Quantifying pollution inflow and outflow over East Asia through coupling regional and global models

Meiyun Lin^{a,*}, Tracey Holloway^a, Greg R. Carmichael^b, Arlene M. Fiore^c,

^aCenter for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Wisconsin, USA

^b Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa, USA

^c NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA

Supplementary Figures

Atmospheric Chemistry and Physics Discussion

Published by Copernicus Publications on behalf of EGU.

^{*} Corresponding author. Email address: mlin26@wisc.edu (Meiyun Lin).

Figure S1. Comparison of MOZART, WRF-Chem and CMAQ anthropogenic (including biomass burning) emissions of CO, NO_x and ethene during March, in units of moles/km²/h. WRF-Chem and CMAQ emissions are provided on a grid with resolution of 36 km x 36 km; MOZART emissions are provided on a grid with resolution $1.9^{\circ} \times 1.9^{\circ}$.

Figure S2. Monthly mean isoprene concentrations in CMAQ and WRF-Chem for March 2001.

Figure S3. Comparison of MOZART and WRF-Chem simulated vertical profiles of CO and PAN zonal flux along 140°E. PAN flux is shown as contours from 0.0 to 7.5 by 0.5×10^{-9} moles cm⁻² s⁻¹.

(b)

Figure S3.

(c)

Figure S3.

(d)

Figure S3.

(a) WRF-Chem with CBM-Z chemistry (mean=1.08ppbv)

Figure S4. WRF-Chem calculated European enhancement on surface ozone in East Asia averaged over 1-15 March.

Figure S5. WRF-Chem calculated vertical profiles of European CO (upper panel), NO₂ (middle panel) and O₃ (lower panel) over China (Mt. Hua) and Japan (Mt. Happo) during 1-14 March. The black line shows the boundary layer depth. The hatched area indicates local terrain height.