

Supplementary Material

Atmospheric Aqueous Chemistry and Its Role in Secondary Organic Aerosol (SOA) Formation

**Yong Bin Lim, Yi Tan, Mark J. Perri, Sybil P. Seitzinger, and Barbara J.
Turpin**

The supplementary material contains 10 pages with following information: Model development details; the chemical model (Table S1); the simulated concentration of dissolved oxygen during an experiment (Fig. S1); simulated tartaric acid shown with the ion abundances of $m/z^- 149$ and 103 (Fig. S2); and simulated malonic acid with the ion abundance of $m/z^- 103$.

The method of developing the model

1. Determining the rate constant for radical-radical reactions

The rate constants for the radical- O_2 reactions were set to be $1 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$ (Guzman et al., 2006). Since the reaction vessel contacts with the air, the Henry's law equilibrium for the O_2 is maintained in the gas and aqueous phase. In order to develop the kinetic model both the forward (the dissolution of O_2 in the air) and backward (the evaporation of dissolved O_2) rates have to be determined. For the rate of evaporation of dissolved O_2 , the diffusion-controlled transfer coefficient value of $5.3 \times 10^2 \text{ s}^{-1}$ as suggested for cloud conditions (Warneck, 1999) was used. The rate of dissolution of O_2 was calculated by multiplying 1.3×10^{-3} (the Henry's law constant) by $5.3 \times 10^2 \text{ s}^{-1}$ (reaction 53 in Table S1). The rates for the radical-radical reactions were determined by fitting to the tartaric acid concentrations measured by IC. Note that the contribution of malonic acid to this peak appears to be minor (Fig. S2). In the model (Figure 3C) all C_4 dimers produced via radical-radical reactions are assumed to be tartaric acid because the model simulation indicates that tartaric acid formed from the reaction 12 in Table S1 accounts for $\sim 80\%$ of total C_4 dimers. It is possible that tartaric acid is formed through other C_4 dimer reactions as well (Reaction 18, 19, 20, 21, 23, and 28 in Table S1). The radical-radical reaction rate constant used is $1.3 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ which is consistent with Guzman et al., ($\sim 2 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$) and Burchill et al. ($1 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$).

2. Determining the dehydration/hydration rate constant for malonic acid formation by acid catalysis

Since malonic acid cannot be separately quantified by IC, the real-time profile of the ion abundance of $m/z^- 103$ obtained by ESI-MS was used. Here, we are not attempting to quantify malonic acid formation by the model, rather adjust the model parameters to fit the simulation to the ESI-MS real-time profile so we can obtain kinetic data for acid catalysis (Figure S3). Therefore, in Figure S3 the fit is made by normalizing the scales of ESI-MS signal intensity and simulated concentration. In the model, it is assumed that all C₃ dimers undergo dehydration and form malonic acid. Using the dehydration rate of $1 \times 10^{-3} \text{ s}^{-1}$ provides the best fit of simulated malonic acid (0~50 minutes) to the $m/z^- 103$ profile. The decay of malonic acid (after ~50 minutes) has two contributors, hydration and OH radical reaction. It is impossible for the model to obtain a curve similar to the ESI-MS profile using rate constant of $3.0 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$ (Munger et al., 1995), which has been used for all OH radical reactions of C₃ dimers. Five different rate constants for the reaction of malonic acid + OH radicals are reported in Ervens et al. (2003). Only by using the lowest rate constant of $1.6 \times 10^7 \text{ M}^{-1}\text{s}^{-1}$ (Walling and El-Taliawi, 1973) does simulated malonic acid have a shape similar to the ESI-MS profile. The simulation indicates that the upper limit for the hydration rate is $1 \times 10^{-8} \text{ s}^{-1}$, which means that the major sink of malonic acid is OH radical reaction.

Supplementary Material References

Burchill, C. E. and Peron, K. M.: Radication-induced rearrangement of ethylene glycol in aqueous solution, Canadian J. Chem., 49, 2382-2389, 1971.

Carter, W. P. L., Darnall, K. R., Graham, R. A., Winer, A. M., and Pitts, Jr., J.: Reactions of C₂ and C₄ α -Hydroxy radicals with Oxygen, *J. Phys. Chem.*, 83, 2305-2311, 1979.

Ervens, B., Gligorovski, S., and Herrmann, H.: Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions, *Phys. Chem. Chem. Phys.*, 5, 1811-1824, 2003.

Guzman, M. I., Colussi, A. J., and Hoffman, M. R.: Photoinduced oligomerization of aqueous pyruvic acid. *J. Phys. Chem. A.*, 110, 3619-3626, 2006.

Lim, H. J., Carlton, A. G., and Turpin, B. J.: Isoprene forms secondary organic aerosol through cloud processing: model simulations, *Environ. Sci. Tech.*, 39, 4441-4446, 2005.

Monod, A. and Doussin, J. F.: Structure-activity relationship for the estimation of OH- oxidation rate constants of aliphatic organic compounds in the aqueous phase: alkanes, alcohols, organic acids and bases, *Atmos. Environ.*, 42, 7611-7622, 2008.

Munger, J. W., Jacob, D. J., Daube, B. C., Horowitz, L. W., Keene, W. C., and Heikes, B. C., J.: Formaldehyde, glyoxal, and methylglyoxal in air and cloudwater at a rural mountain site in central Virginia, *Geophys. Res.*, 100(D5), 9325-9333, 1995.

Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.: Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol, *Environ. Sci. Technol.*, 43, 8105-8112, 2009.

Walling, C. and El-Taliawi, G. M.,: Fenton's reagent. II. Reactions of carbonyl compounds and α,β -unsaturated acids, *J. Am. Chem. Soc.*, 95, 844-847, 1973

Warneck P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, *Phys. Chem. Chem. Phys.*, 1, 5471-5483, 1999.

Table S1. Reactions and rate/equilibrium constants used in the full kinetic model of glyoxal + OH

	Reactions	Rate constants (M ¹⁻ⁿ s ⁻¹)	Ref
1	H ₂ O ₂ → 2OH	1.1e-4	T
2	OH + H ₂ O ₂ → HO ₂ + H ₂ O	2.7e7	T
3	HO ₂ + H ₂ O ₂ → OH + H ₂ O + O ₂	3.7	T
4	2HO ₂ → H ₂ O ₂ + O ₂	8.3e5	T
5	OH + HO ₂ → H ₂ O + O ₂	7.1e9	T
6	GLY + OH → GLY* + H ₂ O	1.1e9	T
7	GLY* + O ₂ → GLYOO*	1.0e6	G
8	GLYOO* → GLYAC + HO ₂	5.0e1	C
9	2GLYOO* → 2CHOHOH + 2CO ₂ + O ₂ + 2H ₂ O	3.0e8	e
10	CHOHOH + O ₂ → HCO ₂ H + HO ₂	5.0e6	e
11	GLY* + CHOHOH → C3D	1.3e9	G
12	GLY* + GLY* → TA	1.3e9	G
13	GLYAC + OH → GLYAC* + H ₂ O	3.62e8	T
14	GLYAC* + O ₂ → GLYACOO*	1.0e6	G
15	GLYACOO* → OXLAC + HO ₂	5.0e1	C
16	2GLYACOO* → 2CO ₂ + 2COOH	3.0e8	e
17	COOH + O ₂ → CO ₂ + H ₂	5.0e6	e
18	GLY* + COOH → C3D	1.3e9	G
19	GLYAC* + CHOHOH → C3D	1.3e9	G
20	GLYAC* + CHOHOH → C3D	1.3e9	G
21	2GLYAC* → C4D	1.3e9	G
22	GLYAC* + OH → GLYAC* + H ₂ O	2.9e9	T
23	GLYAC* + GLY* → C4D	1.3e9	G
24	GLYAC* + GLY* → C4D	1.3e9	G
25	GLYAC* + GLYAC* → C4D	1.3e9	G
26	2GLYAC* → C3D	1.3e9	G
27	GLYAC* + COOH → C3D	1.3e9	G
28	GLYAC* + CHOHOH → C3D	1.3e9	G
29	GLYAC* + O ₂ → GLYACOO*	1.0e6	G
30	GLYACOO* → OXLAC* + HO ₂	1.0e2	e
31	2GLYACOO* → 2CO ₂ + 2COOH	3.0e8	e
32	OXLAC + OH → COOH + CO ₂ + 2H ₂ O	1.4e6	T
33	OXLAC + OH → COOH + CO ₂ + 2H ₂ O	2.0e7	T
34	OXLAC ²⁻ + OH → COOH + CO ₂ + OH ⁻	4.0e7	T
35	H ₂ O ↔ H ⁺ + OH ⁻	K _{eq} = 1.0e-14 k _r = 1.4e11	T
36	HO ₂ ↔ H ⁺ + O ₂ ⁻	K _{eq} = 1.6e-5 k _r = 5.0e10	T
37	GLYAC ↔ H ⁺ + GLYAC ⁻	K _{eq} = 3.47e-4 k _r = 2.0e10	T
38	OXLAC ↔ H ⁺ + OXLAC ⁻	K _{eq} = 5.67e-2 k _r = 5.0e10	T
39	OXLAC ⁻ ↔ H ⁺ + OXLAC ²⁻	K _{eq} = 5.42e-5 k _r = 5.0e10	T
40	CO ₂ ⁻ + O ₂ → O ₂ ⁻ + CO ₂	2.4e9	T
41	GLYAC + H ₂ O ₂ → HCO ₂ H + CO ₂ + H ₂ O	0.3	T
42	HCO ₂ H + OH → COOH + H ₂ O	1.0e8	T

43	$\text{HCO}_2^- + \text{OH} \rightarrow \text{CO}_2^- + \text{H}_2\text{O}$	2.4e9	T
44	$\text{HCO}_2\text{H} \leftrightarrow \text{H}^+ + \text{HCO}_2^-$	$K_{\text{eq}} = 1.77\text{e-}4$ $k_r = 5.0\text{e}10$	T
45	$\text{GLY} + \text{H}_2\text{O}_2 \rightarrow \text{HCO}_2\text{H} + \text{HCO}_2\text{H}$	0	T
46	$\text{OH} + \text{O}_2^- \rightarrow \text{OH}^- + \text{O}_2$	1.0e10	T
47	$\text{HCO}_2^- + \text{OH} \rightarrow \text{CO}_2^- + \text{H}_2\text{O}$	1.0e7	T
48	$\text{CO}_2^- + \text{O}_2^- \rightarrow \text{CO}_2^{-2} + \text{O}_2$	6.5e8	T
49	$\text{CO}_3^- + \text{HCO}_3^- \rightarrow \text{HCO}_3^- + \text{CO}_2^-$	1.5e5	T
50	$\text{CO}_3^- + \text{H}_2\text{O}_2 \rightarrow \text{HCO}_3^- + \text{HO}_2$	8.0e5	T
51	$\text{CO}_2 \leftrightarrow \text{H}^+ + \text{HCO}_3^-$	$K_{\text{eq}} = 4.3\text{e-}7$ $k_r = 5.6\text{e}4$	T
52	$\text{HCO}_3^- \leftrightarrow \text{H}^+ + \text{CO}_3^{2-}$	$K_{\text{eq}} = 4.69\text{e-}11$ $k_r = 5.0\text{e}10$	T
53	$\text{O}_2(\text{g}) \leftrightarrow \text{O}_2$	$K_{\text{eq}} = 1.3\text{e-}3$ $k_r = 5.3\text{e}2$	W
54	$\text{CO}_2(\text{g}) \leftrightarrow \text{CO}_2$	$K_{\text{eq}} = 3.4\text{e-}2$ $k_r = 5.3\text{e}2$	L
55	$\text{C3D} + \text{OH} \rightarrow \text{C3D}^* + \text{H}_2\text{O}$	3.0e8	e
56	$\text{C3D}^* + \text{O}_2 \rightarrow \text{C3DOO}^*$	1.0e6	e
57	$\text{C3DOO}^* \rightarrow \text{X} + \text{HO}_2$	5.0e1	C
58	$\text{C3DOO}^* \rightarrow 2\text{COOH} + 2\text{GLYAC}$	3.0e8	e
59	$\text{C4D} + \text{OH} \rightarrow \text{C4D}^* + \text{H}_2\text{O}$	1.1e8	E
60	$\text{C4D}^* + \text{O}_2 \rightarrow \text{C4DOO}^*$	1.0e6	G
61	$\text{C4DOO}^* \rightarrow \text{Y} + \text{HO}_2$	5.0e1	C
62	$2\text{C4DOO}^* \rightarrow 2\text{GLYAC}$	3.0e8	e
63	$2\text{CHOHOH} \rightarrow \text{GLY}$	1.3e9	G
64	$\text{CHOHOH} + \text{COOH} \rightarrow \text{GLYAC}$	1.3e9	G
65	$2\text{COOH} \rightarrow \text{OXLAC}$	1.3e9	G
66	$\text{CO}_2^- + \text{COOH} \rightarrow \text{OXLAC}^-$	1.3e9	G
67	$2\text{CO}_2^- \rightarrow \text{OXLAC}^{2-}$	1.3e9	G
68	$\text{C3D} \leftrightarrow \text{MA} + \text{H}_2\text{O}$	$K_{\text{eq}} = 1\text{e}5$ $k_r = 1\text{e-}8$	T
69	$\text{MA} + \text{OH} \rightarrow \text{C3D}^* + \text{H}_2\text{O}$	1.6e7	E
70	$\text{TA} + \text{OH} \rightarrow \text{C4D}^* + \text{H}_2\text{O}$	3.1e8	M

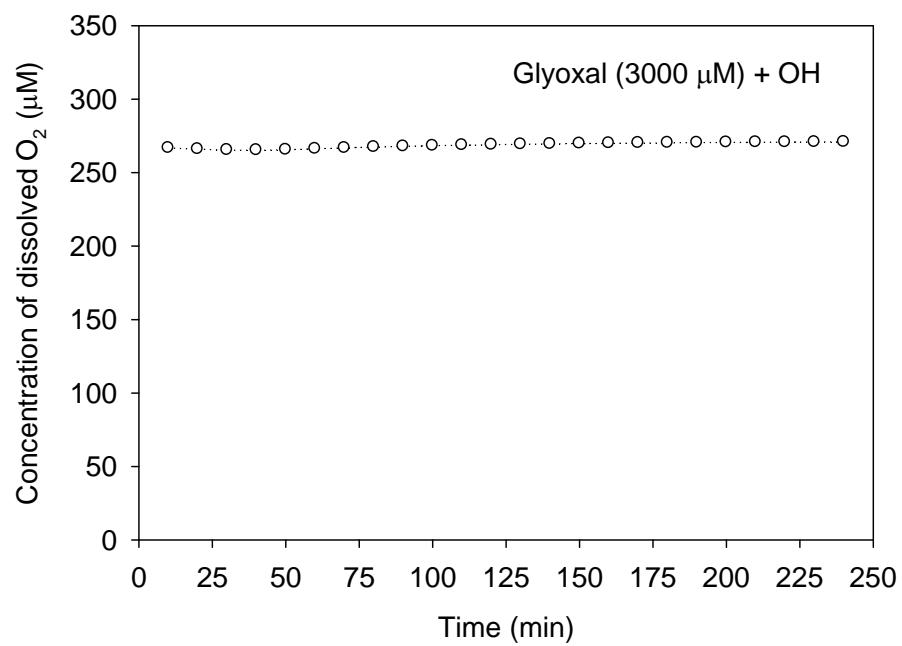
* = radical For example, glyoxal* = glyoxal radical; OO* = peroxy radical, C4D = C₄ dimer, TA = tartaric acid, C3D = C₃ dimer; MA = malonic acid, GLY = glyoxal, GLYAC = glyoxylic acid, OXLAC = oxalic acid, n = nth order; K_{eq} = the equilibrium constant (M), k_r = the reverse rate constant for corresponding K_{eq}, Thus, the forward rate constant can be calculated by K_{eq} × k_r; (g) = in the gas phase; X, and Y = anonymous organic products

Reference (Ref)

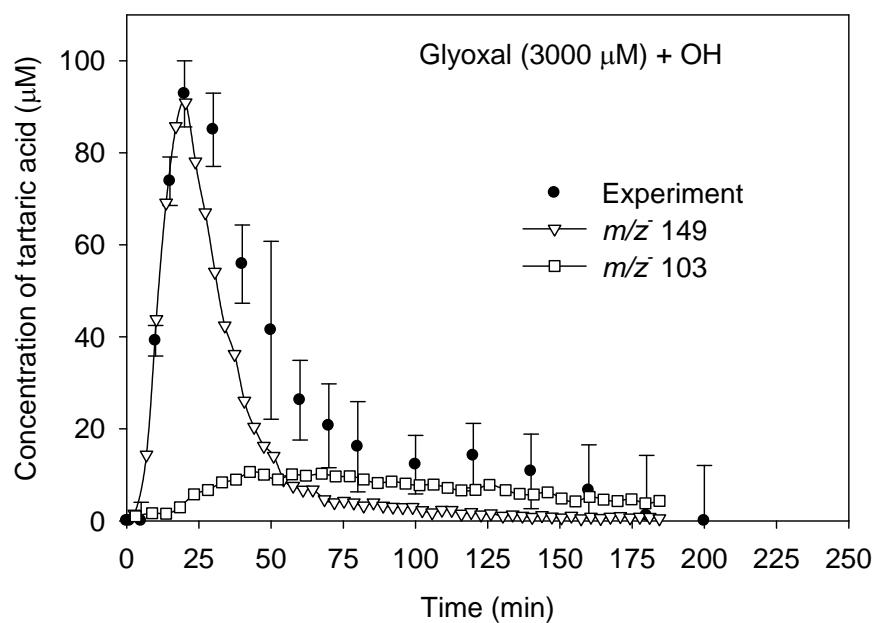
T = Tan et al., EST, 2009
 G = Guzman et al., JPCA, 2006
 C = Carlton et al., JPC, 1979
 E = Ervens et al., PCCP, 2003
 M = Monod et al., AE, 2008
 L = Lim et al., EST, 2005
 W = Warneck, PCCP, 1999
 e = Estimation by fitting

Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.: Effects of precursor concentration and acidic surfactant in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol, *Environ. Sci. Technol.*, 43, 8105-8112, 2009.

Guzman, M. I., Colussi, A. J., and Hoffman, M. R.: Photoinduced oligomerization of aqueous pyruvic acid. *J. Phys. Chem. A.*, 110, 3619-3626, 2006.


Carter, W. P. L., Darnall, K. R., Graham, R. A., Winer, A. M., and Pitts, Jr., J.: Reactions of C₂ and C₄ α -Hydroxy radicals with Oxygen, *J. Phys. Chem.*, 83, 2305-2311, 1979.

Ervens, B., Gligorovski, S., and Herrmann, H.: Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions, *Phys. Chem. Chem. Phys.*, 5, 1811-1824, 2003.


Monod, A. and Doussin, J. F.: Structure-activity relationship for the estimation of OH-oxidation rate constants of aliphatic organic compounds in the aqueous phase: alkanes, alcohols, organic acids and bases, *Atmos. Environ.*, 42, 7611-7622, 2008.

Lim, H. J., Carlton, A. G., and Turpin, B. J.: Isoprene forms secondary organic aerosol through cloud processing: model simulations, *Environ. Sci. Tech.*, 39, 4441-4446, 2005.

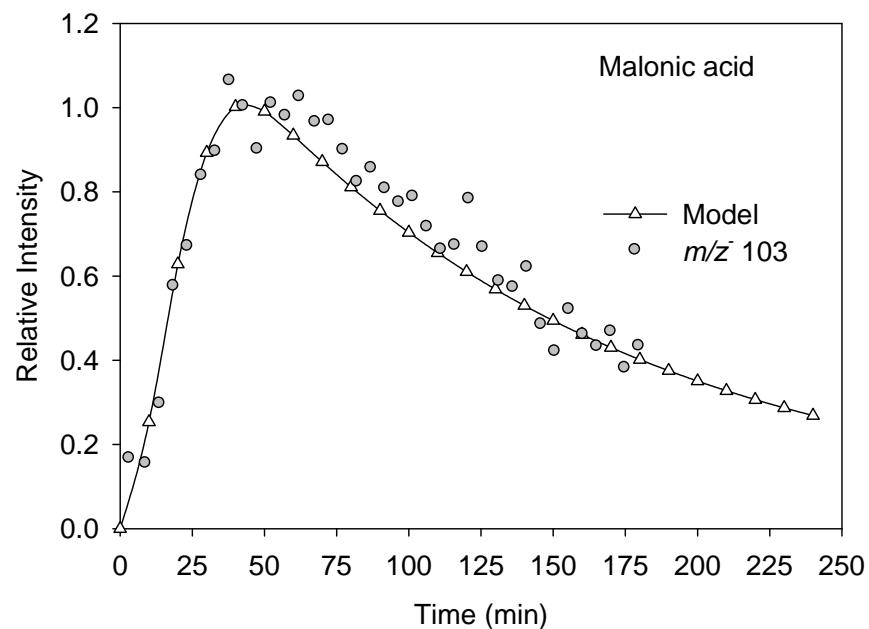

Warneck P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, *Phys. Chem. Chem. Phys.*, 1, 5471-5483, 1999.

Fig. S1. The simulated concentration of dissolved O_2 during the reaction of glyoxal (3000 μ M) + OH

Fig. S2. The ESI-MS real-time profiles for $m/z^- 149$ (tartaric acid) and $m/z^- 103$ (malonic acid)

Fig. S3. The model simulation and the ESI-MS real-time profile for malonic acid