix. The elements along the diagonal contain the variance10

(square of the error standard deviation) associated with the explanatory variables, in
the specified order. As an initial estimate for the regression coefficients, we use the
method-of-moments estimator, the column vector β̃, given by Eq. (8)

β̃ =

[
n−1

n∑
t=1

(
X

′

t Xt −
∑

uutt

)]−1[
n−1

n∑
t=1

X
′

tYt

]
(8)

Having obtained this initial estimate, we work to refine it, as outlined by Fuller (1987).15

We define for each observation t the matrix
∑

aatt. This is also a diagonal matrix, with
the elements along the diagonal consisting of the variance for the response followed by
the variances for the explanatory variables in the specified order. We take the square
of the reported measurement uncertainty for each chemical constituent in a particular
sample as its variance. (Note that the

∑
uutt featured in Eq. 8 is simply a submatrix of20 ∑

aatt.) We also let Zt represent the row vector containing the observed response and
the observed explanatory variables for each t; i.e., Zt = (Yt, Xt). We then define the
matrices M and A as

M =
n∑

t=1

Σaatt and A =
n∑

t=1

Z
′
tZt
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With these defined, we can now obtain an estimate of the variance associated with the
regression error, denoted σqq. We first solve for the eigenvalues of the matrix product

M−1A. If the minimum of these eigenvalues is less than one, then σ̃qq is 0. Otherwise,
σ̃qq is given by Eq. (9):

σ̃qq =
n∑

t=1

[
(n − k)−1

(
Yt − Xtβ̃

)2
− n−1

(
1,−β̃′)∑

aatt

(
1,−β̃′)′]

(9)5

Both β̃ and σ̃qq are then used to obtain an estimate of the error associated with the
linear relationship between the observed (with error) response and covariates, σ̃vvtt
(Eq. 10):

σ̃vvtt = σ̃qq + σwwtt + β̃
′∑

uutt
β̃ (10)

where σwwtt is the variance of the measurement error associated with the response at10

time t. To obtain our final estimate, β̂, of the regression coefficients, we combine the
previous elements to obtain Eq. (11):

β̂ =

[
n∑

t=1

σ̃−1
vvtt

(
X

′

tXt −
∑

uutt

)]−1 n∑
t=1

σ̃−1
vvtt X

′

t Yt (11)

Here β̂ is a column vector containing our estimates of βOC, βsulf, βnit, and βsoil (for
the multiyear regression). Fuller (1987) also provides an estimator for the covariance15

matrix β̂. We use the diagonal elements of this matrix to obtain the standard errors
for our estimated regression coefficients. In the interest of brevity, we leave further
discussion of this variance estimate to the Supplement (Sect. S1). In addition, sample
R code used to perform these regressions is also supplied in Supplement Sect. S1.

We recognize that our method includes several assumptions. Perhaps most notable20

is the assumption that the measurement errors are independent among all the covari-
ates and the response measured at a given date and location. The method could be
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extended to include information about the correlation between measurement errors, if
such were known. This would result in non-diagonal matrices

∑
uutt and

∑
aatt. Another

key assumption is that the measurement error distributions are normal. If we did not
believe this to be a reasonable assumption, we would have to explore more complex
statistical models which allow for nonnormal measurement errors, which are currently5

a subject of statistical research.
To demonstrate that this new technique improves the bias in coefficients, we repeat

our previous analysis of the synthetic datasets using the EiV regression methodology.
The results for quarter 1 data from Gila Wilderness are shown in the right-hand box
plots of Fig. 2. Clearly, the EiV method yields coefficients that are much closer to the10

“truth” than the OLS methodology. To confirm this result at other sites and quarters,
Fig. 3 shows the distribution of bias across all site- and quarter-specific datasets. Sub-
stantial bias in βOC (under-prediction), βsulf (over-prediction), and βnit (over-prediction)
are seen for the OLS regression, but these biases are greatly mitigated with the EiV
technique. White (1986) provides a similar analysis of regression performance using15

measurements from the 1981–1982 Western Regional Air Quality Study. That analy-
sis, which included three explanatory variables (sum of ionic sulfate, nitrate, and am-
monium; organic carbon; sum of silicon dioxide and calcium oxide), also found that
correcting for measurement uncertainty reduces bias in the coefficients.

Although the EiV methodology shows improved results, it should be noted that an ad-20

ditional source of error arises if the measurement uncertainties are biased themselves.
Hyslop and White (2008) report some systematic biases in the measurement uncer-
tainty from XRF, ion chromatography, and TOR carbon measurements at IMPROVE
sites. If future updates to the IMPROVE data include substantial changes to uncer-
tainty estimates for these components, it may warrant some repetition of the present25

work. For all subsequent analyses discussed in this paper, we apply the EiV method
(instead of OLS).
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2.4 Statistical identification of high-confidence regressions

After applying the EiV method to each multiyear and quarter-specific dataset, it is
tempting to begin examining spatial and temporal patterns in the regression coeffi-
cients. However, as emphasized by Malm and Hand (2007), “Regression coefficients
are vulnerable to a variety of systematic and random errors”. In this subsection, we5

establish some empirical guidelines for flagging or eliminating datasets that do not
conform to Eq. (5). As summarized in the lower half of Fig. 1, these guidelines are sub-
sequently applied to identify regression results that can be used with high confidence
for applications such as air quality model evaluations, source-apportionment analyses,
epidemiology studies, and radiative calculations.10

2.4.1 Multicolinearity among explanatory variables

One requirement of our regression method is that all explanatory variables be inde-
pendent of each other. If any two PM2.5 components are linearly related, the dataset
is not suitable for regression analysis because the technique may over-estimate one
coefficient and under-estimate another as a result of having too many degrees of free-15

dom. To identify such datasets, Pearson correlation coefficients (rP) are calculated
for all couplings of the four explanatory variables (OC, sulfate, nitrate, and soil) in each
site- and quarter-specific dataset. To establish a guideline for the maximum acceptable
rP in the present application, we examine all datasets which have |rP| values greater
than 0.65 between any two explanatory variables. Specifically, we look for cases in20

which the coefficient on one of the highly correlated explanatory variables appears to
be over-estimated while the other appears to be under-estimated. For example, sul-
fate and nitrate from 4th quarter measurements at the Puget Sound monitoring site
are correlated with an rP = 0.86. In that regression, βsulf = 0.83 (lower end of its physi-
cally reasonable range) and βnit =1.28 (higher end of its range). We acknowledge that25

this analysis is neither exhaustive nor foolproof since (1) coefficients that appear to be
skewed may actually be accurate results, and (2) some regressions that are affected
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by co-linearity may not be identifiable if the estimated coefficients fall in the middle of
the range of physically reasonable values. However, this analysis provides empirical
guidance on acceptable rP values. A summary of our analysis is shown in Fig. 4 and
a cutoff of maximum rP of 0.85 was selected. Seven quarter-specific datasets are
eliminated from our analysis based on this criterion (refer to Supplement Table S3).5

2.4.2 Assessing the fit of the regression model

A second requirement for accurate regressions is that the equation used to fit coeffi-
cients is physically realistic. Based on our knowledge of ambient aerosols in the US,
we believe Eq. (5) includes all the essential PM2.5 components. However, if the true
coefficient for EC, KNON, or Cl− is substantially different from our fixed coefficients,10

the regression could be adversely affected. In addition, if the actual soil coefficient
varies greatly throughout the year, then our assumption of temporally-invariant βsoil
could also degrade the regression results. Finally, if the relationship between PM2.5
mass and any major chemical component is nonlinear, our regression analysis will be
inaccurate. For instance, if OC artifact corrections were biased low at high concentra-15

tions and vice versa, OC concentrations would be positively biased in clean conditions
and negatively biased in polluted conditions so the relationship between reported OC
and total PM2.5 would be nonlinear.

To identify cases influenced by one or more of these phenomena, we examined the
residual errors (εi in Eq. 5) for each dataset. Spearman rank order correlation co-20

efficients (rS) are calculated between the residual error (εi ) values and each PM2.5
component in Eq. (5) (OC, EC, sulfate, nitrate, KNON, Cl−, and SOIL). Any high corre-
lation may indicate that Eq. (5) is an inadequate representation of PM2.5 at the given
site/quarter. Following this analysis, a criterion of |rS|> 0.4 is imposed to eliminate
12 quarter-specific datasets that are likely affected by the problems discussed above25

(refer to Supplement Table S3): 9 for high rS values between residual error and chlo-
ride, one for high rS between residual error and SOIL (Domelands Wilderness, Califor-
nia, quarter 4), one for high rS between residual error and KNON (Sawtooth National
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Forest, Idaho, quarter 4), and one for high rS between residual error and both OC and
EC (Mount Hood, Oregon, quarter 2). Figure 5 shows four examples of these correla-
tions. Most of the datasets with large |rS| values between chloride and residual error
contain many negative chloride values. White (2008) reports that negative chloride
values in 2002 and 2003 were caused by variability in filter blanks (a change of filter5

suppliers in 2004 corrected this problem). These sites exemplify how measurement
variability can adversely affect regression analysis.

2.4.3 Dataset selection

A third key element to obtaining meaningful regression coefficients from IMPROVE
measurements is appropriate segregation of data. For this analysis, data are grouped10

by season and monitoring site with the intention that samples taken within each subset
should yield fairly constant regression coefficients. However, sites that are strongly
influenced by time-varying sources may not match our intent and therefore may not be
ideal input for our regression analysis. For instance, a monitoring site that is impacted
intermittently by large wildfires and heavy diesel traffic will exhibit varying OM/OC ratios15

that would violate our assumption of constant β coefficients by quarter.
To check for temporal trends or irregularities during our 7 year study period, residual

error values were binned by year and examined for each site- and quarter-specific
dataset. This analysis was designed to identify three possible problems: (1) a one-
time abrupt change in εi which could indicate a change in measurement methods, (2) a20

monotonic temporal trend in εi which could indicate changing aerosol characteristics
at the site, possibly due to the implementation of regulatory controls on emissions,
and (3) a single year which showed vastly different εi from other years indicating that
a distinct and infrequent event (forest fire, abnormal meteorology etc.) affected the
monitoring site.25

Visual inspection of the data shows no evidence of problem 1 in these datasets.
There was a change in EC and OC measurement equipment between 2004 and 2005
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(White, 2007) as well as a coincident change in the calibration of the XRF sulfur mea-
surements (White, 2009a). (Advisories about other such changes to IMPROVE data
can be found at http://vista.cira.colostate.edu/improve/Data/QA QC/Advisory.htm.) De-
spite these changes in OC, EC, and sulfur, no shift in residual values is apparent be-
tween 2004 and 2005 for the network as a whole. Figure 6 shows εi by year at Sipsy5

Wilderness (a site with one of the highest median OC concentrations). The change in
εi between 2004 and 2005 is no greater than other inter-annual variations. Therefore,
we do not believe that this measurement change has an observable effect on our anal-
ysis although the change in measurement techniques does add some uncertainty to
our final results.10

Seven site- and quarter-specific datasets show evidence of a temporal trend (i.e.,
problem 2) in which mean residual values or the inter-quartile range of residual values
either increase or decrease monotonically from 2002–2008. Those regressions are
retained in our analysis, but not regarded as high-confidence results. An example of
one such dataset (Yosemite National Park during quarter 4) is shown in Fig. 7 and all15

seven are listed in Supplement Table S5. Further investigation of these datasets by
people with expert knowledge of those specific sites would be worthwhile.

Finally, sites affected by an infrequent event are identified if they fit one of two criteria:
the inter-quartile range of εi in any year does not overlap with the inter-quartile ranges
from any other year; or the year with the broadest inter-quartile range was greater than20

two times the second broadest inter-quartile range. Examples of these two phenomena
are also shown in Fig. 7. These regressions were re-run without the errant year and
the results from both the full and abridged datasets and are reported in Table S5 of the
Supplement (Sect. S5). In general, removing the outlier year has a modest effect on
the regression coefficients: of the 28 cases flagged, only 9βOC values, 4βsulf values,25

12βnit values, and 1βsoil value change by more than 0.1. We regard the 10 cases
in which all four coefficients were relatively unperturbed as high-confidence results.
These values are reported in both Supplement Tables S4 and S5. In cases where
coefficients changed more substantially (gray shading in Supplement Table S5), the
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outlier year appears to substantially skew the regression results. Again, we believe a
detailed investigation of those data by site-specific experts would be worthwhile.

3 Results

Table S2 in the Supplement (Sect. S5) shows our multiyear regression results. Supple-
ment Tables S4, S5, and S6 (Sect. S5) show coefficients with standard error values,5

normalized mean errors (NME), and normalized mean biases (NMB) for all quarter-
specific regressions. Supplement Table S4 includes regressions for which we have a
high degree of confidence (see Sects. 2.2 and 2.4). Supplement Table S5 includes all
regression results for datasets flagged for temporal trends and irregularities in εi (see
Sect. 2.4.3). Supplement Table S6 includes results from all regressions in which one10

or more coefficients fall outside our physically reasonable ranges (see Sect. 2.2). NME
and NMB are calculated using Eqs. (12) and (13). NMB and NME values are generally
small (mean NMB for all regressions in Supplement Tables S4, S5, and S6=−0.2%,
maximum absolute NMB=2.6%, mean NME=8.5%, maximum NME=22.6%) indicat-
ing that the data fit Eq. (5) quite well.15

NME =


n∑

i=1
|εi |

n∑
1

PM2.5,i

 × 100% (12)

NMB =


n∑

i=1
εi

n∑
1

PM2.5,i

 × 100% (13)
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3.1 Physically unreasonable results

Only 7 of the multiyear regressions (< 5%) have a coefficient that is physically unrea-
sonable. Of these, 2 have βsoil values (0.21 and 0.27) falling below those of known soil
profiles (see Sect. 2.2). Both low βsoil values come from urban IMPROVE sites (New
York City and Washington DC). In these locations, there are likely non-soil sources of5

Si, Ca, Fe, or Ti. For instance, residential wood combustion is a major source of all
four elements, on-road vehicle exhaust is a major source of Si, Ca, and Fe, and surface
coating operations are a major source of Ti (Reff et al., 2009). In urban areas where
such sources may dominate, Eq. (7) would overestimate total soil mass and might yield
an erroneously low value of βsoil. The other 5 problematic multiyear regressions have10

low βnit values, for which the cause is unclear. We are nevertheless able to extract
high-confidence values of βOC at these sites by using the multiyear βsoil value in our
quarter-specific regressions.

In addition, 61 quarter-specific regressions (10%) have at least one physically unrea-
sonable coefficient. The total number of quarter-specific regressions with problematic15

coefficients is greatest in quarter 1 (n= 21) and quarter 3 (n= 22) and least in quar-
ters 2 and 4 (n = 13 and n = 5 respectively). Problematic soil coefficients from the
multiyear regressions account for 8 of the 61 problematic quarter-specific regressions
(2 in each quarter).

Overall, 20 out of the 61 regressions with physically unrealistic coefficients are due20

to βOC values less than unity, 17 of which occur in quarter 1. These low βOC values
may be caused by errors in OC artifact correction. Although the low βOC values pre-
dominantly occur in quarter 1, this may be due to the fact that βOC values are lower in
quarter 1 than in other quarters (median βOC in quarter 1, 2, 3, and 4 are 1.39, 1.83,
1.81, and 1.59 respectively). Therefore, a slight low bias would push more estimated25

OM/OC ratios below 1 in the winter than in other seasons. The sensitivity of βOC values
to IMPROVE OC artifact correction techniques is discussed in more detail in Sects. 3.3
and S3 in the Supplement.
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Eighteen of the 61 problematic regressions are due to negative βnit values that are
more than 1.5 standard errors below zero. Fourteen out of these eighteen bad βnit
values occur in quarter 3. There are two possible explanations for the high number of
problematic nitrate results in quarter 3. First, nitrate concentrations are generally low in
the summer. In quarter 3, network-wide median nitrate concentrations were only 3% of5

median PM2.5 (annual median nitrate concentrations were, on average, 6% of median
PM2.5 concentrations and quarter 1 median nitrate concentrations were, on average,
11% of median PM2.5 concentrations). When the mass of an explanatory variable is
low compared to the mass of other PM2.5 components, the model fit is not very sensi-
tive to large changes in that coefficient. Second, these problematic nitrate coefficient10

estimations may be due to the large number of complete nitrate volatilization cases in
quarter 3. The lower-bound for negative βnit values (1.5 standard errors below 0) may
be too conservative, and we would therefore be flagging regressions in which nitrate
volatilization is 100% (i.e. βnit is essentially 0) as problematic regressions.

The third largest error comes from high βnit values: 13 regressions estimate βnit >15

1.35. In general these data points have higher than average standard errors (the mean
nitrate standard error for these regressions is 0.50 while the mean nitrate standard er-
ror for all site-specific regressions is 0.21). These large standard error values indicate
that βnit estimates are highly uncertain for these regressions. Some less frequent prob-
lems include 3 regressions with βsulf < 0.59 and one with βsulf > 1.53. There are three20

cases shown in Supplement Tables S5 and S6 for which a regression with problematic
coefficient(s) also had an outlier year in residual values, but eliminating the outlier year
did not fix the regression coefficients in any of those cases.

3.2 Spatial and temporal trends in βsoil, βsulf and βnit

Figure 8 shows spatial trends in soil coefficients. Much of the country has βsoil values25

near 1, confirming that the IMPROVE soil equation does a reasonable job of estimating
soil concentrations. Some notable departures from this are high values displayed in
orange and red in the southwestern US and lower values (green, blue, purple, and
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white) in much of the Midwest. Both of these are consistent with the calculated βsoil
values for different soil types described by Simon et al. (2010) who report that βsoil
values for desert soil range between 1.25 and 1.4 and βsoil values for agricultural soil
range between 0.78 and 1.10.

In order to evaluate spatial and temporal trends for βsulf and βnit, multiyear and5

quarter-specific regression results are grouped by region, matching the regional plan-
ning organizations designated by the EPA to address regional haze (EPA, 2010). From
this point forward, states included in WRAP, CENRAP, LADCO, MANE-VU, and VIS-
TAS will be referred to as the western region, the central region, the great lakes region,
the northeastern region, and the southeast region respectively.10

Maps of βsulf during each quarter are given in the Supplement (Figs. S6–S9). Fig-
ure 9 shows a summary of βsulf values for all quarters and regions. This figure includes
data from all regressions reported in Supplement Tables S4, S5, and S6. Apart from in
the western region, βsulf follows a seasonal trend in which values are lowest in the win-
ter (median values in the central region, the southeast region, the great lakes region,15

and the northeast region are 0.90, 0.92, 0.91, and 0.88 respectively) and highest in
the summer (median values in the central region, the southeast region, the great lakes
region, and the northeast region are 1.05, 1.04, 1.09, and 1.09 respectively). The me-
dian wintertime values less than 1 suggest that sulfate is dry and not-fully neutralized
in quarter 1. The summertime values greater than 1 suggest wet sulfate. Further anal-20

ysis presented in the Supplement suggests that the trends predicted by the regression
analysis can indeed be reasonably explained by the seasonal variation in laboratory
RH where samples were weighted and in the degree of sulfate neutralization.

Quarter-specific maps of all βnit are given in the Supplement (Figs. S10–S13). Fig-
ure 10 depicts several temporal and spatial trends. The regions which have the most25

dramatic seasonal temperature variations (the central region, the great lakes region,
and the northeast region) also have the most dramatic variation in median βnit values.
In addition, βnit values are lower (i.e. higher percentages of nitrate is volatilized from
the Teflon filter) in locations and in seasons where temperature is higher. For example,
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the southeast is warmer, on average, than the rest of the country throughout the entire
year. Median nitrate coefficients in this region are lower than median nitrate coeffi-
cients in all other regions in every quarter. Similarly, summer nitrate coefficients are
lower than winter nitrate coefficients in all regions. Finally we estimate that any site
whose βnit value is within 1.5 standard deviations of 0 has total nitrate volatilization.5

The number of sites falling into this category increase from 6 in the winter to 71 in the
summer, again showing that more nitrate volatilizes in warmer months. Since nitrate
volatilization is governed by the temperature-dependent nitrate equilibrium (Hering and
Cass, 1999), this behavior is expected. In addition, there is a large range of βnit values
in quarter 3 which may be due, in part, to low nitrate concentrations. This large varia-10

tion may indicate that, although we think the seasonal variation demonstrated by these
analyses is real, the regression model is not capable of precisely estimating βnit in the
summer months.

3.3 OM/OC results

The analysis of spatial and temporal trends in sulfate, nitrate, and soil coefficients15

shows that they can all be reasonably explained by known physical or chemical pro-
cesses. These results lend credence to the ability of this regression technique to
identify real trends in PM2.5 characteristics and build confidence in the OM/OC ratio
estimations. Table 1 summarizes the distribution of βOC values among sites in all re-
gions for all quarters. Table 1 and Fig. 11a shows that wintertime OM/OC ratios are20

generally higher in the eastern portion of the country than in the western portion of
the country. Median βOC values in the great lakes, southeast, and northeast are 1.58,
1.64, and 1.51 respectively while mean βOC values for the west and central regions
are 1.29 and 1.32 respectively. Higher OM/OC ratios may be a result of high residen-
tial wood smoke concentrations in densely populated areas. In addition, high values25

in the southeast may be due to secondary organic aerosol formation, which has been
shown to occur in this region even during winter months (Yu et al., 2007). For quarter
1 regressions, there is the most site-to-site variability within the Western and Central
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regions. Ninety percent of βOC values lie between 0.67 and 1.76 in the West and be-
tween 1.18 and 1.64 in the Central US. In contrast, 90% of βOC values lie in a much
smaller range in the Eastern half of the country (1.43 to 1.98, 1.44 to 1.87, and 1.29 to
1.78 for the Great Lakes, Southeast, and Northeast regions).

Figure 11b suggests that OM/OC ratios in the summer do not vary substantially5

by region: median βOC values are 1.87, 1.81, 1.93, 1.81, and 1.80 in the southeast,
northeast, great lakes region, central states, and west. The range of βOC values is also
quite consistent between regions for quarter 3 (see Table 1).

Seasonal variations in βOC can also be seen in Table 1 and Fig. 12, which show
βOC values are higher in the summer than in the winter. Regressions at only 12 sites10

yielded higher βOC values in the wintertime than in the summer (regressions for both
quarter 1 and quarter 3 were performed at 146 sites). This is consistent with higher
SOA concentrations in the summer and more oxidative aging due to more photolysis
and thus higher OH concentrations. In addition to lower wintertime values, there is
also a larger spread of βOC values in the winter than in other seasons: in quarter 1 we15

estimate that 90% of βOC values fall between 0.79 and 1.84; in quarter 3 we estimate
that 90% of βOC values fall between 1.44 and 2.08. Maps for quarter 2 and quarter 4
results are given in Figs. S14 and S15 of the Supplement.

Differences between our methods and those used by Malm and Hand (2007) are
summarized in Table 2. Our changes made to the technique first developed by Malm20

and Hand (2007) have resulted in substantial changes in OM/OC estimates. Figure 13
shows a comparison of βOC estimates from multiyear regressions in our work to βOC
estimates reported by Malm and Hand (2007). Within each region, the βOC estimates
from our regressions show less site-to-site variability than estimates from Malm and
Hand (2007). In addition, although we find median values in each region similar to25

those reported by Malm and Hand (2007), our low βOC values are higher than theirs
in the great lakes and southeast regions: regression results reported by Malm and
Hand (2007) show that βOC values were 1.4 and 1.3 for sites in the 5th percentile of the
great lakes and southeast regions while our βOC estimates were 1.7 and 1.5 for sites in
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the 5th percentile in those regions. βOC estimates at sites at the 5th percentile in other
regions were comparable in the two studies. Finally, high βOC values in the west and
central regions were lower in our multiyear regressions than in the regressions reported
by Malm and Hand (2007): βOC values were 2.1 for sites in the 95th percentile of
the west and central regions according to Malm and Hand (2007), while βOC values5

were 1.9 for sites in the 95th percentile of the west and central regions in our study.
To isolate the main cause of these different results, we perform a series of regres-

sions, beginning with the methods described by Malm and Hand (2007) and incre-
mentally changing one parameter with each regression. The original dataset used by
Malm and Hand (2007) was downloaded in December of 2004. The download date10

is important because historic IMPROVE data are updated on the website as QA is-
sues are identified. One such change occurred in November of 2009 when chlorine
values were readjusted because the original blank correction was found to be too low
(White, 2009b). Our regressions that use the methods of Malm and Hand (2007) match
the results reported in that study and will be referred to as the baseline regressions.15

When comparing the baseline regressions to our final results, 61% of βOC estimates
change by more than 0.1 and 37% change by more than 0.2. The three parameters
that have the largest effect on βOC values are the dataset download date, the years
analyzed (i.e. 1988–2003 vs. 2002–2008), and the choice of covariates. The use of
the EiV rather than OLS affects the βOC estimates to a smaller degree. The use of20

S vs. SO2−
4 to calculate ammonium sulfate and the choice of soil equation has almost

no effect on the βOC estimates. The large effect of the years analyzed may indicate a
change in this value over time (about 64% of the sites have higher βOC values when
using 2002–2008 data than when using 1988–2003 data). In addition, this may in-
dicate that changes to measurement protocols and hardware which occurred during25

these time periods have influenced the results. Both the effect of the dataset used
(download date) and the years analyzed on our results indicate that this analysis may
be sensitive to changes in measurement and data processing methodology. We fur-
ther analyze which part of the covariate changes causes the largest difference in βOC
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values (i.e. the subtraction of KNON from PM2.5, fixing the coefficient for Cl− at 1.8, fix-
ing the coefficient for EC at 1, or including an intercept term). The analysis shows that
the addition of KNON, the addition of an intercept, and the fixed Cl− coefficient have al-
most no impact on the βOC estimates. However, fixing the EC coefficient to 1 changes
the βOC estimate by more than 0.2 in approximately 15% of the cases. One possible5

reason for this large effect is that EC and OC are highly collinear in our datasets. About
20% of the datasets have rP values between these two components above our cutoff
of 0.85. Almost all other datasets have high correlation coefficients that are under our
cutoff (between 0.65 and 0.85). The high colinearity means that by including EC as a
covariate, some EC mass will likely be attributed to the OC coefficient or vice-versa.10

Due to the large impact of including EC as a covariate, we perform further analysis
to investigate the effect of assuming βEC equals 1. This examination found that for
about 1/4 of the regressions reported by Malm and Hand (2007), over-estimated βEC
values likely caused OC coefficients to be drastically underestimated. This finding is
consistent with the fact that for sites in the 5th percentile, Malm and Hand (2007) report15

lower βOC estimates than we do. Furthermore, we find that our assumption of an EC
coefficient equal to unity does not greatly bias OC coefficient results. Details of this
analysis are presented in the Supplement (Sect. S3).

As mentioned previously, OC artifacts on the quartz filter used to measure OC and
on the Teflon filter used to measure PM2.5 (and subsequently OM) are included in the20

βOC estimates. Both positive and negative artifacts are possible. Quartz filters are
more prone to positive artifact than Teflon. The literature is inconclusive regarding neg-
ative artifacts on quartz versus Teflon. Data reported from the IMPROVE monitoring
network include a site-wide correction for positive OC artifact on the quartz filter, but
no correction to the Teflon filter. We evaluated the effects of site-to-site variability in25

positive OC artifact (quartz filter) on our regression results (details provided in Supple-
ment Sect. S3). This evaluation suggests that the IMPROVE network practice of using
a single artifact correction network-wide does not substantially affect our estimations
of βOC. In addition to site-to-site variability, there may be other complications from
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IMPROVE’s current OC artifact correction. If OC artifact is not properly corrected on
both the Teflon and quartz filters, then the βOC value will be influenced. This could
occur if (1) IMPROVE’s back-up filter method does not completely capture all positive
artifact on quartz filters, (2) Teflon filters have non-negligible positive artifact, or (3) the
magnitude of negative artifact differs on the quartz and Teflon filters. An in-depth explo-5

ration of OC artifact is beyond the scope of this paper, but the uncertainties associated
with these issues should be kept in mind when interpreting the regression results pre-
sented here.

4 Summary and future work

This work has helped to develop a robust technique for estimating OM/OC ratios that10

can be applied to a comprehensive dataset, such as the IMPROVE monitoring network
data. The ability of this technique to estimate physically reasonable spatial and sea-
sonal trends in βOC, βsulf, βnit, and βsoil builds confidence in the results. Furthermore,
major improvements on the technique reported by Malm and Hand (2007) include the
use of an errors-in-variables regression and the elimination of EC as an explanatory15

variable. We believe that these two changes provide more realistic results and have
eliminated substantial biases that occurred in approximately 1/4 of the regressions per-
formed by Malm and Hand (2007). Comparison with other OM/OC estimation methods
will be the subject of future work.

In addition, this work has helped to identify further areas of research for IMPROVE20

data. First, our analysis shows the effect of the neutralization state on predicted mass
associated with sulfate. These results suggest that sulfate is often not fully neutralized.
Further studies to characterize ammonium concentrations could improve our ability to
achieve mass closure with IMPROVE data. Second, nitrate volatilization appears to
vary substantially by site and season. A measurement study could be performed to25

verify the nitrate volatilization estimates made here. In addition, samples could be
shipped in refrigerated conditions to prevent nitrate volatilization during transport. At a
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minimum, these results demonstrate the importance of recording temperature and RH
conditions to which filters are exposed during sampling, transport, and measurement.
Finally, this work has identified general temporal and spatial trends in OM/OC ratios
showing that during the winter they are larger in the eastern US than in the West and
that summertime values are larger than wintertime values across the US. Considering5

this work, and that of Malm and Hand (2007) and El-Zanan et al. (2005), the IMPROVE
steering committee should re-evaluate the current practice of using a fixed OM/OC ratio
when calculating reconstructed fine mass.

Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/10/24651/2010/10

acpd-10-24651-2010-supplement.pdf.
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Table 1. Summary of βOC distributions among sites for each quarter and region.

Region Quarter BOC Number of
regressions

5th 25th 50th 75th 95th
percentile percentile percentile percentile percentile

West 1 0.67 1.06 1.29 1.42 1.76 89
West 2 1.36 1.66 1.81 1.90 2.14 86
West 3 1.33 1.66 1.80 1.88 2.04 85
West 4 1.22 1.43 1.57 1.68 1.88 86
Central 1 1.18 1.27 1.32 1.52 1.64 21
Central 2 1.59 1.69 1.78 1.87 2.10 21
Central 3 1.51 1.72 1.81 1.92 2.07 19
Central 4 1.37 1.45 1.53 1.64 1.90 21
Great Lakes 1 1.43 1.44 1.58 1.81 1.98 5
Great Lakes 2 1.83 1.83 1.94 1.95 1.97 5
Great Lakes 3 1.67 1.90 1.93 1.95 2.01 5
Great Lakes 4 1.31 1.31 1.48 1.61 1.61 5
Southeast 1 1.44 1.58 1.64 1.80 1.87 17
Southeast 2 1.50 1.76 1.89 2.00 2.16 16
Southeast 3 1.47 1.75 1.87 2.08 2.25 16
Southeast 4 1.42 1.60 1.67 1.75 1.83 17
Northeast 1 1.29 1.43 1.51 1.60 1.78 20
Northeast 2 1.23 1.74 1.87 2.01 2.09 19
Northeast 3 1.69 1.76 1.81 1.90 2.03 20
Northeast 4 1.07 1.49 1.57 1.67 1.85 16
all 1 0.79 1.20 1.39 1.58 1.84 153
all 2 1.39 1.69 1.83 1.94 2.15 148
all 3 1.44 1.72 1.81 1.91 2.08 146
all 4 1.24 1.44 1.59 1.68 1.87 146
all all 1.10 1.44 1.66 1.83 2.06 593
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Table 2. Differences between our methodology and that of Malm and Hand (2007).

Methodological Aspect Malm and Hand (2007) This work

IMPROVE dataset Download date: 3 Dec 2004 Download date: 6 Jan 2010
Years analyzed: 1988–2003 Years analyzed: 2002–2008

Data segregated by Monitoring site Monitoring site for βsoil
Monitoring site and quarter
for all other coefficients

Regression type Ordinary least squares Errors-in-variables

Response variable PM2.5 PM2.5 – (1.2 KNON+1.8 Cl− +EC)

Intercept (β0) Included Excluded

Explanatory variables (NH4)2SO4, NH4NO3, OC, (NH4)2SO4, NH4NO3, OC,
EC, soil, sea salt* soil

Calculation of explanatory (NH4)2SO4 =1.37×SO2−
4 (NH4)2SO4 =4.125×S

variables (SO2−
4 measured by ion (S measured by XRF)

chromatography) SOIL from Eq. (7)
SOIL from Eq. (2)

* Note: Sea salt was not used as an explanatory variable for sites with a small number of dates that reported Cl−

concentrations: ADPI1, AGTI1, AREN1, BALD1, BOAP1, BRLA1, CACR1, CADI1, CAPI1, CEBL1, CHER1, CHOI1,

COHU1, CRES1, CRMO1, DEVA1, DOME1, ELDO1, ELLI1, FOPE1, GAMO1, GRGU1, HALE1, HEGL1, HOOV1,

IKBA1, JARI1, JOSH1, LASU1, LIGO1, LIVO1, LOST1, MACA1, MELA1, MING1, MKGO1, MOM1, MONT1, NEBR1,

NOCH1, PMRF1, QUCI1, QURE1, QUVA1, SAFO1, SAGA1, SAGU1, SAMA1, SAPE1, SENE1, SHRO1, SIKE1,

SIPS1, SPOK1, SWAN1, TALL1, THBA1, THRO1, ULBE1, WHRI1, WICA1, WIMO1, ZION1.
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IMPROVE data (2002-2008):  
186 monitoring sites in the continental US 

Data from 153 monitoring sites 

153 multiyear regressions (Table S2) 

612 quarter-specific regressions  

605 quarter-specific regressions 

593 quarter-specific regressions 
 

Table S4: 511 high-confidence quarter-
specific regressions*  
Table S5: 35 quarter-specific regressions 
flagged based on residual error values 
(temporal trends or 1 outlier year)*, ‡  
Table S6: 61 quarter-specific regressions 
with physically unrealistic coefficients‡  
 
Note: some regressions appear in multiple 
tables as indicated by footnotes. 

Eliminate sites with less than 105 days of complete 
data per quarter for PM2.5, S, NO3

-, Si, Ca, Fe, Ti, 
OC, or EC.  Set missing K and Cl- values to zero. 

 

Perform one multiyear EiV regression for each site to 
obtain βsoil 

 

Perform four quarter-specific EiV regressions for 
each site using βsoil from multiyear regression at that 

site 

Eliminate quarter-specific regressions for which the 
maximum Pearson correlation coefficient (|rP|) > 
0.85 between any two explanatory variables (7 

eliminated regressions shown in Table S3) 

Eliminate quarter-specific regressions with 
maximum rS >0.4 between εi and one or more PM 
components (12 eliminated regressions shown in 

Table S3) 

Flag suspect quarter-specific regressions which have:  
1) A temporal trend in residual error values,  
2) One outlier year for residual error values,  
3) One or more physically unreasonable coefficients 
in the quarter-specific regression, or  
4) A physically unreasonable soil coefficient from 
the annual regression 
 

Fig. 1. Flow diagram outlining regression methodology used in this work.
* Table includes 10 regressions originally flagged for an outlier year, but for which excluding
that year does not change coefficients.
‡ Table includes 4 regressions with both physically unrealistic coefficients and low confidence
temporal trends.
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Fig. 2. Bias in regression coefficients caused by measurement error in synthetic datasets
representative of Gila Wilderness, NM in quarter 1. Horizontal dotted lines represent the “true”
value of each coefficient. The left box in each panel illustrates bias for OLS regressions and
the right box shows a greatly reduced bias after implementing the errors-in-variables (EiV)
regression method.
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Fig. 3. Distribution of bias in regression coefficients for quarter-specific regressions at all IM-
PROVE sites. For each technique, we compute the median bias from 200 synthetic datasets at
each site/quarter using ordinary least squares (blue) and errors-in-variables regression (black)
and plot the distribution of those median values across all regressions. The red vertical line
shows zero bias.

24688

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/24651/2010/acpd-10-24651-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/24651/2010/acpd-10-24651-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 24651–24698, 2010

Determining the
spatial and seasonal
variability in OM/OC
ratios across the US

H. Simon et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 4. Empirical selection of a threshold for identifying regressions which may be biased due
to multicolinearity. See Sect. 2.4.1 for an explanation of what constitutes a regression that is
“suspect”.
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Fig. 5. Example datasets in which residual error (εi ) exhibits a high correlation with a PM2.5
component: chloride at Hercules-Glades, Missouri – quarter 2 (upper left), EC at Mount Hood,
Oregon – quarter 2 (lower left), SOIL at Domelands Wilderness, California – quarter 4 (upper
right), and KNON at Sawtooth National Forest, Idaho – quarter 4 (lower right).
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Fig. 6. Lack of systematic change in residual error values (εi ) between 2004 and 2005 at the
Sipsy Wilderness site.
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Fig. 7. Residual error values (εi ) from quarter 4 at Yosemite National Park show a monotoni-
cally increasing trend between 2002 and 2008 (left). εi in quarter 2 from Northern Cheyenne
show that the inter-quartile range for 2002 does not overlap with other years (center). There is
a greater spread in εi during quarter 3 at Bridgton, Maine in 2002 than in all other years (right).
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Fig. 8. βsoil at 153 IMPROVE sites.
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Fig. 9. Spatial and temporal trends in βsulf.
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Fig. 10. Spatial and temporal trends in βnit.
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Fig. 11. βOC values for quarter 1 (top) and quarter 3 (bottom). High confidence results are
depicted by circles, regressions with questionable residual trends are depicted by downward
facing triangles, and regressions with a questionable coefficient are depicted by upward facing
triangles.
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Fig. 12. Comparison of βOC values for quarters 1 and 3.
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Fig. 13. Comparisons of βOC values reported by Malm and Hand (2007) to multiyear βOC
values from this work.
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