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Abstract

The cloud condensation nuclei (CCN) properties of ammonium sulfate particles mixed
with organic material condensed during the hydroxyl-radical-initiated photooxidation
of isoprene (C5H8) were investigated in the continuous-flow Harvard Environmental
Chamber. CCN activation curves were measured for organic particle mass concen-5

trations of 0.5 to 10.0 µg m−3, NOx concentrations from under 0.4 ppbv up to 38 ppbv,
particle mobility diameters from 70 to 150 nm, and thermodenuder temperatures from
25 to 100 ◦C. At 25 ◦C, the observed CCN activation curves were accurately described
by a Köhler model having two internally mixed components, namely ammonium sul-
fate and secondary organic material. The modeled physicochemical parameters of10

the organic material were equivalent to an effective hygroscopicity parameter κORG of
0.10±0.03, regardless of the C5H8:NOx concentration ratio for the span of >200:0.4 to
50:38 (ppbv:ppbv). The volatilization curves (i.e., plots of the residual organic volume
fraction against temperature) were also similar for the span of investigated C5H8:NOx
ratios, suggesting a broad similarity of particle chemical composition. This sugges-15

tion was supported by limited variance at 25 ◦C among the particle mass spectra. For
example, the signal intensity at m/z 44 (which can result from the fragmentation of ox-
idized molecules believed to affect hygroscopicity and CCN properties) varied weakly
from 6 to 9% across the range of investigated conditions. In contradistinction to the
results for 25 ◦C, conditioning up to 100 ◦C in the thermodenuder significantly reduced20

CCN activity. The altered CCN activity might be explained by chemical reactions (e.g.,
decomposition or oligomerization) of the secondary organic material at elevated tem-
peratures. The study’s results at 25 ◦C, in conjunction with the results of other chamber
and field studies for a diverse range of conditions, suggest that a value of 0.10±0.05 for
κORG is representative of both anthropogenic and biogenic secondary organic material.25

This finding supports the use of κORG as a simplified yet accurate general parameter to
represent the CCN activation of secondary organic material in large-scale atmospheric
and climate models.
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1 Introduction

The growth of atmospheric particles to form cloud droplets influences climate through
indirect effects on cloud brightness and lifetime and changes in patterns of precipita-
tion (Lohmann and Feichter, 2005; IPCC, 2007; Andreae and Rosenfeld, 2008). Pre-
dictions of which atmospheric particles act as cloud condensation nuclei (CCN) (i.e.,5

the initial particles on which water condenses to grow into droplets) are complicated
by their diverse composition (McFiggans et al., 2006). In particular, the influence of
organic material on CCN activity is both important and challenging, given that organic
material at times comprises a dominant fraction of the particle mass but consists of
myriad possible molecular configurations (Andreae and Crutzen, 1997; Kanakidou et10

al., 2005; Murphy et al., 2006; Goldstein and Galbally, 2007; Zhang et al., 2007). More-
over, less-active organic material is often internally mixed with more-active inorganic
material within a single particle so that an understanding of the CCN activity of mixed
materials is required (Shulman et al., 1996; Kulmala et al., 1997; Cruz and Pandis,
1998; Laaksonen et al., 1998; Bilde and Svenningsson, 2004; Sun and Ariya, 2006).15

A significant fraction of the organic material in atmospheric particles results from the
gas-to-particle condensation of the low-volatility oxidation products of volatile organic
compounds (VOCs), thereby forming a secondary organic aerosol (SOA) (Seinfeld and
Pandis, 2006). Similar oxidation products can also form by aqueous chemical path-
ways, such as in cloud droplets (Lim et al., 2005; Volkamer et al., 2009), and they can20

remain in the particle following droplet evaporation. Globally, the dominant contribu-
tors to SOA production are biogenic VOCs, such as terpenes and isoprene (Griffin et
al., 1999; Chung and Seinfeld, 2002; Tsigaridis and Kanakidou, 2003; Kanakidou et
al., 2005). Isoprene is the most abundant non-methane hydrocarbon, with emissions
of ca. 500 Tg yr−1 (Guenther et al., 2006), and the contribution of isoprene emissions25

to tropospheric organic particle mass concentrations can be significant (Claeys et al.,
2004; Edney et al., 2005; Henze and Seinfeld, 2006; Kleindienst et al., 2006; Kroll et
al., 2006; Ng et al., 2008; Carlton et al., 2009).

216

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/213/2010/acpd-10-213-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/213/2010/acpd-10-213-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 213–244, 2010

CCN activity of
isoprene

photooxidation
products

S. M. King et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

In the present study, the CCN activity of mixed organic-sulfate particles, which were
produced by the condensation of isoprene photooxidation products on sulfate seed par-
ticles at variable NOx concentrations, was investigated in the Harvard Environmental
Chamber. The influence of NOx concentration on the yield of particle mass for isoprene
photooxidation was reported previously (Presto et al., 2005; Dommen et al., 2006; Kroll5

et al., 2006; Carlton et al., 2009), and the observed changes in yield reported in those
studies for varying VOC-to-NOx ratios suggested significant variability in the chemical
composition of secondary organic material. This variability, which we hypothesized
could imply changes in CCN activity, provided our motivation for the study described
herein. Moreover, CCN activity after conditioning in a thermodenuder was measured in10

the present study. Particle conditioning by use of thermodenuders has been discussed
in several recent laboratory studies (Paulsen et al., 2006; An et al., 2007; Jonsson
et al., 2007; Stanier et al., 2007), and the reported effects on hygroscopic properties
motivated us in this study to test for significant changes in CCN activity (Meyer et al.,
2009; Poulain et al., 2009).15

2 Experimental

The Harvard Environmental Chamber, described in Shilling et al. (2008) and King et
al. (2009), was used to form mixed organic-sulfate particles by the condensation of
VOC oxidation products on inorganic seed particles (Fig. 1). Continuous-flow opera-
tion of the chamber held reaction conditions at steady state over time periods of days,20

allowing for adequate signal integration and averaging at low mass concentrations.
The conditions of each experiment performed during this study are listed in Table 1.
The temperature and the relative humidity in the bag were held at 25 ◦C and 40%,
respectively, by feedback control (King et al., 2009). Ultraviolet irradiation was pro-
vided by forty-eight 40-W Sylvania 350BL blacklights affixed to the chamber walls. The25

photolysis rate coefficient of NO2 was measured as 0.23±0.01 min−1.
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The 4.7 m3 Teflon bag inside the chamber was cleaned before each experiment,
typically for one to two days. During the cleaning procedure, the bag was irradiated
and the temperature of the chamber was set to 40 ◦C. Continuous flows of particle- and
hydrocarbon-free air at 50 sLpm and of hydrogen peroxide (vide infra) at 0.5 sLpm were
flushed through the chamber, for which the conditions of the standard liter (sL) were5

273.15 K and 105 Pa. Cleaning continued until the particle concentration was less than
1 cm−3 and the NOx concentration was less than 1 ppbv.

The components injected into the chamber included dry and humid pure air, dry am-
monium sulfate seed particles, hydrogen peroxide (H2O2), isoprene (C5H8), and nitric
oxide (NO). Flow into the chamber included 17 sLpm of mixed wet and dry clean air,10

0.5 sLpm of air exiting the H2O2 bubbler, and 2.3 sLpm from the seed-particle genera-
tor. For this total flow, the mixed-volume residence time in the bag was 3.6 h at 25 ◦C.
Isoprene flow ranged from 0.01 to 0.04 sLpm, depending on the desired steady-state
organic particle mass concentration. For experiments with variable NOx, NO flow was
less than 0.01 sLpm. The seed particles were size-selected by a differential mobility15

analyzer (DMA1, TSI Model 3071) and passed through a diffusion dryer (<5% RH) be-
fore they were injected into the chamber. The size distribution of the dry seed particles
had a mean electric mobility that was equivalent to 50 nm spherical particles of +1
charge (i.e., Dm,+1=50 nm). The geometric standard deviation of the distribution was
approximately 1.3, in line with the employed sheath-to-aerosol flow ratio of 10:2.5. The20

particle number concentration exiting the bag ranged between 4000 and 8000 cm−3.
The H2O2 radical precursor used in these experiments followed the method of Kroll

et al. (2006), who described SOA production by OH-initiated VOC oxidation. A flow of
0.5 sLpm of nitrogen was introduced by a fritted stainless steel bubbler into a concen-
trated aqueous solution of H2O2 (50 wt%; Sigma Aldrich), and the exit flow of H2O2-25

laden N2 was injected into the bag through a PFA tube. Based on the H2O2 vapor
pressure of the solution (Scatchard et al., 1952), the predicted steady-state concen-
tration of H2O2 in the bag was 22 ppmv prior to photolysis. Photolysis of H2O2 was
enhanced by irradiation from an ultraviolet lamp (Jelight 1000) prior to injection into the
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irradiated bag.
Isoprene injection was regulated using a mass flow controller attached to a gas cylin-

der (Air Liquide; 0.5, 5, and 100 ppmv). Isoprene concentrations in the bag prior
to reaction (cf. Table 1) were calculated from the dilution of the cylinder concentra-
tions. The accuracy of the calculated concentrations was verified experimentally by5

use of an Ionicon proton-transfer reaction mass spectrometer (PTR-MS). The calcu-
lations and the measurements agreed within a 10% uncertainty (e.g., the calculated
50 ppbv was measured as 48±5 ppbv). Measurements for an initial isoprene concen-
tration of 50 ppbv and NOx concentration of less than 1 ppbv during steady-state pho-
tolysis showed that 10% of the isoprene exited without reaction, implying an effective10

OH concentration of 7×106 molecule cm−3 for an OH-C5H8 bimolecular rate constant of
1.02×10−10 cm3 molecule−1 s−1. Initial isoprene concentrations of 50 to 200 ppbv were
employed in the experiments (cf. Table 1).

The NOx concentration was maintained in the bag by constant injection of NO from
a gas cylinder (Air Liquide; 1 and 5 ppm). For Experiment 1, no prior injection of NO had15

occurred since the installation of the bag. During this experiment, the NOx concentra-
tion remained below the detection limit of 0.4 ppbv (Teledyne 200E chemiluminescent
analyzer). Subsequent to the use of NO in Experiment 2, the NOx concentrations re-
mained above the detection limit even after extensive cleaning, presumably because
of the uptake and the subsequent slow release from the Teflon material of the bag.20

The concentration of O3, produced as a by-product of VOC photooxidation, was
recorded using an ultraviolet absorption ozone analyzer (Teledyne 400E). The concen-
tration increased linearly with the NOx concentration, ranging from 19±5 to 333±3 ppbv
O3 for NOx concentrations ranging from less than 1 ppbv to 38±5 ppbv (Table 1). The
ozonolysis products of the isoprene have high volatility and therefore are not expected25

to contribute to the particle mass concentrations of this study (Kleindienst et al., 2007).
The flow exiting the bag was split three ways for simultaneous sampling by

a scanning mobility particle sizer (SMPS1, TSI Model 3936) to measure the parti-
cle number-size distributions, an Aerodyne high-resolution time-of-flight aerosol mass
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spectrometer (HR-ToF-AMS) to measure the organic and sulfate particle mass concen-
trations, and a CCN instrument configuration to measure the size-resolved activation
spectra. The CCN measurements were carried out by the instrument chain repre-
sented in Fig. 1. A differential mobility analyzer (DMA2, sheath-to-aerosol flow ratio
of 10:2.5) was used to select particles within a confined range of electrical mobility.5

For the experiments described herein, selected mode diameters included Dm,+1 equiv-
alents of 70, 80, 90, 100, 120, and 150 nm. The mobility-classified particles flowed
through a thermodenuder before simultaneous sampling by a condensation particle
counter (CPC, TSI 3010), a Droplet Measurement Technologies cloud condensation
nucleus counter (CCNC, DMT CCN-2) (Roberts and Nenes, 2005; Lance et al., 2006;10

Rose et al., 2008), and a second SMPS (SMPS2, DMA sheath-to-aerosol ratio of 10:1).
The activated fraction was calculated as the number concentration of particles growing
to optical diameters of 1 µm and larger, divided by the number concentration mea-
sured by the CPC. Calibration of the CCNC was performed off-line by using an osmotic
coefficient model with the parameterization of Brechtel and Kreidenweis (2000) to de-15

termine the activation supersaturations of (NH4)2SO4 (Shilling et al., 2007). SMPS2
with a particle charger in front measured the number-diameter distribution of particles
entering the CCNC (cf. Fig. 2) and allowed for direct incorporation of the effects of
multiply charged particles in the data analysis. Even though the DMA2-SMPS2 rep-
resents a tandem configuration that normally requires use of an inversion algorithm20

like TDMAFIT (Rader and McMurry, 1986; Stolzenburg and McMurry, 2008), the larger
sheath-to-aerosol flow ratio in SMPS2 compared to that in the DMA2 obviated the need
in our application, and the TSI algorithm was used for inversion of the SMPS2 data.

The thermodenuder (TSI Model 3065) consisted of a heated section (25 cm length),
in which molecules were evaporated from the particles, followed by an absorptive sec-25

tion (80 cm length), in which the evaporated molecules were removed by activated
charcoal. The flow rate through the thermodenuder was maintained below the maxi-
mum recommendation of 3 Lpm, corresponding to a residence time of more than 0.6 s
in the heated section and more than 1.9 s in the absorptive section.
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3 Results and discussion

The critical supersaturation Sc (%) of CCN activation for a particle corresponds to the
maximum in the supersaturation S of the hygroscopic growth curve (Seinfeld and Pan-
dis, 2006). For multi-component particles, this curve can be calculated as follows (King
et al., 2009):5

1+
S

100
=nw

nw+
πD3

geo,dry

6

∑
k∈{AS,ORG}

εkωkikV
−1

m,k

−1

exp

(
4σVm,w

RTDaq

)
(1)

where nw is the number of moles of water, εk is the volume fraction of species k in
the dry particle, ωk is the soluble fraction of species k at activation, ik is the van’t Hoff
factor of the soluble fraction of species k in solution, Vm,k is the molar volume of the
soluble fraction of species k in the dry particle, σ is the surface tension of the solution,10

subscript w is pure water, R is the universal gas constant, T is temperature, Dgeo,dry is
the geometric diameter of the dry particle, and Daq is the diameter of the wet particle. In
our study, species k include ammonium sulfate (“AS”) and secondary organic material
(“ORG”).

As apparent in Eq. (1), the terms ωORG, iORG, and Vm,ORG appear together so that15

compensating changes in them can explain a CCN data set, implying that these terms
are non-unique. Petters and Kreidenweis (2007) developed a lumped-parameter ap-
proach as a way to represent the chemical properties that influence CCN activation.
According to this approach, the hygroscopic growth curve can be expressed using the
effective hygroscopicity parameter κk as follows:20

1+
S

100
=

D3
aq−D3

geo,dry

D3
aq−D3

geo,dry

(
1−

∑
k∈{AS,ORG}

εkκk

)exp

(
4σVm,w

RTDaq

)
(2)
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for which σ=0.072 N m−1 of water. Equations (1) and (2) are related by
κk=ωkikV

−1
m,kVm,w.

CCN activation curves measured with the thermodenuder at 25 ◦C are shown in
Fig. 3 for particle populations having Dm,+1 between 70 and 150 nm. The range of
C5H8:NOx conditions represented in Fig. 3 corresponds to the experiments described5

in Table 1. The lines through the data points show the predicted CCN activation curves
of the particle population based on the model described in King et al. (2009).1 In the
model, particles within the population have different critical supersaturations because
of heterogeneities in particle diameter and organic volume fraction. One underlying
source of heterogeneity is the distribution of diameters for the sulfate seed particles;10

this distribution is affected both by the resolution of DMA1 and by the presence of mul-
tiply charged particles. For similar reasons, there is heterogeneity in the particles that
pass through DMA2. These heterogeneities explain the inflection point apparent in the
predicted activation curves (as well as in the data) shown in Fig. 3.

The predicted activation curves, which pass through all data points within experi-15

mental uncertainty, are based on a single set of physicochemical parameters (Table 2)
across the range of investigated C5H8:NOx conditions (i.e., 200:0 to 50:38 ppbv). To
obtain the parameters in Table 2, we prescribed all quantities except for the effective
molar volume Vm,ORG of the organic component (King et al., 2007). This quantity was
optimized in a least-squares manner so that the model predictions fit the observations,20

and the result of 180 cm3 mol−1 (corresponding to κORG of 0.10) was obtained. A sen-
sitivity analysis showed that the predicted activation curves were reproducible for up
to a 25% change in the optimized value of Vm,ORG, corresponding to ±0.03 for κORG.
The obtained Vm,ORG for the secondary organic material formed by isoprene photo-
oxidation can be compared to Vm,ORG values of 145, 148, and 180 cm3 mol−1 previously25

1An improvement in the present implementation is that multiply charged particles are directly
accounted for using the number-diameter distributions measured by SMPS2, supplanting the
need for modeling the distribution that passes DMA2.
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reported by Hartz et al. (2005), King et al. (2009), and Engelhart et al. (2008), respec-
tively, for the organic material formed by the dark ozonolysis of monoterpenes. The
obtained κORG can be compared to the results of Prenni et al. (2007), Duplissy et
al. (2008), Engelhart et al. (2008), and Wex et al. (2009). Those studies, represent-
ing the (photo-)oxidation of monoterpenes as well as small aromatic molecules, found5

that κORG ranged between 0.10 and 0.18 with uncertainties of up to ±0.08. Therefore,
within uncertainty, the CCN activity of secondary organic material produced by the pho-
tooxidation of isoprene and that resulting from other investigated precursor gases are
equivalent.

The secondary organic material for the experiments summarized in Table 1 was10

characterized by on-line particle mass spectrometry (Canagaratna et al., 2007). King
et al. (2009) showed that, in the case of the dark ozonolysis of α-pinene, the CCN ac-
tivity abruptly increased as the percent contribution of signal intensity at m/z 44 to the
total organic signal intensity passed a threshold at 11%, which was concomitant with
a decrease in organic particle mass concentration to less than 1 µg m−3. This result15

was plausibly explained by a decrease in surface tension caused by an enrichment of
carboxylic acids because fragments contributing at m/z 44 included CO+

2 derived from
carboxylic acids. For comparison, in the case of isoprene photooxidation as summa-
rized in Table 1, mass spectral characterization of the particle-phase secondary organic
material showed that the percent contribution of signal intensity at m/z 44 varied be-20

tween 6% and 9%, with the fraction contributed to m/z 44 by CO+
2 varying between 83%

and 89%. The CCN activity of this material had no detectable variation, so the implica-
tion is that the variance in chemical composition reflected by the 6% to 9% contribution
at m/z 44 was insufficient to affect CCN activation. This implication is consistent with
the results for the oxidation products of α-pinene that an 11% threshold value was nec-25

essary to influence CCN activity (King et al., 2009; Shilling et al., 2009). In the present
experiments for variable NOx concentrations, organic nitrates were another potential
hygroscopic moiety, but the high-resolution particle mass spectra indicate that these
species were insignificant across the range of investigated experimental conditions
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(Chen et al., 2010).
Even though the physicochemical properties describing CCN activity and chemical

composition were invariant for a thermodenuder setting of 25 ◦C, the organic particle
mass concentrations nevertheless depended on the C5H8 and NOx concentrations as
well as their ratio (Table 1). The complex dependence of concentration and yield on5

the C5H8:NOx ratio and other conditions (e.g., OH concentration) is discussed by Kroll
et al. (2006) and Carlton et al. (2009). The mass yields from this study (viz. 0.4–3.1%
uncorrected for wall loss) agree with those reported in previous studies (cf. Fig. 3 in
Carlton et al., 2009). Analysis of the entries in Table 1 shows that there was no obvious
relationship between the percent contribution by m/z 44 and possible predictive factors,10

such as the organic particle mass concentration, the organic particle mass yield, the
C5H8:NOx ratio, or the NOx concentration. The absence of simple correlations might
be explainable by the complex, shifting dominance between the peroxy and nitrate
reaction pathways (Carlton et al., 2009).

The CCN activity of particles after passing through the thermodenuder at 6015

and 100 ◦C was studied. The number-diameter distributions shown in Fig. 4 af-
ter exposure to 100 ◦C can be compared to those shown in Fig. 2 for 25 ◦C, re-
vealing a shift to smaller diameters because of the evaporation of organic ma-
terial. Ammonium sulfate did not evaporate for the employed temperatures and
residence times (Fig. S1: http://www.atmos-chem-phys-discuss.net/10/213/2010/20

acpd-10-213-2010-supplement.pdf) (An et al., 2007; Huffman et al., 2008). Figure 5
shows the residual organic volume fraction for particles initially of 100 nm for increasing
thermodenuder temperature (i.e., volatilization curves). Data from many experiments
are shown together in Fig. 5, and within uncertainty the volatilization curves are the
same, indicating little to no dependence on the extent of evaporation for the different25

C5H8:NOx ratios among the experiments. The results at 100 ◦C agree with those of
Poulain et al. (2009), who also observed that 65% of the organic particle mass con-
centration formed from α-pinene ozonolysis evaporated at 100 ◦C. Fierz et al. (2007)
have emphasized the importance of the effects of thermodenuder residence time, and

224

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/213/2010/acpd-10-213-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/213/2010/acpd-10-213-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys-discuss.net/10/213/2010/acpd-10-213-2010-supplement.pdf
http://www.atmos-chem-phys-discuss.net/10/213/2010/acpd-10-213-2010-supplement.pdf
http://www.atmos-chem-phys-discuss.net/10/213/2010/acpd-10-213-2010-supplement.pdf


ACPD
10, 213–244, 2010

CCN activity of
isoprene

photooxidation
products

S. M. King et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

we therefore carried out experiments both for flow rates of 2.5 and 1 Lpm, correspond-
ing to residence times of 0.7 and 1.8 s, respectively. Similar volatilization curves were
obtained for both flow rates. No particle mass spectra were collected after the ther-
modenuder.

CCN activation curves were collected for increasing thermodenuder tem-5

perature (Fig. S2: http://www.atmos-chem-phys-discuss.net/10/213/2010/
acpd-10-213-2010-supplement.pdf). The shift in number-diameter distribution to
smaller particles for increasing thermodenuder treatment (cf. Fig. 4) results in a shift of
the activation curves to higher supersaturations. However, for experiments with larger
C5H8:NOx ratios, the observed CCN curves are shifted even higher than expected from10

diameter decreases, indicating a decrease in the intrinsic CCN activation properties
of the organic component of the particles (i.e., a decrease of κORG) for increasing
thermodenuder temperature. Chemical changes in the organic component can result
from the preferential evaporative loss of more-volatile molecules, leaving a residuum of
less-volatile molecules (i.e., a process akin to fractional distillation). Meyer et al. (2009)15

and Poulain et al. (2009) reported that the less-volatile fraction of α-pinene SOA was
also the less-hygroscopic fraction. Poulain et al. monitored compositional changes
in the particles following thermodenuder treatment and found that the concentration
of oxygenated compounds (which are expected to be more hygroscopic) decreased
at 100 ◦C. Kalberer et al. (2004), El Haddad et al. (2009), Shapiro et al. (2009), and20

references therein have shown that high temperatures can induce chemical reactions,
such as the decomposition of peroxides, the oligomerization of alcohols with carbonyls
by aldol condensation, or the esterification of alcohols with carboxylic acids, all largely
driven by the elimination of molecular water. Oligomerization in particular increases
molar volume Vm,k and thus decreases κORG according to κk=ωkikV

−1
m,kVm,w. Significant25

oligomerization could also decrease the water-soluble fraction ωk.
To explore the extent of chemical transformation that is required to change the

CCN properties as much as observed, we varied the parameters of Eq. (1) to fit
the experimental data. For Experiment 1 with treatment at 100 ◦C, changes to
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Vm,ORG>104 cm3 mol−1, iORG less than 0.02, or σ greater than 0.085 N m−1 can bring
closure between the model and data. An increase in the surface tension to 0.085 N m−1

is counter to evidence that the organic material, if anything, depresses surface tension
(Facchini et al., 1999). Similarly, van’t Hoff factors of <0.02 are not congruent with
those of water-soluble organic molecules, which are generally not much smaller than5

unity, both for small molecules as well as for macromolecules (Mikhailov et al., 2004,
2009). An effective molar volume of >104 cm3 mol−1 might be explained by the for-
mation of oligomers having molecular mass greater than 10 kDa, but the kinetics must
be very rapid, requiring the formation of 100-mers during the exposure times in the
thermodenuder. This possibility cannot be fully ruled out.10

Alternatively, the observations can be explained by a decrease of the soluble fraction
ω∗

ORG upon heating. This behavior could be another consequence of oligomerization
and the formation of n-mers (but with n�100 as required in the previous explanation).
The activation curves of Experiment 1 at 60 and 100 ◦C can be modeled with the pa-
rameters of Table 2 unchanged except for ωORG=0.6 and ωORG=0.02, respectively.15

In this way, possible co-changes in Vm,ORG, iORG, or σ, which we cannot resolve in
our analysis, are gathered into an effective change in ωORG (Engelhart et al., 2008).
In view of the relatively low molecular mass and high polarity of the gas-phase oxi-
dation products of isoprene, water-soluble material is expected in the particle phase.
Oligomerization in the particle phase, however, can lead to products of reduced water20

solubility. Thus, we suggest that the chemical suppression of CCN activity observed
upon heating of the investigated isoprene SOA particles is explained by oligomerization
in the condensed phase.

A case study applied to AMAZE-08. The results of this study can be compared to
field observations reported by Gunthe et al. (2009) as part of the Amazonian Aerosol25

Characterization Experiment (AMAZE-08) that took place during the wet season in the
central Amazon Basin. The site is located such that air masses travel mainly from
the northeast over 1600 km of rainforest. Isoprene concentrations approach 10 ppbv
at midday (Karl et al., 2007), NOx concentrations are typically significantly less than
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1 ppbv during the wet season (Andreae et al., 2002; Trebs et al., 2006), submicron
particle organic mass concentrations are around 1 µg m−3, and the particles are dom-
inantly composed of sulfate and organic materials without nitrate or soot common to
anthropogenically affected regions of the world (Martin et al., in press, 2010). Chen et
al. (2009) concluded that most of the organic material composing submicron particles5

over the Amazon Basin during AMAZE-08 was derived from biogenic SOA production.
The conditions of the experiments summarized in Table 1 for the Harvard Environ-
mental Chamber therefore have important commonalities with those prevailing in the
Amazon Basin.

To facilitate comparisons of complex data sets, we define an apparent critical su-10

persaturation Sc,a. This value is calculated for one geometric diameter and one or-
ganic volume fraction (i.e., effectively assuming homogeneity within a population) us-
ing Eq. (1) and the physicochemical properties of Table 2. In our analysis, the organic
volume fraction is based on the measurements in AMAZE-08 at each analyzed diam-
eter (Gunthe et al., 2009). The average organic fractions were greater than 0.8, and15

Gunthe et al. showed that a mixing rule to obtain an overall κ value based on individual
κ values and volume fractions of the sulfate and organic components (using κ=0.1 for
the organic material on the basis of the widespread dominance of secondary organic
components in the Amazon Basin) could explain well the variability observed in CCN
activity during the field observations. This finding suggested to us that results on CCN20

activity recorded in the Harvard Environmental Chamber for mixed sulfate-organic par-
ticles should also be germane to the Amazon.

Figure 6 shows Sc,a for Dm,+1 of 80, 100, 120, and 150 nm. Data from AMAZE-
08 are also included in Fig. 6; the shown points represent campaign averages. For
further comparison, Sc,a is also calculated using Eq. (1) and the physicochemical pa-25

rameters measured previously for the secondary organic material resulting from the
oxidation of α-pinene (King et al., 2007). Figure 6 shows that predictions based on
organic-component parameters derived from SOA production by the oxidation of ei-
ther (or both) isoprene and α-pinene agree well with the AMAZE-08 observations.
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These findings suggest that the CCN activity of aerosol particles over regions and
at times for which the particle components are dominated by the oxidation products of
biogenic sulfur and organic emissions can be accurately modeled using a simple two-
component Köhler model that assumes full solubility and κORG=0.1. Furthermore, the
chamber studies cited earlier also suggest that secondary organic components pro-5

duced from the oxidation of anthropogenic precursor gases also have κORG=0.1. This
value should therefore be widely representative and applicable for use in large-scale
atmospheric and climate model studies. This conclusion is supported not only by CCN
field measurements in pristine rainforest air of Amazonia (Gunthe et al., 2009) but also
by field experiments in polluted urban and rural air in central Europe (Dusek et al.,10

submitted, 2009).

4 Conclusions

The CCN activity of mixed organic-sulfate particles produced by the condensation of
the reaction products of the hydroxyl-radical-initiated photooxidation of isoprene was
studied. Over the range of investigated C5H8:NOx ratios, the CCN activation curves15

were successfully predicted using a simple two-component Köhler model and a single
suite of physicochemical parameters for fully water-soluble secondary organic material.
Experimental conditions and parameter values are summarized in Tables 1 and 2, re-
spectively. The values of the parameters are similar to those reported in the literature
for organic material produced by the oxidation of other VOC precursor gases, such20

as monoterpenes and small aromatic molecules. These findings suggest that over
Amazonia and other regions dominated by high biogenic emissions, the CCN activity
of particles (as represented in large-scale atmospheric and climate models) can be
simply and accurately predicted using a multi-component Köhler model that employs
a single suite of parameters for biogenic secondary organic components in conjunction25

with the parameters representing the inorganic species.
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Table 1. Conditions of the seven experiments described in this study for the photooxidation of
isoprene. Isoprene concentrations are listed prior to reaction. Concentrations of NOx, O3, and
organic particle mass were measured at steady state. Mass yield is based on an estimate that
90% of isoprene reacts. The columns “m/z 44” and “CO+

2 ” represent the percent contribution
to the total organic mass spectrum of the particles (as recorded by the HR-ToF-AMS), where
CO+

2 is determined from the high-resolution data and m/z 44 is from the unit-mass resolution
data and includes contributions both from CO+

2 and C2H4O+.

Controlled conditions Secondary conditions

Experiment Time Calculated NOx O3
∗∗∗ Organic Organic m/z 44 CO+

2
number period isoprene (ppbv) (ppbv) particle mass particle mass (%) (%)

concentration (µg m−3) yield (%)
(ppbv; injected)

1 9–11 Oct 2008 200 <MDL∗ 19±4.5 7.0 1.4 6 5

2 18–20 Oct 2008 100 0.51±0.47 39±4.3 7.7 3.1 6 5

3 28–31 Oct 2008 50 1.2±0.46 36±1.9 0.5 0.4 9 8

4 3–4 Nov 2008 200 2.3±0.55 45±1.8 10.0 2.0 7 6

5 25 Nov 2008 50 17±3.3 68±7.3 1.2 0.9 8 7

6∗∗ 4–5 Dec 2008 50 27±0.74 221±2.4 0.6 0.5 7 6

7 14 Dec 2008 50 38±5.4 332±3.0 n/a n/a n/a n/a

∗ “MDL” refers to the minimum detection limit of the instrumentation.
∗∗ No CCN data are available for experiment 6.
∗∗∗ Concentrations of O3 are an upper limit because interference from absorption at 254 nm by
hydrogen peroxide is not taken into account.
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Table 2. Physical and chemical parameters describing the CCN activation curves shown in
Fig. 3 for a thermodenuder setting of 25 ◦C. The parameters are invariant at 25 ◦C for the inves-
tigated range of C5H8:NOx values.

Parameter Value Unit

Surface tension, σ 0.0725 N m−1

Molar volume, Vm,AS 74.66 cm3 mol−1

van’t Hoff factor of (NH4)2SO4, iAS 2.2

Soluble fraction of (NH4)2SO4, ωAS 1

Effective van’t Hoff factor, iORG 1

Effective molar volume, Vm,ORG 180 cm3 mol−1

Effective soluble fraction, ωORG 1

Hygroscopicity parameter∗, κAS 0.53

Hygroscopicity parameter∗, κORG 0.10

∗ Simultaneous solution of Eqs. (1) and (2) shows that κk=ωkikV
−1

m,kVm,w.
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Fig. 1. Schematic diagram of the experimental setup for the study of CCN activity of the sec-
ondary organic material produced by the photooxidation of isoprene. Panels show examples
of collected data: (a) A number-diameter distribution of particles exiting the chamber. (b)
A number-diameter distribution of particles after selection by DMA2 and passage through the
thermodenuder at 25 ◦C (cf. further examples in Fig. 2). (c) A number-diameter distribution af-
ter passage through the thermodenuder at 100 ◦C. (d) A CCN activation curve. Legend: AMS,
aerosol mass spectrometer; CCNC, cloud condensation nucleus counter; CPC, condensation
particle counter; DMA, differential mobility analyzer; and SMPS, scanning mobility particle sizer.
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Fig. 2. Number-diameter distributions (# cm−3 bin−1) measured by SMPS2 for different settings
of DMA2 in Experiment 2 for a thermodenuder setting of 25 ◦C. Shoulders on the distributions at
mobility diameters greater than the selected Dm,+1 are apparent, arising from doubly charged
particles that pass DMA2 and are measured by SMPS2 after recharging.
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Fig. 3. Observed and modeled CCN activation curves for the experiments described in Table 1
at a thermodenuder setting of 25 ◦C. In each panel, the initial isoprene concentration (ppbv)
prior to reaction and the steady-state NOx concentration (ppbv) during reaction are indicated
as ratios. The particle mode diameters selected by DMA2 for measurement of their activation
curves include 70 nm (B), 80 nm (N), 90 nm (4), 100 nm (�), 120 nm (�), and 150 nm (•). The
shown data points represent averages across several hours.
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Fig. 4. Number-diameter distributions (# cm−3 bin−1) measured by SMPS2 for Experiment 2
after particles have passed through the thermodenuder at 100 ◦C. Mode diameters shown in
the legend correspond to the mobility diameters (+1 charge equivalent) selected by DMA2 prior
to evaporation in the thermodenuder.
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Fig. 5. Residual organic volume fraction of the organic volume for increasing temperature in
the thermodenuder. Data are shown for particles selected with DMA2 set to a 100-nm mobility
diameter (+1 charge equivalent). Organic volume is calculated from the measurements of
SMPS2 (e.g., Fig. 4), including compensation for the sulfate core.
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Figure 6.

Fig. 6. Size-resolved critical supersaturations measured during AMAZE-08 (diamonds) com-
pared to apparent critical supersaturations Sc,a that can be predicted using the results of the
present study (open circles). The predictions use Eq. (1) and the parameters of Table 2. The
linear fit of all Sc,a is shown as the solid line. The dashed line represents a similar analysis for
Sc,a predicted using the properties of secondary organic material formed by the dark ozonolysis
of α-pinene (dashed line) (King et al., 2007, 2009).
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