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Abstract

A spatial-temporal analysis has been conducted using satellite observed distributions
of rain frequency, NO, concentration and aerosol, with focus on the spring season. As
revealed by measurements from 1998-2009 over Shanghai, China, the suppression of
rain is mainly attributed to the reduction of rain occurrence rather than changes in rain
intensity. The overall features emerge from the region-by-region analyses that there
is an inverse relationship between the rain frequency and the pollution and associated
aerosols at continental scale in spring. The enhancement of pollution-produced CCN
in addition to mineral dust from long-term transport suppresses the rain frequency, as
favored by topography, wind, and other meteorological conditions.

1 Introduction

Human-induced climate change has caused a redistribution of precipitation (Zhang
et al., 2007). Besides the greenhouse gases-induced global warming, anthropogenic
aerosols increase concentrations of cloud condensation nuclei (CCN) and ice-forming
nuclei (IN), which alter the main path of precipitation-forming microphysical processes
and the precipitation amount (e.g., Cotton and Pielke, 1995; Lohmann et al., 2005;
Rosenfeld et al., 2008). The response of the hydrological cycle to the aerosol indi-
rect effect is different to the greenhouse effect, and the hydrological cycle is expected
to be weakened due to aerosol effects (Ramanathan et al., 2001; IPCC, 2007). The
influences of anthropogenic pollutants on precipitation are confounded by dynamic pro-
cesses in various temporal and spatial scales, which heighten the need for accurate
information about temporal and spatial variations in precipitation and aerosols (IPCC,
2007; New et al., 2001; Yang et al., 2004; Qian et al., 2009). Few, if any, studies have
reported directly observational linkage between the rain frequency and the pollution
and associated aerosols at continental scale.

Heterogeneous spatial distribution of anthropogenic aerosols, which results from
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their short lifetime, may provide spatial signatures of anthropogenic pollution on precip-
itation. East Asia is characterized by a rapid increase of energy consumption accom-
panied by a rapid growth of population and economic activities, resulting in significant
enhancement in the concentration of aerosols and pollutants (Luo et al., 2001, van der
A et al., 2006). East Asia also acts as the receptor of dust from arid and semiarid
regions (Sun et al., 2005; Wang et al., 2006). The incoming mineral aerosol particles
mixing with local emission may accelerate the gas-particle interaction as well as serve
as giant CCN. Since East Asia is the most populous region and one of the largest
grain producing regions in the world, climate change, especially precipitation change,
may have great consequences for the ecosystem and residents. The severe anthro-
pogenic pollution over Asia provides the possibility and urgency to study the variations
of anthropogenic forcing on precipitation at a large scale.

Due to the large spatial and temporal variability of aerosols and precipitation, remote
sensing from satellites delivers the most reliable information about their regional and
global distribution. This study investigates the impacts of air pollutants and associated
anthropogenic aerosols on precipitation from the spatial-temporal perspective by uti-
lizing multi-satellite observations over East Asia. It is believed that precipitation in the
spring is less influenced by the monsoon dynamics of atmospheric general circulation
(Gong et al., 1999). Also any precipitation change in spring will significantly impact
stable crop production in the region. Therefore, we will focus our study on the spring
season.

2 Measurements

The Tropical Rainfall Measuring Mission (TRMM) satellite provides the first detailed
and comprehensive dataset on the four-dimensional distribution of rainfall within about
36° latitude. To highlight spatial-temporal characteristics of precipitation distribution,
monthly rain rate dataset from TRMM Precipitation Radar (PR) at 0.5°x0.5° spatial grid
(TSDIS, 2007; version; 3A25; source: http://daac.gsfc.nasa.gov/data/) from 1998 to
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2009 are used in this study. As a marker of air pollution, tropospheric nitrogen dioxide
(NO,) has been monitored by both the Global Ozone Monitoring Experiment (GOME)
and SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY
(SCIAMACHY) satellites. Hence, monthly NO, vertical column concentration from
combined GOME (1998-2002) and SCIAMACHY (2003—2009) measurements (Richter
et al., 2002; source: http://www.iup.uni-bremen.de/doas/data_products.htm) are used
to quantify air pollution changes over the same period of PR dataset. Precipitation
can be influenced by anthropogenic aerosols associated with pollution through their
roles in cloud condensation nuclei and ice nuclei. To assess the changes of aerosol
loading in the atmosphere directly, aerosol optical depths from MODerate resolution
Imaging Spectroradiometer (MODIS) on board the Terra Satellite (King et al., 2003)
are also used. In addition to the above three combined satellite datasets that provide
the spatial-temporal variation of pollution, aerosols, and precipitation, the surface rain
gauge precipitation data are used to verify the satellite measurements and investigate
the relationship between precipitation and air pollutants.

3 Results

Due to the relatively short lifetime of NO, and the vertical distribution of NO, sources,
NO, columns observed from space are dominated by the NO, concentration in the
boundary layer and at the location (Richter et al., 2005). As shown in Fig. 1, satellite
retrieved NO, column concentration in spring at Shanghai increased substantially from
1998 to 2009. The linear trend in NO, column concentration is 1.9x10"® molec/cm?®
per year. With respect to the reference value of 6.0x10'® molec/cm? in spring 1998,
air pollution in Shanghai was tripled from 1998 to 2009. Nitrogen dioxide is an effective
absorber of visible and near-ultraviolet solar radiation. At wavelengths below ~400 nm,
photodissociation of NO, generates NO and O atoms that quickly attach to molecular
oxygen to form ozone. Back-reactions of NO with ozone and/or other radicals establish
a steady state between NO and NO, in the troposphere. The photodissociation of NO,
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is of major importance to atmospheric chemistry in addition to that of ozone, as this
process is also involved in the production of many oxidants, such as radicals OH, HO,,
RO,, which could oxidize SO,, in addition to NO,, and leads to the formation of nitric
acid and sulfuric acid and, in turn, the subsequent neutralization conversions to nitrate
and sulfate, the major parts of the secondary aerosols. Therefore, NO, is a key pre-
cursor of secondary aerosols, especially in urban areas. Thus, the dramatic increase
in NO, concentration implies a substantial enhancement of atmospheric aerosol load-
ing. Satellite retrieved AOD includes locally generated aerosols that are associated
with pollution and small in size, and transported aerosols, such as dust with large size.
As shown in Fig. 1a, the retrieved AOD from MODIS showed an increase in recent
years, although there was large interannual variability which was mostly associated
with the sprint dust events. The trend of fraction ratio of fine mode aerosols increased
consistently with the increase trend in NO, concentration.

Most particles over urban areas are composed of hygroscopic salts, i.e., sulfates and
nitrates (Givati et al., 2004), which can rapidly reach their critical size under relatively
low supersaturations and act as effective CCN (Levin et al., 1996). The huge local
anthropogenic emission resulting from rapid economic growth and urban development
mixing with long range transported dust, therefore, lead to a high concentration of cloud
condensation nuclei (CCN). It is plausible that the observed trend of NO, in Shanghai
implies an increasing trend in CCN concentration from 1998 to 2009.

TRMM PR estimated precipitation in spring at 1°x1° spatial domain centered at
Shanghai correlated well with the measured precipitation from a single surface rain
gauge (Fig. 1b). Although there is a spatial-temporal mismatch between the two, the
consistency of decreasing trends of precipitation is evident. A similar conclusion can be
drawn from comparisons at other surface sites, illustrating precipitation estimates from
PR are representative at seasonal or longer time scales. Both PR and rain gauge mea-
surements in spring show that precipitation amount was reduced from 1998 to 2009.
Reduction in precipitation could be either a decrease trend in rain frequency or in rain
rate within the 1°x1° grid. Small footprint and high sensitivity of TRMM PR allows us
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to evaluate the seasonal rain frequency at 1°x1° grids, defined as the ratio of raining
pixels to total sampling pixels. Using such a relative parameter also minimizes the sys-
temic bias and retrieval uncertainties of PR rain rate retrievals. Clearly, the decrease
trend of 4.04% per year in rain frequency (0.21% per year in absolute rain frequency)
is slightly greater that the decrease trend of 2.49% per year in rain amount (5.75mm
per year in absolute rain amount). It suggests that reduction in precipitation is mainly
due to the suppression of rain occurrence with a slight enhancement of rain intensity.

Cloud formation is strongly controlled by meteorological conditions, such as temper-
ature and atmospheric convection. The increased NO, and aerosols (soot particles
in particular) affect the radiative processes in the atmosphere through enhancing ab-
sorption of solar radiation and heat the atmosphere, which lead to changes in the air
temperature and atmospheric stability (Ramanathan et al., 2005). If the atmosphere
becomes more stable, the upward motions are depressed, and cloud formation is re-
duced, resulting in reduction of precipitation (Zhao et al., 2006). Furthermore, if the
moisture in the atmosphere is not altered by the increase in pollution particle number
concentration, the cloud droplet radius will decrease, resulting in a decrease in the
precipitation efficiency (IPCC, 2007; Ramanathan et al., 2001). The opposite trends
of precipitation and air pollutants imply the possibility that the increased particles over
urban areas suppress the local precipitation, particularly the rain frequency.

The inverse relations of rain frequency and precipitation to the concentrations of NO,
and aerosols at a single site for past decades can be casual, as precipitation changes
are strongly influenced by changes of large scale dynamics. To exclude the possi-
ble influence of meteorological factor changes on specific sites, the spatial-temporal
distribution of rain frequency, NO, concentration, and aerosol loading are investigated.

Many studies suggested that there were strong increase trends of NO, in some
regions of China and India for the past decade (Richter et al., 2005; and van der A et
al., 2006). As illustrated in Fig. 2a—c, those regions include the North Chinese Plain,
Yangtze River Delta, Pearl River Delta, Sichuan Basin and India Ganges region where
economy has been developed substantially in recent years. Since Asia monsoon is in
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a transition phase in spring, the stable atmospheric structure prevents dispersion of air
pollutants. As expected, most of those regions have a high mean AOD with a positive
trend in fine mode AOD (Fig. 2d—f). One exceptional region is around the Nepal-India
border, where agriculture is the dominant economy. The NO, concentration is very low
and has no significant changes. However, both fine and coarse AODs show a negative
trend in the region, which could be in part due to reduction of the long-range transport
of aerosols ranging from India and the Middle East (Carrico et al., 2003; Singh et al.,
2006; Prasad et al., 2007).

The spatial distribution of mean rain frequency in spring of 1998-2009 (Fig. 29) in
China was consistent with the precipitation distribution measured by the surface rain
gauge network (Yang et al., 2004; Liu et al., 2005; and Zhai et al., 2005). Precipitation
occurred more frequently south of Yangtze River and along the India-Myanmar border.
The spatial distributions of rain frequency trends were different from the mean rain fre-
quency distribution (Fig. 2h and i). It suggests that changes in rain frequency are not
caused by possible rain band shifts associated with large scale dynamical changes.
The most significant reductions in rain frequency were observed over Eastern China,
while no significant trends were detected over western China and even increasing
trends were detected over some regions around the Nepal-India border. Based on
the threshold of statistical significant level of 95%, three regions show a distinguished
trend in rain frequency: Eastern China, India-Myanmar region, and Nepal-India region
(Fig. 2c). The first two regions showed a significant decreasing trend and the last
region showed an increasing trend.

In general, the significant decrease trends in precipitation frequency were detected
at the industrial areas with rapid economic growth, rather than the areas with high
mean rain frequency. Each region exhibited its own local characteristics of geography,
pollution, aerosols, and precipitation frequency. For Eastern China, there were two
rain frequency reduction bands: one in the Yellow River region and the other along the
Yangtze River region. In the Yellow River rain frequency reduction band, where the
largest coal-producing and consumption areas are located, the NO, concentrations
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increased substantially over the past decade, accompanied by an increase of the fine
mode AOD. In the Yangtze River rain frequency reduction band, there are many mega-
cities, such as Shanghai, Nanjing, Wuhan, and Changsha. For the past decade the
economic development resulted in severe pollution as indicated by the increase trends
in NO, concentration and in the fine mode AOD. The spatial correlation between the
increase trend of NO, concentrations (and the positive fine mode AOD trend) and the
decrease trend of rain frequency suggests that the two have some fundamental linkage.

The India-Myanmar Region is located to the south of Hengduan Mountain. Moisture
air mass from the Indian Ocean will form orographic precipitation, which contributes
to the high rain frequency in the region. Although the trend in NO, concentration was
not significant in the region, the enhancement of the coarse mode AOD (and NO,
concentration) in the upwind region was clearly evident. The observed decrease trend
in rain frequency along Hengduan Mountain reflects the impacts of enhanced aerosols
on the orographic precipitation (Givity and Rosenfeld, 2004; Rosenfeld et al., 2007).
In the upwind region, the decrease trend of rain frequency coincided well with the
increase trend in coarse mode AOD.

The only region with an increase precipitation frequency is located at the Nepal-
India region, bordered by the Himalaya mountain range to the north. As discussed
previously, both fine and coarse mode AODs showed a negative trend in the region.
Thus there is an inverse relationship between the rain frequency increase and the
aerosol reduction, which is consistent with our hypothesis that aerosols play a key role
of modulating rain frequency.

However, changes in large-scale atmospheric circulation could result in observed
changes in precipitation. The large-scale factors that correlate well with precipita-
tion are the column precipitable water (PW) and divergence of water vapor transport
(DWVT) in the atmosphere (Park et al., 2007; Qian et al., 2009). We used NCEP re-
analysis data to investigate trends of the two factors in the selected regions. Although
the resolution of NCEP reanalysis data is coarse at 2.5°x2.5°, the regional features
are evident. As shown in Fig. 3, the spatial distribution of the PW in spring shows
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statistically insignificant trends in all selected regions. Similarly, most regions have
statistically insignificant trends in DWVT integrated from 1000 mb to 500 mb in spring,
except for a few grid-points near north and south boundaries. It illustrates that the
observed changes in precipitation were not related to the dynamical changes in the
atmosphere.

Similar spatial-temporal analysis of precipitation amount from TRMM PR illustrates
much weaker regional features than those in rain frequency. It corroborates our finding
in Shanghai that air pollution and associated aerosols suppress precipitation occur-
rence rather than precipitation amount (not shown here). Further, extensive studies on
other seasons have been conducted. The spatial-temporal features of rain frequency
in both summer and winter seasons showed a major cluster of decrease trend pixels,
associated with the mean rain frequency. It suggests those changes in rain frequency
may be dominated by changes in monsoon dynamics. In fall, the spatial-temporal fea-
tures of rain frequency had some but weaker coherence to the regional features of
NO, and aerosol trends than in spring. It may be partially due to some influences of
monsoon dynamics, as the monsoon transit in fall is relatively short.

4 Conclusion and discussion

A spatial-temporal analysis has been conducted using satellite observed distributions
of rain frequency, NO, concentration, and aerosols over East Asia. The overall feature
emerging from the region-by-region analyses was that there is an inverse relationship
between the rain frequency and the pollution and associated aerosols in spring. The
spatial-temporal consistency of pollution and rain frequency at continental scale pro-
vides further evidences that precipitation could be changed possibly due to the pollu-
tion effects. Comparison between trends in rain frequency and in precipitation amount
shows that air pollution tends to suppress precipitation occurrence more than precipi-
tation amount. The growing anthropogenic activities have led to increased air pollution,
i.e., anthropogenic emission of aerosol and its precursor gases, in springtime due to
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the rapid urbanization and motorization. We speculate that 1) the increased NO, and
aerosols (soot particles in particular) enhance the absorption of solar radiation and
stabilize the atmosphere, resulting in reduction of cloud formation and rain frequency;
and 2) the enhancement of pollution-produced CCN in addition to mineral dust from
long-term transport further suppresses the rain frequency, as favored by topography,
wind, and other meteorological conditions. Certainly, more robust statistical study and
detailed modeling investigation are warranted to further understand the observed rela-
tionship between the rain frequency and the pollution and associated aerosols.

As the large-scale precipitation is controlled by evaporation, aerosols might influ-
ence it by surface cooling. In particular, aerosol microphysical effects can actually
affect precipitation characteristics. Recent studies in North America also showed that
the rain frequency was increased (Karl et al., 1998) while the tropospheric NO, col-
umn was decreased (Richter et al., 2005). It further corroborates the hypothesis that
the high concentration of anthropogenic emission of aerosol and its precursor gases
suppresses rain occurrence. Furthermore, the suppression of precipitation leads to
an increase in moisture and hygroscopic particles in the atmosphere. The increased
amount of moisture and hygroscopic particles enhances regional haze if the moisture is
relatively limited, or results in intense precipitation if water vapor in the atmosphere ex-
ceeds a threshold. This hypothesis is supported by the surface observations in China,
i.e., increasing haze days (Zhuang et al., 2007); and an increasing trend of intensive
precipitation frequency over the Yangtze River Basin (Jiang et al., 2007; Su et al.,
2007).

These findings highlight the threat to vital water resources in polluted regions of the
world, as in some industrialized areas of China and India, not only locally but also in
the downwind regions. The importance of that is underlined by the realization that it is
not high temperatures due to global warming but rather the lack of water that makes
a region into an unlivable land. Particularly, any precipitation change in spring will
significantly impact the stable crop production in the regions.
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Fig. 1. (a) Time series of MODIS aerosol optical depth and satellite measured tropospheric
NO,; (b) time series of TRMM PR rain frequency and rain amount, and surface rain gauge
measured precipitation from 1998 to 2009 for the 1°x1° grid near Shanghai.
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Fig. 2. Spatial distributions in spring during 1998-2009: (a) mean tropospheric NO, column
density, (b) tropospheric NO, column density annual trend, (c) tropospheric NO, column den-
sity annual trend with significant level above 95%, (d) MODIS mean total Aerosol Optical Depth
(AOD), (e) MODIS fine mode AOD annual trend, (f) MODIS coarse mode AOD annual trend,
(g) mean TRMM PR rain frequency, (h) TRMM PR rain frequency annual trend, and (i) TRMM
PR rain frequency annual trend with significant level above 95%.
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Fig. 3. Spatial distributions of column precipitable water (PW) and divergence of water vapor
transport (DWVT), and their corresponding trends in spring during 1998-2009. The shaded
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