Supplementary Table S1. Photolysis rates for halogen species

Reaction	Quantum Yield Note	Mean $j(\mathrm{x}) / j\left(\mathrm{NO}_{2}\right)$	Cross sections / Qm yields used	Note
$\mathrm{I}_{2}+\mathrm{hv}$		20.3	Atkinson et al., 2007	
$\mathrm{Br}_{2}+\mathrm{hv}$		3.45	Atkinson et al., 2007	
$\mathrm{IBr}+\mathrm{hv}$		9.10	Atkinson et al., 2007	
$\mathrm{BrO}+\mathrm{hv}$		5.41	Atkinson et al., 2007	
$\mathrm{BrONO}_{2}+\mathrm{hv}$	$\Phi\left(\mathrm{Br}+\mathrm{NO}_{3}\right)=1$	0.160	Atkinson et al., 2007	
BrONO + hv	$\begin{aligned} & \Phi\left(\mathrm{Br}+\mathrm{NO}_{2}\right)=0.5, \Phi \\ & (\mathrm{BrO}+\mathrm{NO})=0.5 \end{aligned}$	2.28	Atkinson et al., 2007	1
$\mathrm{HOBr}+\mathrm{hv}$		0.256	Atkinson et al., 2007	
$\mathrm{IO}+\mathrm{hv}$		18.3	Bloss et al., 2001	
$\mathrm{OIO}+\mathrm{hv}$	$\Phi\left(\mathrm{I}+\mathrm{O}_{2}\right)=0.05$	51.6	Cox et al., 1999 / Joseph et al., 2005	2
$\mathrm{IONO}_{2}+\mathrm{hv}$	$\Phi\left(\mathrm{I}+\mathrm{NO}_{3}\right)=1$	0.556	Joseph and Plane, 2007	3
$\mathrm{I}_{2} \mathrm{O}_{2}+\mathrm{hv}$	$\Phi(\mathrm{IO})=2$	0.556		4
$\mathrm{I}_{2} \mathrm{O}_{3}+\mathrm{hv}$	$\Phi(\mathrm{IO}+\mathrm{OIO})=1.0$	0.556		4
$\mathrm{I}_{2} \mathrm{O}_{4}+\mathrm{hv}$	$\Phi(\mathrm{OIO}+\mathrm{OIO})=1.0$	0.556		4
$\mathrm{INO}_{2}+\mathrm{hv}$	$\Phi\left(\mathrm{I}+\mathrm{NO}_{2}\right)=1$	0.319	Sander et al., 2006	
INO + hv		3.71	Sander et al., 2006	
$\mathrm{HOI}+\mathrm{hv}$		1.12	Atkinson et al., 2007	
HI + hv		6.89×10^{-3}	Atkinson et al., 2007	

Atkinson et al., $2007=2007$ IUPAC Evaluation; Sander et al., $2006=$ NASA/JPL Evaluation 15-06.

1: Quantum yield for BrONO photolysis assumed to be 50% for each channel (Atkinson et al., 2007).

2: OIO absorption spectrum from Cox et al. (1999) scaled to match 567 nm cross section determined by Joseph et al. (2005). Quantum yield for photolysis assumed to be 5% yielding entirely $\mathrm{I}+\mathrm{O}_{2}$ following Joseph et al. (2005) and Tucceri et al. (2006); the effect of increasing the quantum yield for production of $\mathrm{I}+\mathrm{O}_{2}$ to unity, as recently reported by Gómez-Martin et al. (2009), was considered in the sensitivity study.

3: IONO_{2} cross sections have been reported by Mossinger et al. (2002) and by Joseph et al. (2007). The latter data are significantly smaller at long (> 360 nm) wavelengths, corresponding to roughly one order of magnitude difference in photolysis rate. The more recent values of Joseph and Plane, taken from the table within their paper, are used here, with unit photolysis yield of $\mathrm{I}+\mathrm{NO}_{3}$ adopted; the magnitude of the IONO_{2} cross sections is considered in the sensitivity study.

4: Definitive cross-sections are not available for $\mathrm{I}_{2} \mathrm{O}_{2}, \mathrm{I}_{2} \mathrm{O}_{3}$ or $\mathrm{I}_{2} \mathrm{O}_{4}$. Following the laboratory estimates of Bloss et al. (2001) and Gómez-Martín et al. (2005), and ab initio results (Kaltsoyannis and Plane, 2008) we assume the absorption spectrum is equal to that of IONO_{2} - this corresponds to a midday photolysis rate of $8 \times 10^{-3} \mathrm{~s}^{-1}$ for these species (corresponding $\left.j\left(\mathrm{NO}_{2}\right)=1.85 \times 10^{-2} \mathrm{~s}^{-1}\right)$. The sensitivity of the model results to this assumption is evaluated in the sensitivity study section.

1 Supplementary Table S2. Halogen Scheme: Gas-Phase Kinetic Parameters

2

Reaction	Rate Expression	Reference	Note
$\mathrm{Br}+\mathrm{O}_{3} \rightarrow \mathrm{BrO}+\mathrm{O}_{2}$	$k=1.7 \times 10^{-11} \exp (-800 / T)$	Atkinson et al., 2007	
$\mathrm{Br}+\mathrm{HO}_{2} \rightarrow \mathrm{HBr}+\mathrm{O}_{2}$	$k=7.7 \times 10^{-12} \exp (-450 / T)$	Atkinson et al., 2007	
$\mathrm{OH}+\mathrm{HBr} \rightarrow \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}$	$k=6.7 \times 10^{-12} \exp (155 / T)$	Atkinson et al., 2007	
$\mathrm{OH}+\mathrm{Br}_{2} \rightarrow \mathrm{HOBr}+\mathrm{Br}$	$k=2.0 \times 10^{-11} \exp (240 / T)$	Atkinson et al., 2007	
$\mathrm{Br}+\mathrm{HCHO} \rightarrow \mathrm{HBr}+\mathrm{HCO}$	$k=7.7 \times 10^{-12} \exp (-580 / T)$	Atkinson et al., 2007	
$\mathrm{Br}+\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{HBr}+\mathrm{CH}_{3} \mathrm{CO}$	$k=1.8 \times 10^{-11} \exp (-460 / T)$	Atkinson et al., 2007	
$\mathrm{Br}+\mathrm{NO}_{2} \rightarrow \mathrm{BrONO}$	$\begin{aligned} & k_{0}=4.2 \times 10^{-31}(\mathrm{~T} / 300)^{-2.4} \\ & k_{\infty}=2.7 \times 10^{-11}, F_{\mathrm{c}}=0.6 \end{aligned}$	Sander et al., 2006	
$\mathrm{BrO}+\mathrm{BrO} \rightarrow \mathrm{Br}+\mathrm{Br}+\mathrm{O}_{2}$	$k=2.7 \times 10^{-12}$	Atkinson et al., 2007	
$\mathrm{BrO}+\mathrm{BrO} \rightarrow \mathrm{Br}_{2}+\mathrm{O}_{2}$	$k=2.9 \times 10^{-14} \exp (840 / T)$	Atkinson et al., 2007	
$\mathrm{BrO}+\mathrm{HO}_{2} \rightarrow \mathrm{HOBr}+\mathrm{O}_{2}$	$k=4.5 \times 10^{-12} \exp (500 / T)$	Atkinson et al., 2007	
$\mathrm{OH}+\mathrm{HOBr} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{BrO}$	$k=5.0 \times 10^{-11}$		1
$\mathrm{BrO}+\mathrm{CH}_{3} \mathrm{O}_{2} \rightarrow \mathrm{HOBr}+\mathrm{CH}_{2} \mathrm{O}_{2}$	$k=4.6 \times 10^{-13} \exp (798 / T)$	Enami et al., 2007 / Aranda et al., 1997	2
$\mathrm{BrO}+\mathrm{NO} \rightarrow \mathrm{Br}+\mathrm{NO}_{2}$	$k=8.7 \times 10^{-12} \exp (260 / T)$	Atkinson et al., 2007	
$\mathrm{BrO}+\mathrm{NO}_{2} \rightarrow \mathrm{BrONO}_{2}$	$\begin{aligned} & k_{0}=5.2 \times 10^{-31}(\mathrm{~T} / 300)^{-3.2} \\ & k_{\infty}=6.9 \times 10^{-12}(\mathrm{~T} / 300)^{-2.9}, F_{\mathrm{c}}=0.6 \end{aligned}$	Sander et al., 2006	
$\mathrm{BrONO}_{2} \rightarrow \mathrm{BrO}+\mathrm{NO}_{2}$	$k=2.8 \times 10^{13} \exp (-12360 / T)$	Orlando and Tyndall , 1996	
$\mathrm{I}+\mathrm{O}_{3} \rightarrow \mathrm{IO}+\mathrm{O}_{2}$	$k=2.1 \times 10^{-11} \exp (-830 / T)$	Atkinson et al., 2007	
$\mathrm{I}+\mathrm{HO}_{2} \rightarrow \mathrm{HI}+\mathrm{O}_{2}$	$k=1.5 \times 10^{-11} \exp (-1090 / T)$	Atkinson et al., 2007	
$\mathrm{OH}+\mathrm{HI} \rightarrow \mathrm{I}+\mathrm{H}_{2} \mathrm{O}$	$k=1.6 \times 10^{-11} \exp (440 / T)$	Atkinson et al., 2007	
$\mathrm{OH}+\mathrm{I}_{2} \rightarrow \mathrm{HOI}+\mathrm{I}$	$k=2.1 \times 10^{-10}$	Atkinson et al., 2007	
$\mathrm{NO}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{I}+\mathrm{IONO}_{2}$	$k=1.5 \times 10^{-12}$	Atkinson et al., 2007	3
$\mathrm{NO}_{3}+\mathrm{HI} \rightarrow \mathrm{HNO}_{3}+\mathrm{I}$	$k=1.3 \times 10^{-12} \exp (-1830 / T)$	Atkinson et al., 2007	
$\mathrm{I}+\mathrm{NO}_{2} \rightarrow \mathrm{INO}_{2}$	$\begin{aligned} & k_{0}=3.0 \times 10^{-31}(\mathrm{~T} / 300)^{-1.0} \\ & k_{\infty}=6.6 \times 10^{-11}, \quad F_{\mathrm{c}}=0.6 \end{aligned}$	Sander et al., 2006	
$\mathrm{INO}_{2} \rightarrow \mathrm{I}+\mathrm{NO}_{2}$	$k=0.14 \mathrm{~s}^{-1}$ (at 268 K)	Van den Bergh and Troe, 1976	4
$\mathrm{INO}_{2}+\mathrm{INO}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{NO}_{2}$	$k=4.7 \times 10^{-13} \exp (-1670 / T)$	Atkinson et al., 2007	
$\mathrm{I}+\mathrm{NO} \rightarrow \mathrm{INO}$	$\begin{aligned} & k_{0}=1.8 \times 10^{-32}(\mathrm{~T} / 300)^{-1.0} \\ & k_{\infty}=1.7 \times 10^{-11}, \quad F_{\mathrm{c}}=0.6 \end{aligned}$	Sander et al., 2006	
$\mathrm{INO} \rightarrow \mathrm{I}+\mathrm{NO}$	$k=0.087 \mathrm{~s}^{-1}$ (at 268 K)	Van den Bergh and Troe, 1976	4
$\mathrm{INO}+\mathrm{INO} \rightarrow \mathrm{I}_{2}+\mathrm{NO}+\mathrm{NO}$	$k=8.4 \times 10^{-11} \exp (-2620 / T)$	Atkinson et al., 2007 or JPL	
$\mathrm{IO}+\mathrm{IO} \rightarrow 2 \mathrm{I}+\mathrm{O}_{2}$	$k=0.11 \times 5.4 \times 10^{-11} \exp (180 / T)$	Atkinson et al., 2007	5
$\mathrm{IO}+\mathrm{IO} \rightarrow \mathrm{I}+\mathrm{OIO}$	$k=0.38 \times 5.4 \times 10^{-11} \exp (180 / T)$	Atkinson et al., 2007	5
$\mathrm{IO}+\mathrm{IO} \rightarrow \mathrm{I}_{2} \mathrm{O}_{2}$	$k=0.51 \times 5.4 \times 10^{-11} \exp (180 / T)$	Atkinson et al., 2007	5
$\mathrm{IO}+\mathrm{HO}_{2} \rightarrow \mathrm{HOI}+\mathrm{O}_{2}$	$k=1.4 \times 10^{-11} \exp (540 / T)$	Atkinson et al., 2007	
$\mathrm{OH}+\mathrm{HOI} \rightarrow \mathrm{IO}+\mathrm{H}_{2} \mathrm{O}$	$k=1.0 \times 10^{-10}$		6
$\mathrm{IO}+\mathrm{CH}_{3} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{IOO}$	$k=2.0 \times 10^{-12}$	Dillon et al., 2006	7
$\mathrm{IO}+\mathrm{NO} \rightarrow \mathrm{I}+\mathrm{NO}_{2}$	$k=7.15 \times 10^{-12} \exp (300 / T)$	Atkinson et al., 2007	
$\mathrm{IO}+\mathrm{NO}_{2} \rightarrow \mathrm{IONO}_{2}$	$\begin{aligned} & k_{0}=6.5 \times 10^{-31}(\mathrm{~T} / 300)^{-3.5} \\ & k_{\infty}=7.6 \times 10^{-12}(\mathrm{~T} / 300)^{-1.5}, F_{\mathrm{c}}=0.6 \end{aligned}$	Sander et al., 2006	
$\mathrm{IONO}_{2} \rightarrow \mathrm{IO}+\mathrm{NO}_{2}$	$k=2.1 \times 10^{15} \exp (-13670 / T)$	Kaltsoyannis and Plane, 2008	8
$\mathrm{IO}+\mathrm{NO}_{3} \rightarrow \mathrm{OIO}+\mathrm{NO}_{2}$	$k=9 \times 10^{-12}$	Dillon et al., 2008	
$\mathrm{I}+\mathrm{NO}_{3} \rightarrow \mathrm{IO}+\mathrm{NO}_{2}$	$k=1 \times 10^{-12}$	Dillon et al., 2008	
$\mathrm{IO}+\mathrm{BrO} \rightarrow \mathrm{I}+\mathrm{Br}+\mathrm{O}_{2}$	$k=0.2 \times 1.5 \times 10^{-11} \exp (510 / T)$	Atkinson et al., 2007	9
$\mathrm{IO}+\mathrm{BrO} \rightarrow \mathrm{Br}+\mathrm{OIO}$	$k=0.8 \times 1.5 \times 10^{-11} \exp (510 / T)$	Atkinson et al., 2007	
$\mathrm{IO}+\mathrm{OIO} \rightarrow \mathrm{I}_{2} \mathrm{O}_{3}$	$k=5 \times 10^{-11}$	Gomez-Martin et al., 2007	10
$\mathrm{OIO}+\mathrm{OIO} \rightarrow \mathrm{I}_{2} \mathrm{O}_{4}$	$k=1.5 \times 10^{-10}$	Gomez-Martin et al., 2007	10.1
$\mathrm{OIO}+\mathrm{I}_{2} \mathrm{O}_{3} \rightarrow \mathrm{PI}_{1}$	$k=1.5 \times 10^{-10}$	Gomez-Martin et al., 2007	10.1
$\mathrm{OIO}+\mathrm{I}_{2} \mathrm{O}_{4} \rightarrow \mathrm{PI}_{2}$	$k=1.5 \times 10^{-10}$	Gomez-Martin et al., 2007	10.1
$\mathrm{I}_{2} \mathrm{O}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{I}_{2} \mathrm{O}_{3}+\mathrm{O}_{2}$	$k=1.0 \times 10^{-12}$	Saunders and Plane, 2005	10.2
$\mathrm{I}_{2} \mathrm{O}_{3}+\mathrm{O}_{3} \rightarrow \mathrm{I}_{2} \mathrm{O}_{4}+\mathrm{O}_{2}$	$k=1.0 \times 10^{-12}$	Saunders and Plane, 2005	10.2
$\mathrm{I}_{2} \mathrm{O}_{4}+\mathrm{O}_{3} \rightarrow \mathrm{PI}_{3}$	$k=1.0 \times 10^{-12}$	Saunders and Plane, 2005	10.2
$\mathrm{I}_{2} \mathrm{O}_{2} \rightarrow \mathrm{IO}+\mathrm{IO}$	$k=10 \mathrm{~s}^{-1}$	Kaltsoyannis and Plane, 2008	10.3
$\mathrm{I}_{2} \mathrm{O}_{4} \rightarrow \mathrm{OIO}+\mathrm{OIO}$	$k=0.1 \mathrm{~s}^{-1}$	Kaltsoyannis and Plane, 2008	10.3
$\mathrm{NO}+\mathrm{OIO} \rightarrow \mathrm{IO}+\mathrm{NO}_{2}$	$k=1.1 \times 10^{-12} \exp (542 / T)$	Plane et al., 2006	
$\mathrm{OH}+\mathrm{OIO} \rightarrow \mathrm{PI}_{4}\left(\mathrm{HIO}_{3}\right)$	$k=2.2 \times 10^{-10} \exp (243 / T)$	Plane et al., 2006	11
$\mathrm{BrO}+\mathrm{DMS} \rightarrow \mathrm{Br}+\mathrm{DMSO}$	$k=1.4 \times 10^{-14} \exp (950 / T)$	Sander et al., 2006	
$\mathrm{Br}+\mathrm{DMS} \rightarrow \mathrm{HBr}+\mathrm{CH}_{3} \mathrm{SCH}_{2}$	$k=9.0 \times 10^{-11} \exp (-2390 / T)$	Sander et al., 2006	12
$\mathrm{IO}+\mathrm{DMS} \rightarrow \mathrm{I}+\mathrm{DMSO}$	$k=1.2 \times 10^{-14}$	Sander et al., 2006	

Atkinson et al., $2007=2007$ IUPAC Evaluation; Sander et al., $2006=$ NASA/JPL Evaluation 15-06.

1 Supplementary Table S3. Heterogeneous reaction probabilities

2

Species	Reaction Probability γ	Reference
HONO	0.04	JPL 15-06
PNA	0.1	JPL 15-06
HNO_{3}	0.1	JPL 15-06
$\mathrm{N}_{2} \mathrm{O}_{5}$	0.04	JPL 15-06
HO_{2}	0.2	Jacob, 2000
$\mathrm{CH}_{3} \mathrm{O}_{2}$	0.04	Jacob, 2000
HI	0.2	JPL 15-06
HBr	0.2	JPL 15-06
HOI	0.5	Mossinger and Cox, 2001 / Braban et al. (2007) / JPL 15-06
HOBr	0.6	JPL 15-06
BrONO_{2}	0.2	JPL 15-06
IONO_{2}	0.2	Assumed as BrONO_{2}
INO_{2}	0.1	Assumed
BrNO_{2}	0.1	Assumed
IO	0.5	Assumed
$\mathrm{OIO}, \mathrm{I}_{2} \mathrm{O}_{2}, \mathrm{I}_{2} \mathrm{O}_{3}, \mathrm{I}_{2} \mathrm{O}_{4}$	1	Assumed
PI_{n}	1	Assumed

Notes to Halogen Reaction Scheme (Supplementary Tables 2, 3)

Other reactions considered, but discounted as their effects were found to be negligible for this environment, were :
-Termolecular I atom recombination
-Halogen atom / molecule reactions ($\mathrm{I}+\mathrm{Br}_{2}, \mathrm{Br}+\mathrm{I}_{2}, \mathrm{I}+\mathrm{IBr}, \mathrm{Br}+\mathrm{IBr}$)
-Halogen atom / halogen monoxide reactions ($\mathrm{I}+\mathrm{BrO}, \mathrm{Br}+\mathrm{IO}$)
-Oxygen atom / halogen reactions $\left(\mathrm{O}+\mathrm{I}_{2}, \mathrm{O}+\mathrm{Br}_{2}, \mathrm{O}+\mathrm{IO}, \mathrm{O}+\mathrm{BrO}\right)$
-Halogen monoxide / ozone reactions $\left(\mathrm{IO}+\mathrm{O}_{3}, \mathrm{BrO}+\mathrm{O}_{3}\right)$

Specific Notes

1: $\mathrm{OH}+\mathrm{HOBr}-$ Rate constant estimated with reference to $\mathrm{OH}+\mathrm{HOCl}, \mathrm{O}+\mathrm{HOCl}$ and $\mathrm{O}+$ HOBr.

2: Temperature-dependent kinetics for $\mathrm{BrO}+\mathrm{CH}_{3} \mathrm{O}_{2}$ taken from Enami et al. (2007); products assumed to be $\mathrm{HOBr}+\mathrm{CH}_{2} \mathrm{O}_{2}$ following Aranda et al. (1997). Within the model $\mathrm{CH}_{2} \mathrm{O}_{2}$ dissociates to $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$ (Mariq et al., 1994).

3: $\mathrm{I}_{2}+\mathrm{NO}_{3}$. Products assumed to be $\mathrm{I}+\mathrm{IONO}_{2}$ following Atkinson et al. (2007) on enthalpy arguments. Effect of alternative product channel $\left(\mathrm{IO}+\mathrm{INO}_{2}\right.$, as adopted by Saiz-Lopez et al., 2008) considered in sensitivity study.

4: INO and INO_{2} thermal decomposition calculated via the formation rate constants given, plus temperature-dependent equilibrium constant expressions from van den Burgh and Troe, 1976: $\quad K_{\text {eq }}(\mathrm{I}+\mathrm{NO} \leftrightarrow \mathrm{INO})=10^{-5.70} \times \exp (9160 / \mathrm{T})$ and $K_{\text {eq }}\left(\mathrm{I}+\mathrm{NO}_{2} \leftrightarrow \mathrm{INO}_{2}\right)=10^{-}$ ${ }^{6.43} \times \exp (9560 / \mathrm{T})$, both in atm^{-1}.

5: IO + IO: Overall rate constant and OIO+I channel from Atkinson et al. (2007); branching ratio for $2 \mathrm{I}+\mathrm{O}_{2} / \mathrm{I}_{2} \mathrm{O}_{2}$ channels from Bloss et al. (2001). See also comments below (note 10.3).

6: $\mathrm{OH}+\mathrm{HOI}-$ Rate constant estimated with reference to $\mathrm{OH}+\mathrm{HOCl}, \mathrm{O}+\mathrm{HOCl}$ and $\mathrm{O}+$ HOBr .

7: Base-case for the $\mathrm{IO}+\mathrm{CH}_{3} \mathrm{O}_{2}$ reaction is "slow" kinetics ($k=2 \times 10^{-12}$; Dillon et al., 2006) and formation of $\mathrm{CH}_{3} \mathrm{O}+\mathrm{IOO}$ (i.e. the $\mathrm{CH}_{3} \mathrm{OOOI}$ intermediate, likely decomposing to $\mathrm{CH}_{3} \mathrm{O}+\mathrm{IOO}$ and hence $\mathrm{HCHO}+\mathrm{HO}_{2}+\mathrm{I}+\mathrm{O}_{2}$ in the atmospheric boundary layer) with unit yield. Sensitivity studies described in the text consider the potential impact of a higher rate constant (e.g. Bale et al., 2005; Enami et al., 2007) and alternative product channels, e.g. via the $\mathrm{CH}_{3} \mathrm{OOIO}$ channel to $\mathrm{CH}_{3} \mathrm{O}+\mathrm{OIO}$ (Drougas and Kosmas, 2007).

8 Thermal decomposition rate reported by Kaltsoyannis and Plane (2008) adopted; this is based upon revised RRKM analysis coupled to laboratory kinetic data for the forward reaction obtained by Allen and Plane (2002), and supersedes the decomposition rate determined in a similar manner in the earlier paper.

9: Branching ratio for $\mathrm{IO}+\mathrm{BrO}$ from Atkinson et al. (2007) in combination with Rowley et al. (2001); note approach adopted neglects possible increase in atomic channels at reduced temperature.

10: Higher Iodine Oxides

In addition to thermal reactions with other chemical families $\left(\mathrm{NO}_{\mathrm{x}}, \mathrm{BrO}_{\mathrm{x}}\right.$ etc. $)$, iodine oxides are thought to polymerise through a series of addition reactions potentially involving IO, OIO, $\mathrm{I}_{2} \mathrm{O}_{2}$ and higher iodine oxides. Considerable laboratory evidence exists for the neargas kinetic removal of OIO in fast iodine kinetics studies (e.g. Bloss et al., 2001; Ingham et al., 2000), and also for the formation of particles of bulk composition $\mathrm{I}_{2} \mathrm{O}_{5} / \mathrm{I}_{4} \mathrm{O}_{9}$ (e.g.

Burkholder et al., 2004; McFiggans et al., 2004), but details of the nucleation process are far from understood. In this paper, we adopt an iodine source selected to replicate the observed levels of IO subject to the chemical mechanism, which must therefore include a representation of the process for the removal of active iodine into the condensed phase. Whilst given our current level of understanding any specific mechanism is unlikely to be totally correct, the modelled effects of iodine chemistry upon HO_{x} and NO_{x} (the focus of the paper) should be robust as the levels of IO (which effectively constrains most of the other iodine-inorganic chemistry interactions) match those observed. The details of the mechanism adopted for removal of active iodine into the condensed phase will however impact upon the iodine source required to generate a given level of IO; this is considered further in the sensitivity studies.

Here we adopt a mechanism drawn from recent laboratory and theoretical studies, in which two routes to higher iodine oxides are considered: Sequential addition of ozone to $\mathrm{I}_{2} \mathrm{O}_{2} / \mathrm{I}_{2} \mathrm{O}_{3} / \mathrm{I}_{2} \mathrm{O}_{4}$ (Saunders and Plane, 2005), and polymerisation of OIO (Gomez-Martin et al., 2007). We consider any species above $\mathrm{I}_{2} \mathrm{O}_{4}$ to be thermally and photolytically stable on the timescale of these simulations, i.e. to irreversibly incorporate into particulate iodine: $\mathrm{PI}_{1}, \mathrm{PI}_{2}$ and PI_{3}, which may in reality be identified with $\mathrm{I}_{3} \mathrm{O}_{5}$ or $\mathrm{I}_{2} \mathrm{O}_{5}+\mathrm{I}, \mathrm{I}_{3} \mathrm{O}_{6}$ or $\mathrm{I}_{2} \mathrm{O}_{5}+\mathrm{IO}$, and $\mathrm{I}_{2} \mathrm{O}_{5}+\mathrm{O}_{2}$ respectively. We also consider the thermal stability of $\mathrm{I}_{2} \mathrm{O}_{2}, \mathrm{I}_{2} \mathrm{O}_{3}$ and $\mathrm{I}_{2} \mathrm{O}_{4}$, based upon the calculations of Kaltsoyannis and Plane (2008), and the photolysis of OIO, $\mathrm{I}_{2} \mathrm{O}_{2}$, $\mathrm{I}_{2} \mathrm{O}_{3}$ and $\mathrm{I}_{2} \mathrm{O}_{4}$ as described above. (These assumptions are explored further in the sensitivity study).
10.1 Gomez-Martin et al. (2007) infer limits for an association reaction between OIO and small $(\mathrm{n}=1-4)$ OIO polymers of $(1.2-3) \times 10^{-10} \mathrm{molec}^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Here we choose a midrange value of $1.5 \times 10^{-10} \mathrm{molec}^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, and apply this to the reaction of OIO with itself, $\mathrm{I}_{2} \mathrm{O}_{3}$ and $\mathrm{I}_{2} \mathrm{O}_{4}$.
10.2 : Oxidation of $\mathrm{I}_{2} \mathrm{O}_{2}, \mathrm{I}_{2} \mathrm{O}_{3}$ and $\mathrm{I}_{2} \mathrm{O}_{4}$ by ozone. The rate constant adopted $\left(1 \times 10^{-12}\right.$ molec ${ }^{1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$) is based upon the analysis of Saunders and Plane (2005), although recent calculations (Kaltsoyannis and Plane, 2008) indicate that the reaction may be slower, and the

$\mathrm{O}(\mathrm{D})+\mathrm{O}_{2} \rightarrow \mathrm{O}\left({ }^{\text {P }} \mathrm{P}\right)+\mathrm{O}_{2}$	$k=3.3 \times 10^{-11} \exp (55 / T)$	Sander et al., 2006
$\mathrm{O}(\mathrm{D})+\mathrm{N}_{2} \rightarrow \mathrm{O}$ (3) ${ }^{\text {P }}$) $+\mathrm{N}_{2}$	$k=2.15 \times 10^{-11} \exp (110 / 7)$	Sander et al., 2006
$\mathrm{O}(\mathrm{D})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}+\mathrm{OH}$	$k=1.63 \times 10^{-10} \mathrm{exp}(60 / \mathrm{T})$	Sander et al., 2006

calculated short thermal lifetime for $\mathrm{I}_{2} \mathrm{O}_{2}$ indicates that IO/OIO recombination is probably the dominant route to $\mathrm{I}_{2} \mathrm{O}_{3} / \mathrm{I}_{2} \mathrm{O}_{4}$ in the atmosphere).
10.3 Kaltsoyannis and Plane calculate the lifetimes of $\mathrm{I}_{2} \mathrm{O}_{2}, \mathrm{I}_{2} \mathrm{O}_{3}$ and $\mathrm{I}_{2} \mathrm{O}_{4}$ with respect to thermal decomposition to be of the order of $0.1,10^{8}$ and 10 seconds respectively (293 K); appropriate (temperature-independent) decomposition rates for $\mathrm{I}_{2} \mathrm{O}_{2}$ and $\mathrm{I}_{2} \mathrm{O}_{4}$ are therefore included. $\mathrm{I}_{2} \mathrm{O}_{2}$ is assumed to be IOIO; IOOI is found to dissociate promptly.

11: The reaction of OIO with OH is assumed to form HIO_{3}, which is stable (Plane et al., 2006), and is assumed to contribute to particulate iodine: PI_{4}.

12: $\mathrm{DMS}-\mathrm{Br}$ adduct channel neglected.

In addition to the halogen and DMS scheme, the MCM (version 3.1) kinetics describing the fate of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ atoms were updated to the JPL (Sander et al., 2006) rate constants :

6

