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The supplementary material contains 10 pages with following information: Model
development details; the chemical model (Table S1); the simulated concentration of
dissolved oxygen during an experiment (Fig. S1); simulated tartaric acid shown with the
ion abundances of m/z'149 and 103 (Fig. S2); and simulated malonic acid with the ion

abundance of m/z 103.



The method of developing the model

1. Determining the rate constant for radical-radical reactions

The rate constants for the radical-O, reactions were set to be 1 x 10° M*s™ (Guzman
et al., 2006). Since the reaction vessel contacts with the air, the Henry’s law equilibrium
for the O, is maintained in the gas and aqueous phase. In order to develop the kinetic
model both the forward (the dissolution of O in the air) and backward (the evaporation
of dissolved O,) rates have to be determined. For the rate of evaporation of dissolved O,
the diffusion-controlled transfer coefficient value of 5.3 x 10> s as suggested for cloud
conditions (Warneck, 1999) was used. The rate of dissolution of O, was calculated by
multiplying 1.3 x 10° (the Henry’s law constant) by 5.3 x 10° s™* (reaction 53 in Table
S1). The rates for the radical-radical reactions were determined by fitting to the tartaric
acid concentrations measured by IC. Note that the contribution of malonic acid to this
peak appears to be minor (Fig. S2). In the model (Figure 3C) all C, dimers produced via
radical-radical reactions are assumed to be tartaric acid because the model simulation
indicates that tartaric acid formed from the reaction 12 in Table S1 accounts for ~ 80% of
total C, dimers. It is possible that tartaric acid is formed through other C4 dimer reactions
as well (Reaction 18, 19, 20, 21, 23, and 28 in Table S1). The radical-radical reaction
rate constant used is 1.3 x 10° M™s™ which is consistent with Guzman et al., (~ 2 x 10°

M™s™) and Burchill et al. (1 x 10° M™s™).

2. Determining the dehydration/hydration rate constant for malonic acid

formation by acid catalysis
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Since malonic acid cannot be separately quantified by IC, the real-time profile of the
ion abundance of m/z" 103 obtained by ESI-MS was used. Here, we are not attempting to
guantify malonic acid formation by the model, rather adjust the model parameters to fit
the simulation to the ESI-MS real-time profile so we can obtain kinetic data for acid
catalysis (Figure S3). Therefore, in Figure S3 the fit is made by normalizing the scales of
ESI-MS signal intensity and simulated concentration. In the model, it is assumed that all
Cs dimers undergo dehydration and form malonic acid. Using the dehydration rate of 1 x
10 s provides the best fit of simulated malonic acid (0-~50 minutes) to the m/z 103
profile. The decay of malonic acid (after ~50 minutes) has two contributors, hydration
and OH radical reaction. It is impossible for the model to obtain a curve similar to the
ESI-MS profile using rate constant of 3.0 x 10 M™s™ (Munger et al., 1995), which has
been used for all OH radical reactions of C3 dimers. Five different rate constants for the
reaction of malonic acid + OH radicals are reported in Ervens et al. (2003). Only by
using the lowest rate constant of 1.6 x 10’ M™s™ (Walling and El-Taliawi, 1973) does
simulated malonic acid have a shape similar to the ESI-MS profile. The simulation
indicates that the upper limit for the hydration rate is 1 x 10® s, which means that the

major sink of malonic acid is OH radical reaction.
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Table S1. Reactions and rate/equilibrium constants used in the full kinetic model of

glyoxal + OH
Reactions Rat(i/lcﬂ? :_tl?nts Ref
1 H202 — 20H 1.1e-4 T
2 OH + H202 —> H02 + Hgo 2.7¢7 T
3 HO, + H,0, - OH + H,0 + O, 3.7 T
4 2HO, —» H,0, + O, 8.3eb T
5 OH + HO, > H,0+0, 7.1e9 T
6 GLY + OH — GLY* + H,0 1.1e9 T
7 GLY* + 0, —» GLY0O* 1.0e6 G
8 GLYOO* - GLYAC + HO, 5.0el C
9 2GLYOO* — 2CHOHOH + 2CO, + O, + 2H,0 3.0e8 e
10 CHOHOH + O, — HCO,H + HO, 5.0e6 e
11 GLY* + CHOHOH — C3D 1.3e9 G
12 GLY* + GLY*> TA 1.3e9 G
13 GLYAC + OH — GLYAC* + H,0 3.62e8 T
14 GLYAC* + 0, > GLYACOO* 1.0e6 G
15 GLYACOO* —» OXLAC + HO, 5.0e1 C
16 2GLYACOO* —» 2C0O, +2COOH 3.0e8 e
17 COOH +0, > CO, + H, 5.0e6 e
18 GLY* + COOH —» C3D 1.3e9 G
19 GLYAC* + CHOHOH —» C3D 1.3e9 G
20 GLYAC* + CHOHOH —» C3D 1.3€9 G
21 2GLYAC* —» C4D 1.3e9 G
22 GLYAC + OH — GLYAC* + H,0 2.9¢9 T
23 GLYAC* + GLY* — C4D 1.3e9 G
24 GLYAC* +GLY* — C4D 1.3e9 G
25 GLYAC* + GLYAC* — C4D 1.369 G
26 2GLYAC* — C3D 1.3e9 G
27 GLYA* + COOH — C3D 1.3e9 G
28 GLYAC* + CHOHOH — C3D 1.3e9 G
29 GLYAC* + O, - GLYACOO* 1.0e6 G
30 GLYACOO* — OXLAC + HO, 1.0e2 e
31 2GLYACOO* — 2CO, + 2COOH 3.0e8 e
32 OXLAC + OH — COOH + CO, + 2H,0 1.4e6 T
33 OXLAC + OH — COOH + CO; + 2H,0 2.0e7 T
34 OXLAC? + OH —» COOH + CO, + OH' 4.0e7 T
35 H,0 <> H* + OH' Kkefz‘ll'f:ﬁ“ T
z oo s |
37 GLYACe H' + GLYAC Kﬁf:‘gﬁgf&“ T
38 OXLAC > H" + OXLAC' KkE:*:‘ 55(?;1902 T
39 OXLAC > H* + OXLAC? KkE:*; Da2es T
40 CO, +0,—> 0, +CO, 2.4e9 T
41 GLYAC + H,0, - HCO,H + CO, + H,0 0.3 T
42 HCO,H + OH — COOH + H,0 1.0e8 T
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43 HCO, + OH — CO, + H,0 2.4€9 T
44 HCOH <> H* + HCO; Moo oaros T
r - .
45 GLY + H202 —> HCOzH + HCOzH 0 T
46 OH + 0, — OH + O, 1.0e10 T
47 HCO, + OH — CO, + H,0 1.0e7 T
48 CO, + 0, - CO,2+ 0, 6.5e8 T
49 CO5 + HCO; — HCOy + CO, 1.5e5 T
50 CO5 + H,0, —» HCO5 + HO, 8.0e5 T
. _ Keq = 4.36-7
51 CO, <> H' + HCO; o 5604 T
. ” Keg = 4.69€-11
52 HCOy <> H' + COs N 50610 T
Keq = 1.36-3
53 0,(g) <> 02 o 5302 W
54 CO; (g) <> CO, M2 o2 L
r— 9.
55 C3D + OH — C3D* + H,0 3.0e8 e
56 C3D* + O, —» C3DOO* 1.0¢6 e
57 C3D00* - X + HO, 5.0el C
58 C3DO0* —» 2COOH + 2GLYAC 3.0e8 e
59 C4D + OH — C4D* + H,0 1.1e8 E
60 C4D* + 0, —» C4ADOO* 1.0e6 G
61 C4D0O0* —» Y + HO, 5.0el C
62 2C4D00* —» 2GLYAC 3.0e8 e
63 2CHOHOH — GLY 1.3¢9 G
64 CHOHOH + COOH —» GLYAC 1.3¢9 G
65 2COOH —» OXLAC 1.3¢9 G
66 CO, + COOH —» OXLAC 1.3¢9 G
67 2C0O, - OXLAC* 1.3e9 G
68 C3D <> MA + H,0 e :éeg T
e
69 MA + OH — C3D * + H,0 1.6e7 E
70 TA + OH — C4D * + H,0 3.1e8 M

* =radical For example, glyoxal* = glyoxal radical; OO* = peroxy radical, C4D = C, dimer, TA =

tartaric acid, C3D = C; dimer; MA = malonic acid, GLY = glyoxal, GLYAC = glyoxylic acid, OXLAC =
oxalic acid, n = n" order; K, = the equilibrium constant (M), k, = the reverse rate constant for
corresponding Keq., Thus, the forward rate constant can be calculated by Keq x k;; (g) = in the gas phase; X,
and Y = anonymous organic products

Reference (Ref)

T =Tanetal., EST, 2009

G = Guzman et al., JPCA, 2006
C =Carlteretal., JPC, 1979

E = Ervens et al., PCCP, 2003
M = Monod et al., AE, 2008

L =Lim et al.,EST, 2005

W = Warneck, PCCP, 1999

e = Estimation by fitting
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Fig. S1. The simulated concentration of dissolved O, during the reaction of glyoxal
(3000 uM) + OH
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Fig. S2. The ESI-MS real-time profiles for m/z" 149 (tartaric acid) and m/z" 103 (malonic
acid)
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Fig. S3. The model simulation and the ESI-MS real-time profile for malonic acid
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