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The supplementary material contains 10 pages with following information:  Model 

development details; the chemical model (Table S1); the simulated concentration of 

dissolved oxygen during an experiment (Fig. S1); simulated tartaric acid shown with the 

ion abundances of m/z-149 and 103 (Fig. S2); and simulated malonic acid with the ion 

abundance of m/z- 103. 

 
 



The method of developing the model   

1.  Determining the rate constant for radical-radical reactions   

The rate constants for the radical-O2 reactions were set to be 1 × 106 M-1s-1 (Guzman 

et al., 2006).  Since the reaction vessel contacts with the air, the Henry’s law equilibrium 

for the O2 is maintained in the gas and aqueous phase.  In order to develop the kinetic 

model both the forward (the dissolution of O2 in the air) and backward (the evaporation 

of dissolved O2) rates have to be determined.  For the rate of evaporation of dissolved O2, 

the diffusion-controlled transfer coefficient value of 5.3 × 102 s-1 as suggested for cloud 

conditions (Warneck, 1999) was used.  The rate of dissolution of O2 was calculated by 

multiplying 1.3 × 10-3 (the Henry’s law constant) by 5.3 × 102 s-1 (reaction 53 in Table 

S1). The rates for the radical-radical reactions were determined by fitting to the tartaric 

acid concentrations measured by IC.  Note that the contribution of malonic acid to this 

peak appears to be minor (Fig. S2).  In the model (Figure 3C) all C4 dimers produced via 

radical-radical reactions are assumed to be tartaric acid because the model simulation 

indicates that tartaric acid formed from the reaction 12 in Table S1 accounts for ~ 80% of 

total C4 dimers.  It is possible that tartaric acid is formed through other C4 dimer reactions 

as well (Reaction 18, 19, 20, 21, 23, and 28 in Table S1).   The radical-radical reaction 

rate constant used is 1.3 × 109 M-1s-1 which is consistent with Guzman et al., (~ 2 × 109 

M-1s-1) and Burchill et al. (1 × 109 M-1s-1).  

 

2.  Determining the dehydration/hydration rate constant for malonic acid 

formation by acid catalysis  
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Since malonic acid cannot be separately quantified by IC, the real-time profile of the 

ion abundance of m/z- 103 obtained by ESI-MS was used.  Here, we are not attempting to 

quantify malonic acid formation by the model, rather adjust the model parameters to fit 

the simulation to the ESI-MS real-time profile so we can obtain kinetic data for acid 

catalysis (Figure S3).  Therefore, in Figure S3 the fit is made by normalizing the scales of 

ESI-MS signal intensity and simulated concentration.  In the model, it is assumed that all 

C3 dimers undergo dehydration and form malonic acid.  Using the dehydration rate of 1 × 

10-3 s-1 provides the best fit of simulated malonic acid (0-~50 minutes) to the m/z- 103 

profile.   The decay of malonic acid (after ~50 minutes) has two contributors, hydration 

and OH radical reaction.  It is impossible for the model to obtain a curve similar to the 

ESI-MS profile using rate constant of 3.0 × 108 M-1s-1 (Munger et al., 1995), which has 

been used for all OH radical reactions of C3 dimers.  Five different rate constants for the 

reaction of malonic acid + OH radicals are reported in Ervens et al. (2003).  Only by 

using the lowest rate constant of 1.6 × 107 M-1s-1 (Walling and El-Taliawi, 1973) does 

simulated malonic acid have a shape similar to the ESI-MS profile.  The simulation 

indicates that the upper limit for the hydration rate is 1 × 10-8 s-1, which means that the 

major sink of malonic acid is OH radical reaction. 
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Table S1.  Reactions and rate/equilibrium constants used in the full kinetic model of 
glyoxal + OH 

 Reactions Rate constants 
(M1-n s-1) Ref 

1 H2O2 → 2OH 1.1e-4 T 
2 OH + H2O2 → HO2 + H2O 2.7e7 T 
3 HO2 + H2O2 → OH + H2O + O2 3.7 T 
4 2HO2 → H2O2 + O2 8.3e5 T 
5 OH + HO2 → H2O + O2 7.1e9 T 
6 GLY + OH → GLY* + H2O 1.1e9 T 
7 GLY* + O2 → GLYOO* 1.0e6 G 
8 GLYOO* → GLYAC + HO2 5.0e1 C 
9 2GLYOO*  → 2CHOHOH + 2CO2 + O2 + 2H2O 3.0e8 e 

10 CHOHOH + O2 → HCO2H + HO2 5.0e6 e 
11 GLY* + CHOHOH → C3D 1.3e9 G 
12 GLY* + GLY*→ TA 1.3e9 G 
13 GLYAC + OH → GLYAC* + H2O 3.62e8 T 
14 GLYAC* + O2 → GLYACOO* 1.0e6 G 
15 GLYACOO* → OXLAC + HO2 5.0e1 C 
16 2GLYACOO* → 2CO2 +2COOH 3.0e8 e 
17 COOH + O2 → CO2 + H2 5.0e6 e 
18 GLY* + COOH → C3D 1.3e9 G 
19 GLYAC* + CHOHOH → C3D 1.3e9 G 
20 GLYAC* + CHOHOH → C3D 1.3e9 G 
21 2GLYAC* → C4D 1.3e9 G 
22 GLYAC- + OH → GLYAC*-  + H2O 2.9e9 T 
23 GLYAC* + GLY* → C4D 1.3e9 G 
24 GLYAC*-  + GLY* → C4D 1.3e9 G 
25 GLYAC*-  + GLYAC* → C4D 1.3e9 G 
26 2GLYAC*- → C3D 1.3e9 G 
27 GLYA*- + COOH → C3D 1.3e9 G 
28 GLYAC*- + CHOHOH → C3D 1.3e9 G 
29 GLYAC*- + O2 → GLYACOO*- 1.0e6 G 
30 GLYACOO*- → OXLAC- + HO2 1.0e2 e 
31 2GLYACOO*- → 2CO2

- + 2COOH 3.0e8 e 
32 OXLAC + OH → COOH + CO2 + 2H2O  1.4e6 T 
33 OXLAC- + OH → COOH + CO2

- + 2H2O 2.0e7 T 
34 OXLAC2- + OH → COOH + CO2

-  + OH- 4.0e7 T 

35 H2O ↔ H+ + OH- Keq = 1.0e-14  
kr = 1.4e11 T 

36 HO2 ↔ H+ + O2
- Keq = 1.6e-5 

kr = 5.0e10 T 

37 GLYAC↔ H+ + GLYAC- Keq = 3.47e-4 
kr = 2.0e10 T 

38 OXLAC ↔ H+ + OXLAC- Keq = 5.67e-2 
kr = 5.0e10 T 

39 OXLAC- ↔ H+ + OXLAC2- Keq = 5.42e-5 
kr = 5.0e10 T 

40 CO2
- + O2 → O2

- + CO2 2.4e9 T 
41 GLYAC + H2O2 → HCO2H + CO2 + H2O 0.3 T 
42 HCO2H + OH → COOH + H2O 1.0e8 T 
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43 HCO2
- + OH → CO2

- + H2O 2.4e9 T 

44 HCO2H ↔ H+ + HCO2
- Keq = 1.77e-4 

kr = 5.0e10 T 

45 GLY + H2O2 → HCO2H + HCO2H 0 T 
46 OH + O2

- → OH- + O2 1.0e10 T 
47 HCO2

- + OH → CO2
- + H2O 1.0e7 T 

48 CO2
- + O2

- → CO2
-2 + O2 6.5e8 T 

49 CO3
- + HCO3

- → HCO3
- + CO2

- 1.5e5 T 
50 CO3

- + H2O2 → HCO3
- + HO2 8.0e5 T 

51 CO2 ↔ H+ + HCO3
- Keq = 4.3e-7 

kr = 5.6e4 T 

52 HCO3
- ↔ H+ + CO3

2- Keq = 4.69e-11 
kr = 5.0e10 T 

53 O2 (g) ↔ O2 Keq = 1.3e-3 
kr = 5.3e2 W 

54 CO2 (g) ↔ CO2 
Keq = 3.4e-2 
kr = 5.3e2 L 

55 C3D + OH → C3D* + H2O 3.0e8 e 
56 C3D* + O2 → C3DOO* 1.0e6 e 
57 C3DOO* → X + HO2 5.0e1 C 
58 C3DOO* → 2COOH + 2GLYAC  3.0e8 e 
59 C4D + OH → C4D* + H2O 1.1e8 E 
60 C4D* + O2 → C4DOO* 1.0e6 G 
61 C4DOO* → Y + HO2 5.0e1 C 
62 2C4DOO* → 2GLYAC  3.0e8 e 
63 2CHOHOH → GLY 1.3e9 G 
64 CHOHOH + COOH → GLYAC 1.3e9 G 
65 2COOH → OXLAC 1.3e9 G 
66 CO2

- + COOH → OXLAC- 1.3e9 G 
67 2CO2

- → OXLAC2- 1.3e9 G 

68 C3D ↔ MA + H2O Keq = 1e5 
kr = 1e-8 T 

69 MA + OH → C3D * + H2O 1.6e7 E 
70 TA + OH → C4D * + H2O 3.1e8 M 
 

* = radical  For example, glyoxal* = glyoxal radical; OO* = peroxy radical, C4D = C4 dimer, TA = 
tartaric acid, C3D = C3 dimer; MA = malonic acid, GLY = glyoxal, GLYAC = glyoxylic acid, OXLAC = 
oxalic acid, n = nth order; Keq = the equilibrium constant (M), kr = the reverse rate constant for 
corresponding Keq., Thus, the forward rate constant can be calculated by Keq × kr; (g) = in the gas phase; X, 
and Y = anonymous organic products 

 
Reference (Ref) 

T = Tan et al., EST, 2009 
G = Guzman et al., JPCA, 2006 
C = Carlter et al., JPC, 1979 
E = Ervens et al., PCCP, 2003 
M = Monod et al., AE, 2008 
L = Lim et al.,EST, 2005 
W = Warneck, PCCP, 1999 
e = Estimation by fitting 
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Fig. S1.  The simulated concentration of dissolved O2 during the reaction of glyoxal 
(3000 μM) + OH 
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Glyoxal (3000 μM) + OH           
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Fig. S2.  The ESI-MS real-time profiles for m/z- 149 (tartaric acid) and m/z- 103 (malonic 
acid) 
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Fig. S3.  The model simulation and the ESI-MS real-time profile for malonic acid 
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