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Abstract

We examine the co-variations of tropospheric water vapor, its isotopic composition and
cloud types and relate these distributions to tropospheric mixing and distillation models
using satellite observations from the Aura Tropospheric Emission Spectrometer (TES)
over the summertime tropical ocean. Interpretation of these process distributions must
take into account the sensitivity of the TES isotope and water vapor measurements
to variations in cloud, water, and temperature amount. Consequently, comparisons
are made between cloud-types based on the International Satellite Cloud Climatology
Project (ISSCP) classification; these are clear sky, non-precipitating (e.g., cumulus),
boundary layer (e.g., stratocumulus), and precipitating clouds (e.g. regions of deep
convection). In general, we find that the free tropospheric vapor over tropical oceans
does not strictly follow a Rayleigh model in which air parcels become more dry and
isotopically depleted through condensation. Instead, mixing processes related to con-
vection as well as subsidence, and re-evaporation of rainfall associated with organized
deep convection all play significant roles in controlling the water vapor distribution. The
relative role of these moisture processes are examined for different tropical oceanic
regions.

1 Introduction

Stable isotopic observations of water vapor and precipitation are useful in quantify-
ing global or local distributions of exchange processes between vapor, ice and water
clouds, and precipitation and characterizing sources of water because lighter isotopes
preferentially evaporate and heavier isotopes preferentially condense, leading to an
isotopic fingerprint of condensation history (e.g., Kuang et al., 2003; Dessler and Sher-
wood, 2003; Noone and Simmonds, 2004; Gettelman and Webster, 2005; Schmidt
et al., 2005). Observations of the isotopic composition of precipitation, for example,
GNIP database (IAEA/WMO, 2006), have been used not only to characterize mois-
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ture sources (Masson-Delmotte et al., 2005), but also to infer cloud processes (Ciais
and Jouzel, 1994; Lawrence and Gedzelman, 1996; Gedzelman et al., 2003; Lee and
Fung, 2007; Bony et al., 2008; Risi et al., 2008a). However, measuring the isotopic
composition of water vapor can provide a more direct link to understanding cloud pro-
cesses (e.g., Moyer et al., 1996; Webster and Heymsfield, 2003; Lawrence et al., 2004;
Worden et al., 2007; Lee et al., 2009; Frankenberg et al., 2009) because of a shorter
history between the phase changes related to the cloud and because the isotopic com-
position of precipitation can equilibrate to boundary layer values as it falls (e.g., Gat,
1996, 2000; Lee and Fung, 2007).

Isotope enabled general climate models (GCMs) are useful for understanding the
global distribution of moisture processes affecting the distribution of water vapor and
its isotopic composition. For example, Wright et al. (2009) used an isotope enabled
GCM to show that condensate evaporations play a role in humidifying the troposphere
by comparing two model runs in which one of the runs disabled condensate evapora-
tion. Lee et al. (2009) showed how water vapor isotope can be used as a constraint of
convective parameterization in a GCM. In addition, Risi et al. (2008a) used a single col-
umn model to explain a short term, “amount effect”, in which isotopically depleted rain-
fall in tropical convective regions is linked to reevaporation of the falling rain, diffusive
exchanges with the surrounding vapor and the injection of vapor from the unsaturated
downdraft into the subcloud layer.

Recently, satellite observations of tropospheric water vapor and its isotopic compo-
sition have become available (Herbin et al., 2007; Worden et al., 2007; Frankenberg et
al., 2009). These new measurements have the potential to add insight characterizing
the distribution of moist processes affecting the distribution of water vapor. However,
difficulties remain in interpreting these data because the sensitivity of the isotopic mea-
surements, depending on water vapor amount, temperature, and cloud optical proper-
ties (Worden et al., 2006). However, the isotopic composition of vapor also depends
on these microphysical properties; consequently it can be challenging to relate isotopic
measurements taken under different microphysical states.
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In this paper, we investigate the capability of Aura Tropospheric Emission Spectrom-
eter (TES) satellite measurements to provide insight into tropical moisture processes
by examining co-variations of tropical clouds, water vapor and isotopic composition
measurements from TES. We relate these distributions to tropospheric mixing and con-
densation models (e.g., Worden et al., 2007). We also examine how water vapor and
its isotopic composition vary at different tropical locations that are affected differently by
the large scale atmospheric processes such as organized convection and the Walker
and Hadley circulations. Better characterization of the relationship between isotope
and clouds allow the TES data to be more effectively used to compare with GCMs en-
abled with isotope physics (Noone and Simmonds, 2002; Schmidt et al., 2005; Lee et
al., 2007; Yoshimura et al., 2008; Tindall et al., 2009).

2 Methods
2.1 TES instrument

The Tropospheric Emission Spectrometer (TES) on the EOS-Aura platform is a nadir
viewing infrared Fourier transform spectrometer that covers a spectral range between
650cm™~' and 3050cm™ (Beer, 2006). The footprint of each nadir observations is
approximately 5.3x8.5 km?. In the nadir view, TES data have been sensitive to the
abundant tropospheric gas species including H,O and HDO (Worden et al., 2006).
The estimated HDO is primarily sensitive to emission between 850 hPa and 400 hPa
(Worden et al., 2006). As such, we restrict our analysis to lower troposphere or free
troposphere (850-500 hPa) mean values except in convective regions where significant
water amounts increases the sensitivity of the TES data to HDO at higher altitudes.
(Worden et al., 2007; Brown et al., 2008).
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2.2 Isotopic composition of water vapor (6D)

We use TES v003 data (R10). TES data used in this work come from June 2005 to
August 2008 over the tropical ocean (latitude between —15 and 15°N) and one data
set is generated from June to August (JJA) of each year. For the analysis shown
here, we only use the data where the Degrees-of-Freedom for signal (DOF) for the
HDO retrievals are larger than 0.5 (Worden et al., 2007; Brown et al., 2008) in all sky
conditions. This criterion ensures that the HDO/H,O estimate is sensitive to the true
distribution of HDO/H,O and that there is significant error reduction in the estimate of
the HDO/H,O ratio relative to the assumed a priori uncertainty (Worden et al., 2006).
For example, the assumed variance in the a priori constraint is approximately 100%o
relative to Vienna Standard Mean Ocean Water (VSMOW). After the retrieval, the ran-
dom uncertainty in a tropical HDO/H,O column average is approximately 15%. or less
for retrievals with a DOF of 0.5 or higher (Worden et al., 2006).

The HDO/H, 0 ratios were expressed in the § notation as a part of thousand differ-
ence relative to VSMOW following by the definition

D= (HDO/HZO)obs_ (HDO/HZO)VSMOW % 1000 A1)

(HDO/ HZO)VSMOW

where HDO and H,O are proportional to the number of molecules of each species.
The ratio (HDO/H,0)ysmow) is 311 52x107° by volume.

There is a bias in the HDO/H, O ratio of approximately 6% (Worden et al., 2006), as-
sumed to be related to the spectroscopic line strengths of HDO or both HDO and H,O
combined. This bias must be corrected for in order to better compare the TES isotope
data to the moisture process models shown in this work. The bias correction must also
account for the sensitivity of the measurement because altitude regions where there
is little sensitivity will be more dependent on the a priori constraint vector used for the
HDO/H,O joint profile retrieval. Using comparisons to in situ measurements of HDO
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and H,0 in Hawaii at different altitudes, the form of the correction should be:

0 0
In (qzioDrrected> =In (qgr?ginal> ~A(bpias) (2)
where qgr%%al is the volume mixing ratio of the HDO profile as provided in the product
files, A is the averaging kernel matrix (also provided in the product files), and is a col-
umn vector of the same length as qgr%%al that contains the values 0.06. Note that this
correction is only applied to HDO and not to H,O.

2.3 TES cloud observations

2.3.1 TES cloud retrievals and characteristics

We use TES v003 data of cloud optical depth (COD) and cloud top pressure (CTP)
characterized and validated by Kulawik et al. (2006) and Eldering et al. (2008). TES
measures radiances in the infrared spectral region, where clouds have a ubiquitous im-
pact and therefore affect on trace gas profile retrievals (Eldering et al., 2008). The radi-
ance contribution of clouds is parameterized in terms of a set of frequency-dependent
non-scattering effective optical depths and a cloud height, retrieved jointly with surface
temperature, emissivity, atmospheric temperature, and trace gases from spectral data
(Kulawik et al., 2006). Eldering et al. (2008) shows that cloud top height errors range
between 100 to 200 hPa, depending on the sensitivity of the measurement to cloud-
top height. This sensitivity will vary strongly with the optical thickness of the cloud.
For example, between COD of 0.1 to 0.5, the uncertainty of the CTP is approximately
200 hPa and the uncertainty in the effective cloud optical depth is about 0.1. For larger
optical depths, the uncertainty in the CTP decreases to approximately 100 hPa but the
uncertainty in the effective (true) CTP can dramatically increase because distinguishing
between large optical depths becomes limited by the signal-to-noise of the radiances
(Eldering et al., 2008).
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2.3.2 Mapping TES cloud properties to ISCCP cloud properties

The TES retrievals of CTP and COD are used to classify different cloud types ac-
cording to the International Satellite Cloud Climatology Project (ISCCP) cloud types as
proposed by Rossow and Schiffer (1999) (http://isccp.giss.nasa.gov). We sub-divide
the ISCCP categories into more general categories of nonprecipitating clouds (COD
greater than 0.2 and less than 3.6, e.g., cumulus and cirrus), boundary layer clouds
(COD greater than 3.6 and CTP greater than 680 hPa, e.g. stratus and stratocumulus)
and precipitating clouds associated with deep convection (COD greater than 3.6 and
CTP less than 680 hPa), as well as clear sky (COD less than 0.2) (Liu et al., 2008).
These definitions are chosen (Eq. 1) in order to best match the TES measured cloud
optical properties to the ISCCP cloud definitions and (Eq. 2) because the sensitivity
of the TES water isotope measurements varies with the optical properties of these
different cloud types.

The distributions for these clouds are shown in Table 1. We use the cloud optical
properties estimated from the TES ozone profile retrieval to obtain the best distribution
of cloud optical properties because all cloud types in the troposphere will affect the
ozone profile retrieval, which extends through the stratosphere (Kulawik et al., 20086;
Eldering et al., 2008). These distributions from the ozone profile step are shown in the
first column of Table 1 (denoted as f;). Table 1 shows that clear sky data is approxi-
mately 60% of all sky, and nonprecipitating, boundary layer and precipitating clouds are
approximately 34%, 3%, and 3% of all sky, respectively. However, convective clouds
cannot be well estimated during the water vapor isotope retrievals because the cloud
top pressure is at altitudes where the TES water vapor retrievals show little sensitiv-
ity. The distributions of cloud optical properties from the water vapor retrieval step are
shown in the second column of Table 1 (denoted as f,). These differences in the dis-
tributions must be accounted for when understanding the impact of the different clouds
on the total distribution for water vapor isotopes versus what is measured by TES. For
example, a significant difference is that only 0.3% of the data show sensitivity around
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tropical convective/precipitating clouds but these clouds actually make up nearly 3% of
the distribution as seen in the first column of Table 1. These differences are used to
help interpret the data in Sect. 3 and also critical when comparing satellite data with
model data. For example, the distribution of these clouds observed by TES will likely
be different than that observed in a model. Consequently, all-sky TES data will have
a different weighting of cloud distributions versus all-sky model data; these differences
must be accounted when comparing isotope composition for these different cloud types
(Su et al., 2009).

2.4 Sensitivity of HDO/H,O0 profiles for different cloud regimes

Estimated TES HDO profiles depend on cloud optical properties, such as cloud optical
depth and cloud top height. Figure 1 is an example illustrating the relationship between
TES sensitivity and clouds types. Figure 1a—d show examples of the rows of TES av-
eraging kernels corresponding to 825, 619 and 383 hPa. Figure 1e—h show the a priori
(dotted blue) and retrieved estimates. As shown in Fig. 1a and b, the TES estimates for
clear sky and non-precipitating clouds are primarily sensitive to the altitude regions 850
and 500 hPa with peak sensitivity at approximately 675 hPa. For boundary layer clouds
(e.g. stratocumulus), the sensitivity to HDO is primarily between 400 and 700 hPa (the
peak sensitivity is at approximately 550 hPa) and for precipitating clouds the sensitivity
is primarily between 300 and 600 hPa (the peak sensitivity for precipitating clouds is
at 450 hPa). The effects of these varying sensitivities are apparent in the example re-
trievals shown in the bottom panels of Fig. 1. Estimated HDO/H,O ratios in clear sky
and nonprecipitating clouds show variations between 400 hPa and 825 hPa, whereas
the isotopic composition for tropical precipitating clouds only varies around 500 hPa.
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3 Results and discussion

3.1 Case study relating TES observed tropical clouds to isotopic composition
of water vapor

We present a case study that compares TES cloud distributions with two-dimensional
observed cloud distributions from the Moderate Resolution Imaging Spectrometer
(MODIS) imager onboard the Aqua satellite (Barnes et al., 1998). This comparison
is used to corroborate the clouds definitions described in the previous section for TES
(e.g., clear sky, nonprecipitating, boundary layer and precipitating clouds) and also to
provide additional information on the meteorology that affects the water vapor amount
and isotopic composition of water vapor observed by TES. Two of the MODIS L1B
granules, taken over Indonesia, have been warped so that the images from bottom to
top follow the curved orbit track. A TES “step-and-stare” was conducted during this
same time and the approximate orbit location of this set of observations is shown as
a vertical red line over the MODIS imagery.

The MODIS imagery shows clear sky with scattered clouds south of the equator and
several cloud systems associated with deep convection north of the equator. The TES
observations of the CTP and effective COD, corresponding to the orbit shown in Fig. 2,
are shown in Fig. 3. The TES data show that the CTP of the deep convective cloud
near 5° N are approximately 200 hPa. At latitudes between 10 and 15° N are clouds
related to convective outflow (as seen in the MODIS image) with CTP of between 800
and 400 hPa (Fig. 3). These clouds would also be classified as precipitating clouds
using the ISCCP definitions.

The water vapor amount and 6D values along the step-and-stare are shown in
Fig. 3c and d for the 500 hPa, respectively. The vertical resolution of the water pro-
files is approximately 3 km, indicating good sensitivity to water at this level. The TES
6D values are primarily sensitive to the air parcels between 300 and 850 hPa depend-
ing on CTP (Worden et al., 2006), which will be shown in next section. However, the
vertical resolution of the TES HDO/H,O measurements is approximately 6—8 km, con-
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sequently, these TES estimates cannot distinguish, for example, the variations of the
HDO/H,0 ratio at 300 hPa from variations of the HDO/H,O ratio at 800 hPa. For this
reason, we show the estimated 6D values along the orbit track at 500 hPa as almost all
the observations are sensitive to the 6D values at this altitude. However, we show col-
umn averages of the TES H,O and 6D in subsequent sections in order to better relate
total water amounts to variations in the 6D. As discussed in the subsequent section the
choice of the pressure range for the column will depend on the cloud type.

The air parcels south of —10° in Fig. 3 are much drier than the air parcels in and
around the precipitating clouds and show a contrast in the relationship among clouds,
water vapor, and the isotopic composition of the water vapor. For example, at —18°,
the water vapor is near 0.001 g/kg, but the isotopic composition is relatively high, near
—200%o.; these data are near very thin clouds with a cloud top of approximately 600 hPa.
Near -3°, the air is relatively dry, approximately 1 g/kg but also very isotopically de-
pleted underneath high cirrus (cloud-top pressure near 200 hPa, but cloud optical depth
less than 0.1). The lower tropospheric clouds indicate low-level convection of boundary
layer air (e.g., Lee et al., 2009). Although the air parcels are relatively dry in and around
these different cloud types, these dynamical processes of descent and uplift would mix
isotopically depleted air from the upper troposphere (Webster and Heymsfield, 20083;
Risi et al., 2008a), with relatively isotopically enriched air from the boundary layer. The
northern part of this data shows precipitating clouds, relatively high water amounts but
also relatively depleted air parcels. This behavior of increased water vapor with more
depleted air parcels also indicates precipitation as expected from the MODIS imagery
and TES clouds. In the following sections we examine these relationships between
clouds, water vapor, and isotopic composition on a more climatological time scale.

3.2 Tropical distributions of clouds, water vapor and its isotope

In this section, we present longitudinal distributions of cloud types, water vapor, and

its isotopic composition observed by TES in order to examine how water vapor and

its isotopic composition respond to different moist environments thus informing about
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the distribution of moist processes at different locations in the tropical ocean (Fig. 4).
Figure 4a and b show the frequency of longitudinal distributions (f;) for clear sky (blue
cross in Fig. 4a), in the regions of nonprecipitating clouds (green asterisk in Fig. 4a), in
the regions of boundary layer clouds (cyan square in Fig. 4b), and in the regions of pre-
cipitating clouds (red diamond in Fig. 4b) during JJA. The fractions of both nonprecip-
itating and boundary layer clouds have peaks around —90° and precipitating clouds
have a peak around 130°. Two regions, the Caribbean (-80°) and Indonesia (120°),
have high water vapor amount, which is consistent with the observed relative increase
in the fraction of precipitating clouds distributions (Fig. 4b).

Comparisons of the longitudinal variability of the isotopic composition to water va-
por amount illustrate key differences in the processes affecting vapor in these regions.
For example, two places (marked with two cyan arrows) in the eastern and western
pacific are both isotopically depleted, but the western pacific is relatively moist while
the eastern pacific is relatively dry. Air parcels over the eastern Pacific are significantly
influenced by downward motion associated with the Walker circulation; this brings dry
air (Kubar et al., 2007), which is presumably isotopically depleted into the lower tro-
posphere. However, another possible explanation is that increased stratocumulus re-
duces mixing between the ocean and the lower troposphere. As discussed in the pre-
vious section, frequent convection and re-mixing of air parcels back into precipitating
clouds controls the vapor in the western Pacific resulting in isotopically depleted air.

In contrast, relatively high vapor but relatively moderate isotope ratios are observed
over the Caribbean at —80°. This region is significantly influenced by each cloud type
indicated a variety of processes affecting tropospheric moisture. Cumulus clouds in-
dicate significant shallow convection (Johnson et al., 1999), which brings fresh vapor
from just above the ocean surface to the lower troposphere, but precipitating clouds
isotopically depletes the observed air parcels. The mean distribution in this region
therefore appears to be a mixture of this fresh vapor followed by depletion due to pre-
Cipitation.

The isotopic composition of oceanic water vapor around continents (the Amazon at
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—-50° and Tropical Africa at 40 and 50°) is relatively enriched in heavy isotope although
the distributions of clouds and water vapor vary strongly over these different regions.
These air parcels can be originated from the nearby continents or by relatively frequent
mixing between the boundary layer and the lower troposphere.

3.3 Relationship between water Vapor and 6D over tropical ocean

In this section, we explore distributions of the isotopic composition of water as com-
pared to a theoretical Rayleigh distillation processes and mixing models for different
cloud types and at different tropical locations in order to further elucidate the moist pro-
cesses and sources at different locations in the tropics. These distributions are shown
for each cloud type and different tropical regions in Fig. 5. The lower line (orange dot-
ted) in each figure shows what we would expect for an air parcel originating from the
local ocean surface at the mean local ocean temperature followed by condensation in
the lower troposphere and upper planetary boundary layer. The top line (orange solid)
shows a mixing model in which dry depleted air is mixed in with vapor from the nearby
ocean. The analytical form for these models is also described in the supplemental
material of Worden et al. (2007).

In order to show how water vapor and its isotopic composition vary with different
places, or cloud conditions over the tropical ocean, Fig. 5 illustrates the relationship
between water vapor and its isotopic composition observed in the environments of
both clear sky (blue solid) and nonprecipitating clouds (green solid). Distributions of
water vapor and its isotopic composition are examined over the Western Pacific (WP:
-15~15°N, 120~160° E), Central Pacific (CP: —15~15° N, 160°~-160° E), Eastern Pa-
cific (EP: —15~15°N, —150°~—-100° E) and Africa (Af: —15~15° N, —20~50° E) in clear
sky and nonprecipitating clouds. Most of the observations from clear sky, and in the
regions of nonprecipitating clouds, are reasonably well-constrained by the theoretical
curves for Rayleigh distillation from moisture originating over an oceanic source, with
initial 5D values of —79%. (orange dotted line) and the curve representing mixing of air
parcels.
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The Rayleigh distillation and mixing models for clear sky and nonprecipitating clouds
show several similar characteristics (Table 2). The 6§D values are similar for each dis-
tribution but the nonprecipitating cloud distribution are more moist than the clear sky
distributions (e.g., Kahn et al., 2009). Despite the differences in water vapor amounts,
the similarity in the 6D distributions and the correlations indicate that air parcels asso-
ciated with clear sky are linked to the nonprecipitating clouds and have undergone sim-
ilar moist processes such as shallow convection (Steven, 2005; Lee et al., 2009). This
relationship is apparent in the distributions for clear sky and nonprecipitating clouds
except WP although the correlation between 6D and water amount is slightly negative
for nonprecipitating clouds (r=-0.12). This negative correlation suggests that these air
parcels in the regions of nonprecipitating clouds are exposed to recent precipitation;
this interpretation is also consistent with the observations of convective clouds in this
region.

Two other differences are apparent in these distributions. The EP distribution is
relatively drier and more isotopically depleted than the CP distribution, suggesting that
subsiding dry air or lack of mixing between the troposphere and ocean affect the EP
air parcels more than the CP (Fig. 5b,c and Table 2) (Kubar et al., 2007). Finally, The
clear sky Af air parcels are relatively dry (clear sky, 3.6 g/kg and nonprecipitating clouds
5.5g/kg) and enriched in heavy isotopes (clear sky, —159.2%. and nonprecipitating
clouds —159.5%0) (Fig. 5d). The very dry air parcels of this distribution are not well
explained by the mixing or precipitation models but could be explained by mixing of air
parcels form a source that is less isotopically depleted than ocean vapor such as that
from continental evapotranspiration (Flanagan et al., 1991; Worden et al., 2007; Brown
et al., 2008).

Figure 6a shows the 6D versus H,O distribution for boundary clouds such as strato-
cumulus and stratus. Two distributions are shown, one constructed from averages
of HDO and H,O between 500 and 850 hPa and one constructed from averages of
400-700 hPa. The first distribution is for comparison against the clear sky and non-
precipitating cloud distributions and shows that the air above boundary layer clouds is
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more isotopically depleted than air parcels associated with clear sky and nonprecipitat-
ing clouds. However, the second distribution (400—700 hPa) shows the altitude region
where this data is most sensitive. We can conclude from either distribution that the air
above boundary layer clouds is well explained by local mixing and Rayleigh condensa-
tion. However, the extra isotopic depletion as shown in Table 1 indicates an additional
set of moist processes. Regions of stratocumulus are characterized by a relatively
shallow, cool, and moist boundary layer that is capped by a much warmer and drier
subsiding atmosphere (e.g., Klein and Hartmann 1993; Steven 2005). This process
makes the free-troposphere drier and more depleted in heavy isotope than other non-
precipitating clouds environment due to less frequent mixing between the boundary
layer and the free-troposphere (Fig. 6a, see Table 1). Feng et al., (2009) shows that
surface precipitation measurements in these regions are isotopically enriched; how-
ever these measurements indicate strong evaporation from the surface which leads to
the formation of boundary layer clouds in the regions of subsiding air. These measure-
ments of relatively isotopically depleted free tropospheric vapor and relatively enriched
surface precipitation are consistent in explaining the moist processes forming these
clouds.

Figure 6b shows the 6D versus H,O distribution for tropical precipitating clouds. Two
distributions are shown, one constructed from averages of HDO and H,O between 500
and 850 hPa and one constructed from averages of 300—600 hPa. The first distribution
is for comparison to the clear-sky and non-precipitating cloud distributions. However,
as shown in Fig. 1, the TES data for these clouds have little sensitivity to the lower
altitudes. Both distributions show that the water vapor above these clouds has isotopic
values that are more depleted than can be explained by local Rayleigh distillation with
the mean of this distribution near the Rayleigh model curve. The implication of these
lower 6D values with significant moisture content and clouds related to outflow from
organized convective suggest that the vapor has been re-cycled by the processing
related to organized convection (Worden et al., 2007). As the vapor is re-cycled, it can
either re-evaporate or exchange isotopes with the surrounding moisture; both of these
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processes will result in extra fractionation of the water vapor (e.g., Lawrence et al.,
2004; Risi et al., 2008b) and hence lower 6D for the same water concentration. This
moisture recycling of the vapor was discussed in these papers as one aspect that gives
rise to the “amount effect”, in which the isotopic composition of precipitation gradually
becomes more depleted as precipitation increases.

4 Summary and implications

In this study, we characterize the distribution of summertime tropical water vapor above
the ocean, its isotopic composition, and co-located cloud properties using measure-
ments from the Aura TES instrument. We examine linkages between these distribu-
tions using simple isotopic mixing and precipitation models. This analysis accounts for
the capability of the TES instrument to distinguish between different cloud types and
on the sensitivity of the TES water vapor isotope measurements, which also depend
on cloud optical properties.

The cloud types are based on definitions from the ISCCP for explaining tropical tro-
pospheric moisture distributions. We sub-divide the ISCCP categories into more gen-
eral categories of nonprecipitating clouds (e.g., cumulus and cirrus), boundary layer
clouds (e.g. stratus and stratocumulus) and precipitating clouds associated with deep
convection, as well as clear sky. These definitions are chosen (Eq. 1) in order to best
match the TES measured cloud optical properties to the ISCCP cloud definitions and
(Eq. 2) because the sensitivity of the TES water isotope measurements varies with the
optical properties of these different cloud types. For example, the peak sensitivity for
clear sky and non-precipitation clouds is at approximately 675 hPa. The peak sensitiv-
ity for boundary layer clouds is at approximately 550 hPa and the peak sensitivity for
precipitating clouds is at 450 hPa.

Distributions of water vapor and its isotopic composition are examined over the West-
ern Pacific (WP), Central Pacific (CP), Eastern Pacific (EP) and Africa (Af) in clear sky
and nonprecipitating clouds. WP is moist and slightly anti-correlated between water
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vapor and its isotopic composition for nonprecipitating clouds, indicating observations
in the region of nonprecipitating clouds are affected by nearby convective precipitating
clouds. EP is relatively dry and more depleted in heavy isotope than CP, suggesting
that subsiding air affects or lack of mixing between the troposphere and ocean af-
fect these air parcels. The Af region is relatively dry, but relatively enriched in heavy
isotopes, which indicates frequent mixing with fresh oceanic vapor or vapor from evap-
otranspiration and less subsequent precipitation then the other regions.

Observations in the region of nonprecipitating clouds have more water vapor than ob-
servations in the region of clear sky does, but they have similar isotopic composition,
which indicates the processes controlling cumulus clouds such as shallow convection
also controls the distribution of lower free tropospheric vapor. Furthermore, cumulus
clouds may have little precipitation or else we would expect significantly lighter iso-
topic values around regions of cumulus. Observations in the region of boundary layer
clouds are more depleted than both clear sky and nonprecipitating clouds, implying
subsidence or less frequent mixing between boundary layer and lower troposphere.
Observations in the region of precipitating clouds are more depleted than clear sky
and nonprecipitating clouds and have much more water vapor, indicating an additional
fractionation process such as rainfall evaporation, or isotope exchange between rain-
drops and the surrounding air during convective activities. These distributions will be
used in subsequent comparisons of climate models to the TES water isotope observa-
tions in order to diagnose the models moist processes (Noone and Simmonds, 2004;
Yoshimura et al., 2008)
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Table 1. Mean and standard deviations of water vapor amount and its isotope from 2005 to
2008 over tropical ocean global atmosphere during JJA are presented. All mean 6D values are
mass-weighted. The frequency of observations from the ozone profile step, which is the TES
retrieval that is most sensitive to all cloud types, is denoted as f;. The distributions of cloud
optical properties from the water vapor retrieval step are shown in the second column (denoted
as f,).

f; f,  Water vapor (g/kg) 6D (%o) (850—500 hPa)

Clear sky 59.9 645 46+1.9 -164.3+22.1
Nonprecipitating clouds 34.3 33.3 5.8+1.8 -167.8+21.7
Boundary layer clouds 29 20 4.8+1.8 -184.3+20.2
2.4+1.1 -232.0+26.4
(700-400 hPa) (700-400 hPa)
Precipitating clouds 3.0 0.2 8.0+1.1 -182.9+15.1
2.7+0.9 -266.1+18.1
(600-300 hPa) (600-300 hPa)
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Fig. 1. TES averaging kernel rows corresponding to 825, 619 and 383 hPa and the a priori
and the retrieved TES 6D profile. Selected TES observations are over tropical ocean during
1 August, 2007 (Run ID, 5889) except precipitating clouds (Three global measurements are
selected due to lack of sampling number). (a) and (e) Clear sky, (b) and (f) nonprecipitating
clouds, (c) and (g) boundary layer clouds and (d) and (h) precipitating clouds from 1 August
2007 to 8 August 2007 (Run ID, 5889, 5918 and 5948).
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Fig. 2. An example of a visible image composite derived from the MODIS imager onboard the

Aqua satellite during July 2007.
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Fig. 3. The TES observations of (a) effective COD, (b) CTP, (c) water vapor amount at 500hPa, ! !
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Fig. 4. Longitudinal distributions of cloud (a and b), water vapor (¢) and its isotope (d) over
tropical ocean. There is no tropical oceanic data point between 15 to 35°. (a) Clear sky (blue
cross) and nonprecipitating clouds (green asterisk). (b) Boundary layer clouds (cyan square)
and precipitating clouds (red diamond). (c) Water vapor (g/kg) for all sky conditions (d) Wa-
ter vapor isotope (%.). The two magenta arrows indicate isotopically depleted regions. The
cloud types were classified based on the ISCCP. Longitudinal mean (-15°<Latitude<15°) were
binned at 5° longitudes.
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Fig. 5. Bivariate plots of water vapor versus its isotope during JJA over tropical ocean (charcoal
dots). Each solid line represents 95% of a probability density function for clear sky (blue) and
nonprecipitating clouds (green). The symbols “*” represent mean values of water vapor and its
isotope. Solid evaporation line depicts turbulent mixing of water vapor from the saturated layer
at the ocean surface into a drier air parcel aloft. A Rayleigh distillation model (dotted) describes
isotopic depletion as vapor is lost to precipitation. (a) Western Pacific (5—-15° N, 120-160° E),
(b) Central pacific (5-15° N, 160° E-=160° W), (c) Eastern Pacific (5-15° N, 150-100° W) and (d)
Africa (5-15° N, 50E-25°W).
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Fig. 6. (a) TES observations of water vapor vs. its isotope for boundary layer clouds (b) TES
observations for precipitating clouds. Dashed contour lines represent typical TES observa-
tions averaged between 500 and 800 hPa. Solid contour lines represent averaged TES mea-
surements of the most sensitive vertical range for boundary layer clouds (400-700 hPa) and
precipitating clouds (300-600 hPa).

17434

Jadeq uoissnosiq | Jadeq uoissnosiq | J4edeq uoissnosiq | Jaded uoissnosi(

ACPD
10, 1740717434, 2010

Relating tropical
ocean clouds to
moist processes

J. Lee et al.

(3 IIIIII
: IIIIII


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/17407/2010/acpd-10-17407-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/17407/2010/acpd-10-17407-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

