Atmos. Chem. Phys. Discuss., 1, S12–S13, 2001 www.atmos-chem-phys.org/acpd/1/S12/ © European Geophysical Society 2001

ACPD

1, S12-S13, 2001

Interactive Comment

Interactive comment on "Oxidation of SO_2 by H_2O_2 on ice surfaces at 228 K: a sink for SO_2 in ice clouds" by "S. M. Clegg and J. P. D. Abbatt"

Anonymous Referee #1

Received and Published: 14 September 2001

General comments

This paper presents an important topic in tropospheric chemistry and is well written. The referee recommends publishing this paper with some minor modifications.

Specific comments

1. Page 84. H_2O_2 was in isotherm equilibrium with the ice surface (approximately) (page 80) before SO₂ was introduced to the system. Should [$H_2O_2(ad)$] be nearly a constant? Also, [H_2O_2]>[SO₂], the competition between H_2O_2 and SO₂ should not be a significant factor.

2. The semi-quantitative or qualitative mechanism/explanation has some problems. SO_2 is efficiently taken by H_2O_2 covered ice surfaces, but not on H_2O surfaces. Reaction 4 was assumed to be the rate determining step. As it was written, Reactions 2-3,

Print Version

Interactive Discussion

Original Paper

© EGS 2001

the loss of SO₂ on H₂O surfaces, should be slower steps. Reaction 4 is a reversible reaction and a rate expression in Equation 6 should have both forward and backward terms. Equation 7 was from isotherms of SO₂ on H₂O surfaces. The expression for $[HSO_3^-(ad)]$ may not be that simply as it was given in Equation 7 if one applies the steady-state approximation to Reactions 1-5.

3. Equation 11 was obtained by a semi-quantitative approach. The discussion in the last paragraph on page 83 perhaps stretched the conclusion of Equation 11 beyond its limit. The difference between -0.5 and -0.7 can also be an uncertainty of the semi-quantitative approach.

Technical corrections

Use thicker lines in figures.

Interactive comment on Atmos. Chem. Phys. Discuss., 1, 77, 2001.

ACPD

1, S12-S13, 2001

Interactive Comment

Print Version

Interactive Discussion

Original Paper

